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Abstract

We consider a class of nonlinear stationary Schrödinger-type equations and we are con-
cerned with sufficient properties that guarantee the existence of multiple solutions in a
suitable Sobolev space with variable exponents. We first establish that in the case of small
perturbations, the problem admits at least two weak solutions. Next, in the case of convex-
concave nonlinearities, we obtain conditions for the existence of infinitely many solutions
with high (resp., small) energies. The arguments combine variational techniques with a
careful analysis of the energy levels.
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1 Introduction
The Schrödinger equation has a central place in quantum mechanics and it plays the role of New-
ton’s laws and conservation of energy in classical mechanics, that is, it predicts the future behaviour
of a dynamic system. The linear Schrödinger equation provides a thorough description of a particle
in a non-relativistic setting. The structure of the nonlinear form of this equation is much more com-
plicated. The most common applications of the nonlinear Schrödinger equation vary from Bose-
Einstein condensates and nonlinear optics, stability of Stokes waves in water, propagation of the
electric field in optical fibers to the self-focusing and collapse of Langmuir waves in plasma physics
and the behaviour of deep water waves and freak waves (or rogue waves) in the ocean. The non-
linear Schrödinger equation also describes various phenomena arising in the theory of Heisenberg
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ferromagnets and magnons, self-channelling of a high-power ultra-short laser in matter, condensed
matter theory, dissipative quantum mechanics, electromagnetic fields, plasma physics (e.g., the Kuri-
hara superfluid film equation). We refer to Ablowitz, Prinari and Trubatch [1], Cazenave [7], Sulem
[24] for a modern overview and relevant applications.

The German physicist Werner Heisenberg, 1932 Nobel Prize in Physics, said:
“ ... the progress of physics will to a large extent depend on the progress of nonlinear mathematics,
of methods to solver nonlinear equations ... and therefore we can learn by comparing different
nonlinear problems.”

Our main purpose is to consider the nonlinear Schrödinger equation in a new setting correspond-
ing to anisotropic spaces of Sobolev-type, in which different space directions have different roles.
We first establish that in the case of small perturbations, the associated Dirichlet problem admits at
least two solutions. Next, in the case of convex-concave type nonlinearities, we establish necessary
conditions to guarantee the existence of infinitely many solutions with high (resp., small) energies.

2 Abstract framework
In the present paper we are interested in the study of the anisotropic nonlinear problem −

N∑
i=1

∂xi ai(x, ∂xi u) + b(x)|u|P
+
+−2u = f (x, u) in Ω,

u = 0 on ∂Ω,

(2.1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, b ∈ L∞(Ω), f : Ω × R → R
and ai : Ω × R→ R are Carathéodory functions fulfilling some natural hypotheses. The differential
operator

∑N
i=1 ∂xi ai(x, ∂xi u) is a −→p (·)–Laplace type operator, −→p (x) = (p1(x), p2(x), . . . , pN(x)), and

P+
+ = maxi∈{1,...,N} supx∈Ω pi(x). We also assume that pi(x) is a continuous function on Ω for all

i = 1, . . . ,N. We denote by ai(x, η) the continuous derivative with respect to η of the mapping
Ai : Ω × RN → RN , Ai = Ai(x, η), that is, ai(x, η) = ∂

∂η
Ai(x, η). Throughout this paper we assume

that the following hypotheses are fulfilled:

(A0) Ai(x, 0) = 0 for a.e. x ∈ Ω.

(A1) There exists a positive constant ci such that ai satisfies the growth condition

|ai(x, η)| ≤ ci(1 + |η|pi(x)−1),

for all x ∈ Ω and η ∈ RN .

(A2) The inequalities
|η|pi(x) ≤ ai(x, η)η ≤ pi(x)Ai(x, η)

hold for all x ∈ Ω and η ∈ RN .

(A3) There exists ki > 0 such that

Ai

(
x,
η + ξ

2

)
≤

1
2

Ai(x, η) +
1
2

Ai(x, ξ) − ki|η − ξ|
pi(x),

for all x ∈ Ω and η, ξ ∈ RN , with equality if and only if η = ξ.

(A4) The mapping Ai is even with respect to its second variable, that is,

Ai(x,−η) = Ai(x, η),

for all x ∈ Ω and η ∈ RN .
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(B) b ∈ L∞(Ω) and there exists b0 > 0 such that b(x) ≥ b0 for all x ∈ Ω.

