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Abstract: In this paper, we consider the following class of differential inclusion problems inℝN involving the
p(x)-Laplacian:

−∆p(x)u + V(x)|u|p(x)−2u ∈ a(x)∂F(x, u) inℝN .

We are concerned with a multiplicity property, and our arguments combine the variational principle for
locally Lipschitz functionswith the properties of the generalized Lebesgue–Sobolev space. Applying the non-
smooth symmetric mountain pass lemma and the fountain theorem, we establish conditions such that the
associated energy functional possesses infinitely many critical points, and then we obtain infinitely many
solutions.
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1 Introduction
Since many free boundary problems and obstacle problems may be reduced to partial differential equations
with discontinuous nonlinearities, the existence of multiple solutions of the problems with discontinuous
nonlinearities has been widely investigated in recent years. In 1981, Chang [1] extended the variational
methods to a class of nondifferentiable functionals, and directly applied the variational methods for non-
differentiable functionals to prove some existence theorems for a PDEwith discontinuous nonlinearities (see
also [23, 24]). In 2000, Kourogenis and Papageorgiou [17] obtained some nonsmooth critical point theorems
and applied these results to nonlinear elliptic equations at resonance, involving the p-Laplacianwith discon-
tinuousnonlinearities. Later on,we refer to thenonsmooth version of the three critical points theoremand the
nonsmoothRicceri-type variational principle establishedbyMaranoandMotreanu [20],whogave anapplica-
tion to elliptic problems involving the p-Laplacian with discontinuous nonlinearities. By using the Ekeland
variational principle and a deformation theorem, Kandilakis, Kourogenis and Papageorgiou [16] obtained
the local linking theorem for locally Lipschitz functions. Dai [4] elaborated a nonsmooth version of the foun-
tain theorem and gave an application to a Dirichlet-type differential inclusion involving the p(x)-Laplacian.

*Corresponding author: Vicențiu D. Rădulescu, Faculty of Applied Mathematics, AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Kraków, Poland; and Institute of Mathematics “Simion Stoilow” of the Romanian Academy,
P.O. Box 1-764, 014700 Bucharest, Romania, e-mail: vicentiu.radulescu@imar.ro
Bin Ge, School of Mathematical Sciences, Harbin Engineering University, Harbin, 150001, P. R. China,
e-mail: gebin791025@hrbeu.edu.cn

Brought to you by | De Gruyter / TCS
Authenticated

Download Date | 7/29/19 10:21 AM
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Recently, Ge and Liu [12] obtained a nonsmooth version of the principle of symmetric criticality by using the
genus properties.

In the latest years, the study of nonlinear partial differential equations with non-standard growth condi-
tions has been the object of an increasing amount of attention. A comprehensive treatment of the variational
analysis of nonlinear partial differential equations with variable exponent can be found in the recent mono-
graphs [22, 27].

Motivated by the above references, we study in this paper the differential inclusion problem

−∆p(x)u + V(x)|u|p(x)−2u ∈ a(x)∂F(x, u) inℝN , (P)

where p : ℝN → ℝ is Lipschitz continuous and 1 < p− := infℝN p(x) ≤ supℝN p(x) =: p+ < N, V is the new
potential function, a ∈ L1+(ℝN) ∩ L

N
p(x)−1 (ℝN), F(x, t) is locally Lipschitz in the t-variable integrand (in gen-

eral, it can be nonsmooth) and ∂F(x, t) is the subdifferential with respect to the t-variable in the sense of
Clarke [2].

In the last few decades, the existence andmultiplicity of solutions to problem (P) have been investigated
in many papers via variational methods, and several results have been obtained based on various hypothe-
ses on the potential function F; we refer the reader to [3, 12–14] and the references therein for details. For
example, when a(x) ≡ 1, V(x) ≡ 1 and p is radially symmetric onℝN with 2 ≤ N < p− ≤ p+ < +∞, the authors
in [3] proved the existence of infinitely many radially symmetric solutions.

The case of a(x) ≡ 1, p, V are radially symmetric onℝN with 1 < p− ≤ p+ < N and V− > 1was discussed
in [13], where the existence of at least two nontrivial solutions is established.

For the case when a(x) ≡ 1, V ∈ C(ℝN) with 0 < V−, and

lim
|y|→∞

μ({x ∈ ℝN : V(x) ≤ b} ∩ Br(y)) = 0 for all b > 0,

for some r > 0, Ge, Zhou andXue [14] proved the existence of infinitelymanydistinct positive solutionswhose
W1,p(x)(ℝN)-norms tend to zero (respectively, to infinity) whenever the nonlinearity oscillates at zero (respec-
tively, at infinity). The same for asymptotically linear and coercive problems is studied by Ge, Zhou and Xue
in [15]. The authors established the existence of at least two nontrivial solutions by using theWeierstrass the-
orem and the mountain pass theorem. Recently, for the case that F(x, u) satisfies sublinear growth condition
in u at infinity, Ge and Liu [12] used the genus properties in nonsmooth critical point theory in order to prove
the existence of infinitely many solutions.

Inspired by the above-mentioned papers, we study problem (P) in two distinct situations. In this new
framework, we will show the existence of infinitely many nontrivial solutions for problem (P). These results
are beneficial supplement and development of the above-mentioned achievements. Besides, our results are
also new, even in the smooth case. Before stating our main results, we first make some assumptions on the
functions V and F. For the potential V, we make the following assumptions:
(V1) V ∈ C(ℝN), 0 < V−.
(V2) There exists r > 0 such that, for any b > 0,

lim
|y|→∞

μ({x ∈ ℝN : V(x) ≤ b} ∩ Br(y)) = 0,

where μ is the Lebesgue measure onℝN .
Note that if V ∈ C(ℝN) is coercive, namely,
(V3) lim|x|→∞ V(x) = +∞,
then (V2) is satisfied. For the nonlinearity F, we suppose the following hypotheses:

The function F : ℝN ×ℝ→ ℝ is such that F(x, 0) = 0 a.e. onℝN , and
(f0) F is a Carathéodory function, that is, for all t ∈ ℝ, the mapping x → F(x, t) is measurable and, for

almost all x ∈ ℝN , the function t → F(x, t) is locally Lipschitz;
(f1) for almost all x ∈ ℝN , all t ∈ ℝ and all w ∈ ∂F(x, t), we have

|w| ≤ c(1 + |t|p(x)−1);
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(f2) there exist δ > 0 and ϑ ∈ L∞− (ℝN) such that, for almost all x ∈ ℝN , we have

sup
0<|t|<δ

F(x, t) ≤ ϑ(x) < 0,

where L∞− (ℝN) = {η ∈ L∞(ℝN) : η(x) < 0 for all x ∈ ℝN};
(f3) there exists q ∈ C+(ℝN) with

p+ < q− ≤ q(x) < Np(x) − p(x)(p(x) − 1)
N − p(x)

< p∗(x) for all x ∈ ℝN

such that, for almost all x ∈ ℝN , we have

lim inf
|t|→∞

F(x, t)
|t|q(x)
> 0;

(f4) F(x, −t) = F(x, t) for all (x, t) ∈ ℝN ×ℝ.
Now we are ready to state our first result.

Theorem 1.1. Suppose that (f0) and (f1)–(f4) hold. Then problem (P) has infinitely many nontrivial solutions.

Moreover, if condition (f2) is completely removed, then we have another group of solutions on (P), which
reads as follows:

Theorem 1.2. Suppose that (f0), (f1), (f3) and (f4) hold. Then problem (P) has infinitely many nontrivial solu-
tions.

The remainder of the paper is organized as follows. In Section 2, we will recall the definitions and some
properties of variable exponent Sobolev spaces. In Section 3, the proof of the main results is given.

2 Preliminary Results

2.1 Variable Exponent Sobolev Spaces

We start with some preliminary basic results on the theory of Lebesgue–Sobolev spaces with variable expo-
nent. For more details, we refer the reader to the books [5, 21] and the papers [6, 8, 9, 18, 25, 26].

Throughout this paper, we always assume p(x) > 1 and p ∈ C(ℝN). Set

C+(ℝN) = {h ∈ C(ℝN) : h(x) > 1 for all x ∈ ℝN}.

For any h ∈ C+(ℝN), we will denote

h− = min
x∈ℝN

h(x), h+ = max
x∈ℝN

h(x)

and denote by h1 ≪ h2 the fact that infx∈ℝN (h2(x) − h1(x)) > 0.
For p(x) ∈ C+(ℝN), we define the variable exponent Lebesgue space

Lp(x)(ℝN) = {u : u is measurable and ∫
ℝN

|u(x)|p(x) dx < +∞}

with the norm
|u|Lp(x)(ℝN ) = |u|p(x) = inf{Λ > 0 : ∫

ℝN


u(x)
Λ


p(x)
dx ≤ 1},

and we define the variable exponent Sobolev space

W1,p(x)(ℝN) = {u ∈ Lp(x)(ℝN) : |∇u| ∈ Lp(x)(ℝN)},

with the norm ‖u‖ = ‖u‖W1,p(x)(ℝN ) = |u|p(x) + |∇u|p(x). We recall that spaces Lp(x)(ℝN) andW1,p(x)(ℝN) are sep-
arable and reflexive Banach spaces.
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Define J : W1,p(x)(ℝN)→ ℝ by

J(u) = ∫
ℝN

1
p(x) (
|∇u|p(x) + V(x)|u|p(x)) dx for all u ∈ W1,p(x)(ℝN).

Then J ∈ C1(W1,p(x)(ℝN ,ℝ). If we denote

A = J : W1,p(x)(ℝN)→ (W1,p(x)(ℝN))∗,

then
⟨A(u), v⟩ = ∫

ℝN

[|∇u|p(x)−2∇u ⋅ ∇v + V(x)|u|p(x)−2uv] dx for all u, v ∈ W1,p(x)(ℝN),

where ⟨ ⋅ , ⋅ ⟩ is the duality pairing between (W1,p(x)(ℝN))∗ andW1,p(x)(ℝN).

Proposition 2.1 ([1]). Set G = W1,p(x)(ℝN), and A is as above. Then A : G → G∗ is
(1) a convex, bounded and strictly monotone operator,
(2) a mapping of type (S)+, i.e., un ⇀ u in G and lim supn→∞⟨A(un), un − u⟩ ≤ 0 implies un → u in G, where
⇀ and→ denote the weak and the strong convergence in G, respectively,

(3) a homeomorphism.