The differential operator in problem (2.1) is the anisotropic −→p (x)–Laplace type operator (where
−→p (x) = (p1(x), . . . , pN(x)) because if we take

ai(x, η) = |η|pi(x)−2η,

for all i ∈ {1, . . . ,N}, then Ai(x, η) = 1
pi(x) |η|

pi(x) for all i ∈ {1, . . . ,N}, that is,

∆−→p (x)(u) =

N∑
i=1

∂xi

(
|∂xi u|

pi(x)−2∂xi u
)
.

Obviously, there are many other operators deriving from
∑N

i=1 ∂xi ai(x, ∂xi u). Indeed, if we take

ai(x, η) = (1 + |η|2)
pi (x)−2

2 η,

for all i ∈ {1, . . . ,N}, we have Ai(x, η) = 1
pi(x) [(1 + |η|2)

pi (x)
2 − 1] for all i ∈ {1, . . . ,N} and we obtain

the anisotropic variable mean curvature operator
N∑

i=1

∂xi

[
(1 + |∂xi u|

2)
pi (x)−2

2 ∂xi u
]
.

Kone, Ouaro, and Traore [19] established the existence and uniqueness of a weak energy solution
to the following boundary value problem −

N∑
i=1

∂xi ai(x, ∂xi u) = f in Ω,

u = 0 on ∂Ω.

(2.2)

In [20], the author considered (2.2) where f = λ(x)|u|q(x)−2u. Combining the mountain-pass theorem
of Ambrosetti and Rabinowitz [3] with the Ekeland’s variational principle, they proved that under
suitable conditions, problem (2.2) has two nontrivial weak solutions. Boureanu [5] proved that
problem (2.2) has a sequence of weak solutions by means of the symmetric mountain-pass theorem.
In this paper, we consider the perturbed problem (2.1) in two cases, corresponding to the growth rate
of f .

First, we recall some definitions and basic properties of the variable exponent Lebesgue and
Sobolev spaces Lp(x)(Ω) and W1,p(x)(Ω), where Ω is a bounded domain in RN . We will also introduce
an adequate functional space where problems of type (2.1) can be studied. Such a space will be
called an anisotropic variable exponent Sobolev space and it can be characterized as a functional
space of Sobolev’s type in which different space directions have different roles.

For any Ω ⊂ RN , we set

C+(Ω) = {h(x) ∈ C(Ω), 1 < min
x∈Ω

h(x) < max
x∈Ω

h(x) < ∞},

and we define
h+ = sup{h(x); x ∈ Ω}, h− = inf{h(x); x ∈ Ω}.

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =
{
u; u is measurable real-valued and

∫
Ω

|u(x)|p(x) dx < ∞
}
,

endowed with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf
{
µ > 0;

∫
Ω

∣∣∣∣∣u(x)
µ

∣∣∣∣∣p(x)

dx ≤ 1
}
.

As established by Kováčik and Rákosnı́k [18], (Lp(x)(Ω), | · |p(x)) is a Banach space.
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Proposition 2.1 (see [10, 14]) (i) The space (Lp(x)(Ω), | · |p(x)) is a separable, uniformly convex Ba-
nach space and its dual space is Lq(x)(Ω), where 1

p(x) + 1
q(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω),

we have ∣∣∣∣ ∫
Ω

uvdx
∣∣∣∣ ≤ ( 1

p−
+

1
q−

)
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

(ii) If p1(x), p2(x) ∈ C+(Ω), p1(x) ≤ p2(x), ∀x ∈ Ω, then Lp2(x)(Ω) ↪→ Lp1(x)(Ω) and the embedding
is continuous.

Proposition 2.2 (see [13]) Denote ρ(u) =
∫

Ω
|u|p(x)dx. Then for u ∈ Lp(x)(Ω), (un) ⊂ Lp(x)(Ω) we

have
(1) |u|p(x) < 1 (respectively = 1; > 1)⇐⇒ ρ(u) < 1 (respectively = 1; > 1);
(2) for u , 0, |u|p(x) = λ⇐⇒ ρ( u

λ
) = 1;

(3) if |u|p(x) > 1, then |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x);

(4) if |u|p(x) < 1, then |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x);
(5) |un|p(x) → 0 (respectively→ ∞)⇐⇒ ρ(un)→ 0 (respectively→ ∞).

The Sobolev space with variable exponent W1,p(x)(Ω) is defined by

W1,p(x)(Ω) = {u ∈ Lp(x)(Ω); ∂xi u ∈ Lp(x)(Ω), i ∈ {1, . . . ,N}}.

Then W1,p(x)(Ω) is a Banach space equipped with the norm

‖u‖p(x) = |u(x)|p(x) + |∇u(x)|p(x).