Denote by Lq(x)(ℝN) the conjugate space of Lp(x)(ℝN) with 1
p(x) +

1
q(x) = 1. Then the Hölder-type inequality

∫

ℝN

|uv| dx ≤ ( 1p− +
1
q− )
|u|Lp(x)(ℝN )|v|Lq(x)(ℝN ), u ∈ Lp(x)(ℝN), v ∈ Lq(x)(ℝN),

holds. Furthermore, if we define the mapping ρ : Lp(x)(ℝN)→ ℝ by

ρ(u) = ∫
ℝN

|u|p(x) dx,

then the following relations hold:

for u ̸= 0, |u|p(x) = μ ⇐⇒ ρ(uμ)
= 1, (2.1)

|u|p(x) < 1 (= 1, > 1)⇐⇒ ρ(u) < 1 (= 1, > 1), (2.2)

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|
p+
p(x), (2.3)

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρ(u) ≤ |u|
p−
p(x). (2.4)

Proposition 2.2 ([7]). Let p(x), q(x) be measurable functions such that p(x) ∈ L∞(ℝN) and 1 ≤ p(x)q(x) ≤∞
almost everywhere inℝN . Let u ∈ Lq(x)(ℝN), u ̸= 0. Then

|u|p(x)q(x) ≥ 1 ⇒ |u|p
−

p(x)q(x) ≤
|u|

p(x)q(x) ≤ |u|
p+
p(x)q(x),

|u|p(x)q(x) ≤ 1 ⇒ |u|p
+

p(x)q(x) ≤
|u|

p(x)q(x) ≤ |u|
p−
p(x)q(x).

In particular, if p(x) = p is a constant, then |u|
pq(x) = |u|

p
pq(x).

Next we consider the case that V satisfies (V1) and (V2). We equip the linear subspace

E = {u ∈ W1,p(x)(ℝN) : ∫
ℝN

(|∇u|p(x) + V(x)|u|p(x)) dx < +∞}

with the norm
‖u‖E = inf{λ > 0 : ∫

ℝN

(

∇u
λ


p(x)
+ V(x)

u
λ


p(x)
) dx ≤ 1}.

Then (E, ‖ ⋅ ‖E) is continuously embedded into W1,p(x)(ℝN) as a closed subspace. Therefore, (E, ‖ ⋅ ‖E) is also
a separable reflexive Banach space. It is easy to see that with the norm ‖ ⋅ ‖E, Proposition 2.1 remains valid,
that is, the following properties hold true.
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Proposition 2.3. Set I(u) = ∫ℝN (|∇u|
p(x) + V(x)|u|p(x)) dx. If u ∈ W1,p(x)(ℝN), then

(i) for u ̸= 0, ‖u‖E = λ if and only if I( uλ ) = 1,
(ii) ‖u‖E < 1 (= 1, > 1) if and only if I(u) < 1 (= 1, > 1),
(iii) ‖u‖E > 1 implies ‖u‖p

−
E ≤ I(u) ≤ ‖u‖

p+
E ,

(iv) ‖u‖E < 1 implies ‖u‖p
+

E ≤ I(u) ≤ ‖u‖
p−
E .

Proposition 2.4 ([8]). If V satisfies (V1) and (V2), then
(i) we have a compact embedding E → Lp(x)(ℝN),
(ii) for any measurable function q : ℝN → ℝ with p < q ≪ p∗, we have a compact embedding E → Lq(x)(ℝN).

2.2 Generalized Gradient

Let (Y, ‖ ⋅ ‖) be a real Banach space and Y∗ its topological dual. A functionφ : Y → ℝ is called locally Lipschitz
if each point u ∈ Y possesses a neighborhood Nu such that |f(u1) − f(u2)| ≤ ‖u1 − u2‖ for all u1, u2 ∈ Nu,
for a constant L > 0 depending on Nu. The generalized directional derivative of φ at the point u ∈ Y in the
direction h ∈ Y is

φ0(u; h) = lim inf
w→u
t→0+

φ(w + th) − φ(w)
t

.

The generalized gradient of φ at u ∈ Y is defined by

∂φ(u) = {u∗ ∈ Y∗ : ⟨u∗, h⟩ ≤ φ0(u; h) for all h ∈ Y},

which is a nonempty, convex and w∗-compact subset of Y, where ⟨ ⋅ , ⋅ ⟩ is the duality pairing between Y∗

and Y. We say that u ∈ Y is a critical point of φ if 0 ∈ ∂φ(u). For further details, we refer the reader to [1].

Definition 2.5. Let Y be a real Banach space, and φ : Y → ℝ is a locally Lipschitz function. We say that φ
satisfies the nonsmooth (PSc) condition if any sequence {un} ⊂ Y such that φ(un)→ c and m(un)→ 0 as
n → +∞ has a strongly convergent subsequence, where m(un) = inf{‖u∗‖Y∗ : u∗ ∈ ∂φ(un)}. If this property
holds at every level c ∈ ℝ, then we simply say that φ satisfies the nonsmooth (PS) condition.

In order to prove Theorem 1.1, we need the following lemma.

Lemma 2.6 ([11, Theorem 2.1.7]). Assume that X is an infinite-dimensional Banach space, and let φ : X → ℝ
bea locally Lipschitz function that satisfies the nonsmooth (PSc) condition for every c > 0. Assumeφ(u) = φ(−u)
for all u ∈ X and φ(0) = 0. Suppose X = X1 ⊕ X2, where X1 is finite-dimensional, and assume the following
conditions:
(a) α > 0, γ > 0 such that ‖u‖ = γ with u ∈ X2 implies φ(u) ≥ α.
(b) For any finite-dimensional subspaceW ⊂ X1, there is R = R(W) such that φ(u) ≤ 0 for u ∈ W with ‖u‖ ≥ R.
Then φ possesses an unbounded sequence of critical values.

Finally, in order to prove Theorem1.2 in the next section,we introduce the followingnotions and the fountain
theorem.

Let X be a reflexive and separable Banach space. Then there exist (see [28, Section17]) ej ⊂ X and e∗j ⊂ X∗
such that

X = span{ej : j = 1, 2, . . . }, X∗ = span{e∗j : j = 1, 2, . . . } and ⟨e∗i , ej⟩ =
{
{
{

1, i = j,
0, i ̸= j.

For convenience, we write

Xj = span{ej}, Yk =
k
⨁
j=1

Xj and Zk =
∞
⨁
j=k

Xj . (2.5)
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630 | B. Ge and V. D. Rǎdulescu, Infinitely Many Solutions for a Differential Inclusion Problem

Lemma 2.7 ([4, Theorem 3.1]). Assume that
(A1) X is a Banach space, φ : X → ℝ is a locally Lipschitz even function, the subspaces Xk, Yk and Zk are

defined by (2.5).
We also assume that, for any k = 1, 2, . . . , there exists ρk > rk > 0 such that
(A2) infu∈Zk ,‖u‖=rk φ(u)→ +∞ as k → +∞,
(A3) maxu∈Yk ,‖u‖=ρk φ(u) ≤ 0,
(A4) φ satisfies the nonsmooth (PSc) condition for every c > 0.
Then φ has an unbounded sequence of critical values.

3 Proof of the Main Results
Now we introduce the energy functional φ : E → ℝ associated with problem (P), which is defined by

φ(u) = ∫
ℝN

1
p(x) (
|∇u|p(x) + V(x)|u|p(x)) dx − ∫

ℝN

F(x, u) dx.

From the hypotheses on F, it is standard to check that φ is locally Lipschitz on E, and (see [1])

∂φ(u) ⊆ A(u) − ∂F(x, u)

for all u ∈ E.
By a solution of (P), wemean a function u ∈ E towhich there corresponds amappingℝN ∋ x → w(x)with

w(x) ∈ ∂F(x, u) for almost every x ∈ ℝN having the property x → w(x)h(x) ∈ L1(ℝN) for every h ∈ E, and

∫

ℝN

(|∇u|p(x)−2∇u ⋅ ∇h + V(x)|u|p(x)−2uh) dx = ∫
ℝN

w(x)h(x) dx.

Thus weak solutions of problem (P) are exactly the critical points of the functional φ.

Lemma 3.1. Assume that all conditions of Theorem 1.1 are satisfied. Then the energy functional φ satisfies the
nonsmooth (PS) condition in E.

Proof. Suppose that {un} ⊂ E is a (PSc) sequence for φ, that is, φ(un)→ c andm(un)→ 0 as n → +∞, which
shows that

c = φ(un) + o(1), m(un) = o(1), (3.1)

where o(1)→ 0 as n → +∞.
We claim that the sequence {un}∞n=1 is bounded. Suppose that this is not the case. By passing to a sub-

sequence if necessary, we may assume that ‖un‖E → +∞ as n → +∞. Without loss of generality, we assume
‖un‖E ≥ 1. Let u∗n ∈ ∂φ(un)be such thatm(un) = ‖u∗n‖E∗ , n ∈N.Wehave u∗n = A(un) − wn,wn(x) ∈ ∂F(x, un(x)),
wn ∈ Lp

(x)(ℝN), where 1
p(x) +

1
p(x) = 1. By (3.1), there is a constant M1 > 0 such that

|φ(un)| ≤ M1 for all n ≥ 1, (3.2)

and there is a constant C > 0 such that

C‖un‖E ≥ ⟨u∗n , un⟩ = ⟨A(un), un⟩ − ∫
ℝN

a(x)wnun dx

= ∫

ℝN

(|∇un|p(x) + V(x)|un|p(x)) dx − ∫
ℝN

a(x)wnun dx. (3.3)

Then, for (3.2) and (3.3), we have

M1p− + C‖un‖E ≥ ∫
ℝN

a(x)(p−F(x, un) − wnun) dx. (3.4)
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Next we estimate (3.4). By virtue of (f3), there exists c1 > 0 and M2 > 0 such that, for almost all x ∈ ℝN
and all |t| ≥ M2, we have F(x, t) ≥ c1|t|q(x). On the other hand, from (f1), for almost all x ∈ ℝN and all t ∈ ℝ
such that |t| < M2, we have |F(x, t)| ≤ C, where C = C(M2) > 0. Therefore, for almost all x ∈ ℝN and all t ∈ ℝ,
the above two inequalities imply

F(x, t) ≥ c1|t|q(x) − c2 for all x ∈ ℝN , t ∈ ℝ, (3.5)

where c2 = C +max{Mq−
2 ,Mq+

2 }c1. Using (f1) again, we deduce another estimate:

|wt| ≤ c(|t| + |t|p(x)) ≤ 2c(1 + |t|p(x)). (3.6)