As shown by Zhikov [27, 28] the smooth functions are in general not dense in W1,p(x)(Ω), but if the
exponent variable p in C+(Ω) is logarithmic Hölder continuous, that is,

|p(x) − p(y)| ≤
−M

log(|x − y|)
for all x, y ∈ Ω such that |x − y| ≤

1
2
,

then the smooth functions are dense in W1,p(x)(Ω). The Sobolev space with zero boundary values
W1,p(x)

0 (Ω) is defined as the closure of C∞0 (Ω) with respect to the norm || · ||p(x). Of course, also the
norms ‖u‖p(x) = |∇u|p(x) and ‖u‖p(x) =

∑N
i=1 |∂xi u|p(x) are equivalent norms in W1,p(x)

0 (Ω). Note that
when s ∈ C+(Ω) and s(x) < p∗(x) for all x ∈ Ω, where p∗(x) =

N p(x)
N−p(x) if p(x) < N and p∗(x) = ∞

if p(x) ≥ N, then the embedding W1,p(x)
0 (Ω) ↪→ Ls(x)(Ω) is compact. Details, extensions and further

references can be found in [15]-[18].
Finally, we introduce a natural generalization of the function space W1,p(x)

0 (Ω), which will enable
us to study with sufficient accuracy problem (2.1). For this purpose, let −→p : Ω→ RN be the vectorial
function −→p (x) = (p1(x), p2(x), ..., pN(x)) with pi ∈ C+(Ω), i ∈ {1, . . . ,N}. We define W1,−→p (x)

0 (Ω), the
anisotropic variable exponent Sobolev space, as the closure of C∞0 (Ω), with respect to the norm

‖u‖ =

N∑
i=1

|∂xi u|pi(x).

As it was pointed out in [21], W1,−→p (x)
0 (Ω) is a reflexive Banach space.

The above definition shows that the anisotropic variable exponent Sobolev space W1,p(x)
0 (Ω) is a

function space of Sobolev’s type in which different space directions have different roles.
We refer to the books [2, 6, 8, 9, 23] for related results and complements.
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3 Main results
A central role in our analysis will be played by the vectors

−→
P+,
−→
P− ∈ RN and by the positive numbers

P+
+, P+

−, P−+, P−− defined as follows:

−→
P+ = (p+

1 , p+
2 , . . . , p+

N),
−→
P− = (p−1 , p−2 , . . . , p−N),

P+
+ = max{p+

1 , p+
2 , . . . , p+

N}, P+
− = max{p−1 , p−2 , . . . , p−N},

P−+ = min{p+
1 , p+

2 , . . . , p+
N}, P−− = min{p−1 , p−2 , . . . , p−N}.

Throughout this paper, we assume that

N∑
i=1

1
p−i

> 1. (3.3)

This condition ensures that the anisotropic space W1,−→p (x)
0 (Ω) is embedded into some Lebesgue space

Lr(Ω). If hypothesis (3.3) is no longer fulfilled, then one has embeddings into Orlicz or Hölder
spaces.

Define P∗− ∈ R
+ and P−,∞ ∈ R+ by

P∗− =
N∑N

i=1
1
p−i
− 1

, P−,∞ = max{P+
−, P

∗
−}.

First, we consider the case when f (x, u) = λ(|u|q(x)−2u+|u|γ(x)−2u) in which the parameter λ is positive
and q(x), γ(x) are continuous functions on Ω. Problem (2.1) then becomes −

N∑
i=1

∂xi ai(x, ∂xi u) + b(x)|u|P
+
+−2u = λ(|u|q(x)−2u + |u|γ(x)−2u) in Ω,

u = 0 on ∂Ω.

(3.4)

Definition 3.1 A function u ∈ W1,−→p (x)
0 (Ω) is said to be a weak solution of problem (3.4) if and only

if ∫
Ω

{ N∑
i=1

ai(x, ∂xi )∂xiϕ + b(x)|u|P
+
+−2uϕ − λ|u|q(x)−2uϕ − λ|u|γ(x)−2uϕ

}
dx = 0,

for all ϕ ∈ W1,−→p (x)
0 (Ω).

Our first result establishes that problem (3.4) has at least two distinct solutions in the case of small
perturbations. The exact statement of this result is given in what follows.

Theorem 3.1 Let q(x), γ(x) ∈ C+(Ω) with P+
+ < q− ≤ q(x) ≤ q+ < P∗−, γ+ < P−−. Then there

exists λ∗ > 0 such that for any λ ∈ (0, λ∗), problem (3.4) has at least two distinct, nontrivial weak
solutions.