From (3.5) and (3.6), we have

p−F(x, t) − wt ≥ p−c1|t|q(x) − p−c2 − 2c(1 + |t|p(x)). (3.7)

Due to (3.4) and (3.7),

p−c1 ∫
ℝN

a(x)|un|q(x) dx − 2c ∫
ℝN

a(x)|un|p(x) dx ≤ M1p− + C‖un‖E + (p−c2 + 2c)|a|1. (3.8)

Note that q− > p+. Then, applying Young’s inequality with ε, we get

|u|p(x) = 1 × |u|p(x) = ε−
p(x)
q(x) × ε p(x)

q(x) |u|p(x) ≤ (ε− p(x)q(x) ) q(x)
q(x)−p(x) + ε|u|p(x) q(x)p(x) = ε− p(x)

q(x)−p(x) + ε|u|q(x)
≤ ε−

p+
q−−p+ + ε|u|q(x). (3.9)

Hence, by (3.8) and (3.9), we obtain

(p−c1 − 2cε) ∫
ℝN

a(x)|un|q(x) dx ≤ M1p− + C‖un‖E + (p−c2 + 2c)|a|1 + 2cε
− p+

q−−p+ |a|1.
Then, choosing ε0 small enough such that 0 < ε0 < p−c1

2c , we obtain

∫

ℝN

a(x)|un|q(x) dx ≤
M1p− + (p−c2 + 2c)|a|1 + 2cε

− p+
q−−p+ |a|1

p−c1 − 2cε0
+

C
p−c1 − 2cε0

‖un‖E for all n ≥ 1, (3.10)

On the other hand, using (f1) again, we deduce another estimate:

|F(x, un)| ≤ 2c(1 + |un|p(x)). (3.11)

Hence we obtain from (3.2), (3.11) and p+ < q(x) that

1
p+
‖un‖

p−
E ≤ ∫

ℝN

1
p(x) (
|∇un|p(x) + V(x)|un|p(x)) dx = φ(un) + ∫

ℝN

a(x)F(x, u) dx

≤ M1 + 2c|a|1 + 2c ∫
ℝN

a(x)|un|p(x) dx

≤ M1 + 2c|a|1 + 2c ∫
ℝN

a(x)(1 + |un|q(x)) dx = M1 + 4c|a|1 + 2c ∫
ℝN

a(x)|un|q(x) dx. (3.12)

Therefore, combining (3.10) and (3.12), the boundedness of {un}∞n=1 immediately follows, that is, there is
constant C > 0 such that ‖un‖E ≤ C. Thus, passing to a subsequence if necessary, we assume that un ⇀ u0
in E, so it follows from (3.1) that

⟨A(un), un − u0⟩ − ∫
ℝN

a(x)wn(un − u0) dx ≤ εn , (3.13)

with εn ↓ 0, wn(x) ∈ ∂F(x, un(x)).
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Next we prove that ∫ℝN a(x)wn(un − u0) dx as n → +∞. Clearly, by hypothesis (f1), we have

∫

ℝN

a(x)|wn||un − u0| dx ≤ c ∫
ℝN

a(x)|un − u0| dx + c ∫
ℝN

a(x)|un|p(x)−1|un − u0| dx. (3.14)

On the one hand, using Hölder’s inequality, we have

∫

ℝN

a(x)|un|p(x)−1|un − u0| dx ≤ 3|a|L N
p(x)−1 (ℝN )|un|p(x)−1L p∗(x)

p(x)−1 (ℝN )|un − u0|Lp(x)(ℝN )
≤ 3|a|L

p(x)
p(x)−r(x) (ℝN )|un − u0|Lp(x)(ℝN )|un|p(x)−1L p∗(x)

p(x)−1 (ℝN ). (3.15)

We claim that
|un|

p(x)−1L
p∗(x)
p(x)−1 (ℝN ) ≤ |un|p+−1p∗(x) + 2. (3.16)

Indeed, we have that

if |un|p∗(x) ≥ 1, then |un|
p(x)−1L

p∗(x)
p(x)−1 (ℝN ) ≤ |un|p+−1p∗(x). (I)

This is seen as follows: According to (2.1), to prove (I), this is equivalent to proving that |un|p∗(x) ≥ 1 implies

∫

ℝN

|un(x)|(p(x)−1)
p∗(x)
p(x)−1

|un|
(p+−1) p∗(x)p(x)−1
p∗(x) dx = ∫

ℝN

|un(x)|p
∗(x)

|un|
(p+−1) p∗(x)p(x)−1
p∗(x) dx ≤ 1.

This inequality is justified as follows: since |un|p∗(x) ≥ 1 and
(p+ − 1) p

∗(x)
p(x) − 1 − p

∗(x) = p+ p∗(x)
p(x) − 1 − (p

∗(x) + p∗(x)
p(x) − 1)

= p+ p∗(x)
p(x) − 1 − p(x)

p∗(x)
p(x) − 1

=
p∗(x)
p(x) − 1 (p

+ − p(x))

≥ 0,

we infer that
|un(x)|p

∗(x)
|un|
(p+−1) p∗(x)p(x)−1
p∗(x) =

|un(x)|p
∗(x)

|un|
p∗(x)
p∗(x)

1

|un|
(p+−1) p∗(x)p(x)−1−p∗(x)
p∗(x) ≤

|un(x)|p
∗(x)

|un|
p∗(x)
p∗(x) ,

which implies

∫

ℝN

|un(x)|(p(x)−1)p
(x)

|un|
(p+−1)p(x)
p(x)

dx ≤ ∫
ℝN

|un(x)|p
∗(x)

|un|
p∗(x)
p∗(x) dx = 1,

and the prove of (I) is complete.

If |un|p∗(x) < 1, then |un|
p(x)−1 p∗(x)p(x)−1 < 2. (II)

Indeed, by |un|p∗(x) < ∫ℝN |un(x)|p∗(x) dx + 1 and (2.4), we obtain
|un|

p(x)−1 p∗(x)p(x)−1 < ∫
ℝN

|un(x)|(p(x)−1)
p∗(x)
p(x)−1 dx + 1 = ∫

ℝN

|un(x)|p
∗(x) dx + 1 < 1 + 1 = 2.

Clearly, (3.16) is a consequence of (I) and (II).
By the Sobolev embedding theorem, the inclusion E → Lp∗(x)(ℝN) is continuous, and hence there exists

C1 > 0 such that
|un|p∗(x) ≤ C1‖un‖E ≤ CC1. (3.17)

From Proposition 2.4, the embedding E → Lp(x)(ℝN) is compact, and un ⇀ u in E implies un → u in
Lp(x)(ℝN). Hence, using (3.15), (3.16) and (3.17), we have

∫

ℝN

a(x)|un|p(x)−1|un − u0| dx → 0 as n → +∞. (3.18)
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Choose θ(x) = p(x)
p(x)−1 . Then θ ∈ C+(ℝ

N), 1 < θ(x) < N
p(x)−1 for all x ∈ ℝ

N , and there exists λ : ℝN → (0, 1) such
that

1
θ(x)
=
λ(x)
1 +

1 − λ(x)
N

p(x)−1
a.e. x ∈ ℝN .

Then, for x ∈ ℝN , we have

s(x) = 1
θ(x)λ(x)

> 1, t(x) = N
θ(x)(p(x) − 1)(1 − λ(x)) > 1.

Using a ∈ L1+(ℝN) ∩ L
N

p(x)−1 (ℝN), we deduce
∫

ℝN

|a|θ(x) dx = ∫
ℝN

|a|
1

s(x) |a| N
p(x)−1
t(x) dx

≤ 2[(∫
ℝN

|a| dx)
1
s+
+ (∫

ℝN

|a| dx)
1
s−
][(∫

ℝN

|a|
N

p(x)−1 dx) 1
t+
+ (∫

ℝN

|a|
N

p(x)−1 dx) 1
t−
] < +∞. (3.19)

This implies a ∈ L
p(x)

p(x)−1 (ℝN). Hence
∫

ℝN

a(x)|un − u0| dx ≤ 2|a| p(x)p(x)−1 |un − u0|p(x) → 0 as n → +∞.

Combining (3.13), (3.14), (3.18) and (3.19), we get limn→∞⟨A(un), un − u⟩ = 0. By Proposition 2.1 (2), we
get un → u0 in E. This proves that φ(u) satisfies the nonsmooth (PS) condition on E.

Lemma 3.2. Assume that all conditions of Theorem1.1 are satisfied. Then there exist α > 0 and ν > 0 such that,
for any u ∈ E with ‖u‖E = ν, we have φ(u) ≥ α.

Proof. Firstly, choose q ∈ C+(ℝN) (q is mentioned in (f3)). Then

1 < p∗(x)
p∗(x) − q(x)

=
Np(x)

Np(x) − q(x)(N − p(x))
<

N
p(x) − 1 , x ∈ ℝN . (3.20)

By Proposition 2.4, the embedding E → Lp∗(x)(ℝN) is continuous, and there is constant c5 > 0 such that
|u|p∗(x) ≤ c5‖u‖E for all u ∈ E. (3.21)

Now choose γ > 0 such that γ < min{1, 1
c5 }. Then, for such a fixed γ, we have

|u|p∗(x) < 1 for all u ∈ E with ‖u‖E = γ. (3.22)

Moreover, by virtue of hypothesis (f2), we obtain

F(x, t) ≤ ϑ(x) (3.23)

for any x ∈ ℝN and 0 < |t| < δ.
On the other hand, for all x ∈ ℝN and all |t| ≥ δ, (f1) implies

|F(x, t)| ≤ c6|t|p(x), (3.24)

where c6 = (1 + 1
τ )c and τ = min{|δ|p+ , |δ|p− }.

From (3.23) and (3.24), for all x ∈ ℝN andall t ∈ ℝ,wehave F(x, t) ≤ ϑ(x) + c7|t|p(x),where c7 = c6 + |ϑ|∞τ .
Thus, for all u ∈ E with ‖u‖E = γ, we have

φ(u) = ∫
ℝN

1
p(x) (
|∇u|p(x) + V(x)|u|p(x)) dx − ∫

ℝN

a(x)F(x, u) dx

≥
1
p+
‖u‖p

+
E − c7 ∫

ℝN

a(x)|u|p(x) dx − ∫
ℝN

a(x)ϑ(x) dx

≥
1
p+
‖u‖p

+
E − c7 ∫

ℝN

a(x)|u|p(x) dx + ∫
ℝN

a(x)ϑ(x) dx. (3.25)
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Applying Young’s inequality with ε, we get

|u|p(x) = 1 × |u|p(x) ≤ ε × 1
q(x)

q(x)−p(x) + ε− q(x)−p(x)p(x) |u|p(x) q(x)p(x) = ε + ε− q(x)−p(x)p(x) |u|q(x)
≤ ε + ε−

q+−p−
p− |u|q(x). (3.26)

So, returning to (3.25) and using (3.26), for all u ∈ E with ‖u‖E = γ, we obtain

φ(u) ≥ 1
p+
‖u‖p+ − ε− q+−p−p− c7 ∫

ℝN

a(x)|u|q(x) dx − c7ε ∫
ℝN

a(x) dx − ∫
ℝN

a(xϑ(x) dx. (3.27)

Since ϑ ∈ L∞− (ℝN), there exists some c8 > 0 such that −ϑ(x) > c8. We can choose an ε0 small enough such
that c8|a|1 − ε0c7|a|1 > 0, and then (3.27) immediately implies

φ(u) ≥ 1
p+
‖u‖p

+
E − c7ε

− q
+−p−
p−0 ∫

ℝN

a(x)|u|q(x) dx. (3.28)

Similarly to the proof of (3.19), and combining inequality (3.20), we have a ∈ L
p∗(x)

p∗(x)−q(x) (ℝN). Using Proposi-
tion 2.2, (3.21) and (3.22), for all u ∈ E with ‖u‖E = γ, we obtain

∫

ℝN

a(x)|u|q(x) dx ≤ |a|L
p∗(x)

p∗(x)−q(x) (ℝN )|u|q(x)L p∗(x)
q(x) (ℝN )

≤ |a|L
p∗(x)

p∗(x)−q(x) (ℝN )|u|q−p∗(x)
≤ |a|L

p∗(x)
p∗(x)−q(x) (ℝN )cq−5 ‖u‖q−E . (3.29)

Using (3.29) in (3.28), we see that, for any u ∈ E with ‖u‖E = γ, we have

φ(u) ≥ 1
p+
‖u‖p

+
E − ε

− q
+−p−
p−0 cq

−
5 |a|L

p∗(x)
p∗(x)−q(x) (ℝN )‖u‖q−E ,

which implies that there exist α > 0 and ν > 0 such that φ(u) ≥ α for any u ∈ E with ‖u‖E = ν.

Lemma 3.3. Assume that all conditions of Theorem 1.1 are satisfied. Then φ(u)→ −∞ as ‖u‖E → +∞ for all
u ∈ F, where F is an arbitrary finite-dimensional subspace of E.

Proof. By virtue of hypothesis (f3), we can find M4 > 0 such that

F(x, t) ≥ c9|t|q(x) for all x ∈ ℝN , |t| ≥ M4. (3.30)

In addition, from hypothesis (f1), for almost all x ∈ ℝN and |t| < M4, we have

|F(x, t)| ≤ c3, (3.31)

where c3 = (1 +Mp+
4 +M

p−
4 )c. Thus, using (3.30) and (3.31), we obtain

F(x, t) ≥ c9|t|q(x) − c4 for all x ∈ ℝN , t ∈ ℝ, (3.32)

where c4 = c3 + c9max{Mq+
4 ,Mq−

4 }.
Since a ∈ L1+(ℝN), then a(x) is a measurable, nonnegative real-valued function for x ∈ ℝN . Define

Lq(x)a(x)(ℝ
N) = {u is measurable and ∫

ℝN

a(x)|u|q(x) dx < +∞}

with the norm
|u|Lq(x)a(x)(ℝN ) = inf{σ > 0 : ∫

ℝN

a(x)

u
σ


q(x)
dx ≤ 1}.

Then Lq(x)a(x)(ℝ
N) is a Banach space. The space Lq(x)a(x)(ℝ

N), which is called weighted variable exponent Lebesgue
space, is introduced in [19].
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Claim. The embedding E → W1,p(x)(ℝN) → Lq(x)a(x)(ℝ
N) is continuous.

Set h(x) = q(x) N
N−p(x)+1 , where q(x) is mentioned in (f3). Then p+ < h− and p(x) < h(x) < p∗(x) for all x ∈ ℝN .

Hence, by Proposition 2.4, there is a continuous embedding E → Lh(x)(ℝN). Thus, for u ∈ E, we have
|u(x)|q(x) ∈ L

N
N−p(x)+1 (ℝN). By the Hölder inequality,

∫

ℝN

a(x)|u|q(x) dx ≤ 2|a|L N
p(x)−1 (ℝN )|u|q(x)L N

N−p(x)+1 (ℝN ) < +∞. (3.33)

It follows that u ∈ Lq(x)a(x)(ℝ
N), and hence the embedding E → W1,p(x)(ℝN) → Lq(x)a(x)(ℝ

N) is continuous. The
proof of this claim is complete.

Moreover, similarly to (2.3) and (2.4), we get

|u|Lq(x)a(x)(ℝN ) > 1 ⇒ |u|q−Lq(x)a(x)(ℝN ) ≤ ∫
ℝN

a(x)|u|q(x) dx ≤ |u|q
+
Lq(x)a(x)(ℝN ), (3.34)

|u|Lq(x)a(x)(ℝN ) < 1 ⇒ |u|q+Lq(x)a(x)(ℝN ) ≤ ∫
ℝN

a(x)|u|q(x) dx ≤ |u|q
−
Lq(x)a(x)(ℝN ).

Because W is a finite-dimensional subspace of E, all norms are equivalent, so we can find 0 < C = C(F) < 1
such that

C‖u‖E ≤ |u|Lq(x)a(x)(ℝN ) ≤ 1C ‖u‖E for all u ∈ F. (3.35)

Taking into account (3.32), (3.34) and (3.35), for every u ∈ F with ‖u‖E > 1 and |u|Lq(x)a(x)(ℝN ) > 1, we have
φ(u) = ∫

ℝN

1
p(x) (
|∇u|p(x) + V(x)|u|p(x)) dx − ∫

ℝN

a(x)F(x, u) dx

≤
1
p−
‖u‖p+ − c9 ∫

ℝN

a(x)|u|q(x) dx + c4 ∫
ℝN

a(x) dx

≤
{{{
{{{
{

1
p−
‖u‖p+ + c4|a|1 − c9Cq−‖u‖q−E if |u|Lq(x)a(x)(ℝN ) > 1,

1
p−
‖u‖p+ + c4|a|1 − c9Cq+‖u‖q+E if |u|Lq(x)a(x)(ℝN ) < 1,

(3.36)

Because of q+ ≥ q− > p+, we see that φ(u)→ −∞ as ‖u‖E → +∞.

Proof of Theorem 1.1. It is obvious that φ is even and φ(0) = 0. Besides, Lemmas 3.1, 3.2 and 3.3 permit the
application of Lemma2.6with X = E, X1 = F (see Lemma3.3) and X2 = E ⊖ F (see Lemma3.2). Therefore, we
obtain that the functionalφ has anunbounded sequence of critical values, so problem (P) possesses infinitely
many nontrivial solutions.

At the end of this section, we prove Theorem 1.2.

Proof of Theorem 1.2. Since E is also a reflexive and separable Banach space, we can give the decomposition
to E as (2.5). In what follows, we will prove that the functional φ satisfies all the conditions of Lemma 2.7
in E. By virtue of hypothesis (f4) and Lemma 3.1, we deduce that φ is an even functional and satisfies the
(PS) condition in E. Next we will prove that if k is large enough, then there exists ρk > rk > 0 such that (A2)
and (A3) hold in E. Let u ∈ Zk ⊂ E with ‖u‖E > 1. Then, using (3.11), we obtain

φ(u) = ∫
ℝN

1
p(x) (
|∇u|p(x) + V(x)|u|p(x)) dx − ∫

ℝN

a(x)F(x, u) dx

≥
1
p+
‖u‖p

−
E − 2c ∫

ℝN

a(x)|u|p(x) dx − 2c|a|1.

Choose q ∈ C+(Ω), where q(x) is mentioned in (f3). Then, according to [10, Lemma 4.9], we have

αk = sup{|u|h(x) : ‖u‖E = 1, u ∈ Zk}→ 0 as k → +∞. (3.37)
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Thus, for u ∈ Zk ⊂ E with ‖u‖E > 1, by (3.33), we have

φ(u) ≥ 1
p+
‖u‖p

−
E − 2c ∫

ℝN

a(x)(1 + |u|q(x)) dx − 2c|a|1

≥
1
p+
‖u‖p

−
E − 2c ∫

ℝN

a(x)|u|q(x) dx − 4c|a|1

≥
1
p+
‖u‖p

−
E − 4c|a|L N

p(x)−1 (ℝN )|u|q(x)L N
N−p(x)+1 (ℝN ) − 4c|a|1

≥
1
p+
‖u‖p

−
E − 4c|a|L N

p(x)−1 (ℝN )max{|u|q
+
h(x), |u|

q−
h(x)} − 4c|a|1

≥
1
p+
‖u‖p

−
E − 4c|a|L N

p(x)−1 (ℝN )max{αq
+
k ‖u‖

q+
E , αq

−
k ‖u‖

q−
E } − 4c|a|1

≥
1
p+
‖u‖p

−
E − 4c|a|L N

p(x)−1 (ℝN )αq−k ‖u‖q+E − 4c|a|1.
Take rk = (4q+c|a|L N

p(x)−1 (ℝN )αq−k ) 1
p−−q+ . Then, for any u ∈ Zk with ‖u‖E = rk, we have
φ(u) ≥ [ 1p+ −

1
q+ ]

rp
−

k − 4c|a|1.

Recall that 1 < p− ≤ p+ < q− ≤ q+. Using this fact and (3.37), we obtain

1
p+
−

1
q+
> 0 and lim

k→+∞
rk = +∞.

Hence φ(u)→ +∞with u ∈ Zk and ‖u‖E = rk as k → +∞. So (A2) of Lemma 2.7 is satisfied. Furthermore, by
(3.36), it is easy to see that

φ(u)→ −∞ as ‖u‖E → +∞ for all u ∈ Yk .

That is, (A3) is also satisfied. From the proof of (A2) and (A3), we can choose ρk > rk > 0. At this point, all
assumptions of Lemma 2.7 are satisfied. Therefore, φ has an unbounded sequence of critical values, which
implies that φ has infinitely many nontrivial critical points in E.
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