Next, we consider problem (2.1) in the case when f (x, u) = λ|u|q(x)−2u + µ|u|γ(x)−2u. We assume that
λ, µ are parameters such that λ2 + µ2 , 0. Thus, we study the nonlinear problem −

N∑
i=1

∂xi ai(x, ∂xi u) + b(x)|u|P
+
+−2u = λ|u|q(x)−2u + µ|u|γ(x)−2u in Ω,

u = 0 on ∂Ω.

(3.5)
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Definition 3.2 A function u ∈ W1,−→p (x)
0 (Ω) is said to be a weak solution of problem (3.5) if and only

if ∫
Ω

{ N∑
i=1

ai(x, ∂xi )∂xiϕ + b(x)|u|P
+
+−2uϕ − λ|u|q(x)−2uϕ − µ|u|γ(x)−2uϕ

}
dx = 0,

for all ϕ ∈ W1,−→p (x)
0 (Ω).

In what follows, similarly to the result named “concave and convex nonlinearities” for the
Laplace operator in [25], we establish the following multiplicity property.

Theorem 3.2 Let q, γ ∈ C+(Ω) with P+
+ < q− ≤ q(x) ≤ q+ < P∗−, γ+ < P−−. Then the following

properties hold:

(i) for every λ > 0, µ ∈ R, problem (3.5) has a sequence of weak solutions (±uk) with high energy
solutions;

(ii) for every µ > 0, λ ∈ R, problem (3.5) has a sequence of weak solutions (±vk) with small
energy solutions.

It should be noticed that by conditions in Theorems 3.1 and 3.2, we have

P−,∞ = max{P+
−, P

∗
−} = P∗− .

4 Notations and auxiliary results

We start by recalling a theorem concerning the embedding of the anisotropic Sobolev space W1,−→p (x)
0 (Ω)

into the Lebesgue space with variable exponent Lq(x)(Ω).

Proposition 4.1 (see [21]) Let Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary. As-
sume relation (3.3) is satisfied and that q ∈ C(Ω) verifies

1 < q(x) < P−,∞, for all x ∈ Ω. (4.6)

Then the embedding
W1,−→p (x)

0 (Ω) ↪→ Lq(x)(Ω)

is compact.

Since W1,−→p (x)
0 (Ω) is a reflexive and separable Banach space, then (W1,−→p (x)

0 (Ω))∗ is too. There exist

(see [26]) {e j} ⊂ W1,−→p (x)
0 (Ω) and {e∗j} ⊂ (W1,−→p (x)

0 (Ω))∗ such that

W1,−→p (x)
0 (Ω) = span {e j : j = 1, 2, ...},

(W1,−→p (x)
0 (Ω))∗ = span {e∗j : j = 1, 2, ...},

and

〈ei, e∗j〉 =

{
1 if i = j,
0 if i , j,

where 〈 · 〉 denote the duality product between W1,−→p (x)
0 (Ω) and (W1,−→p (x)

0 (Ω))∗. We define

X j = span {e j}, Yk =

k⊕
j=1

X j, Zk =

∞⊕
j=k

X j.
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Lemma 4.1 (see [12]) Assume that q(x), γ(x) ∈ C+(Ω) and q(x), γ(x) < P−,∞, for all x ∈ Ω. Denote

βk = sup{|u|Lq(x)(Ω); ‖u‖ = 1, u ∈ Zk}, θk = sup{|u|Lγ(x)(Ω); ‖u‖ = 1, u ∈ Zk}.

Then limk→∞ βk = 0, limk→∞ θk = 0.

A central role in our arguments will be played by the fountain theorem, which is due to Bartsch
[4]. This result is nicely presented in Willem [25] by using the quantitative deformation lemma.
We also point out that the dual version of the fountain theorem is due to Bartsch and Willem, see
[25]. Both the fountain theorem and its dual form are effective tools for studying the existence of
infinitely many large or small energy solutions. It should be noted that the Palais-Smale condition
plays an important role for these theorems and their applications.

Lemma 4.2 (Fountain theorem, see [25]). Let I ∈ C1(X,R) be an even functional, where (X, || . ||) is
a separable and reflexive Banach space. Suppose that for every k ∈ N, there exist ρk > rk > 0 such
that

(H1) inf{I(u) : u ∈ Zk, ‖u‖ = rk} → +∞ as k → +∞.

(H2) max{I(u) : u ∈ Yk, ‖u‖ = ρk} ≤ 0.

(H3) I satisfies the Palais-Smale condition for every c > 0.

Then I has an unbounded sequence of critical values.

Lemma 4.3 (Dual fountain theorem, see [25]). Assume (H1) is satisfied and there is k0 > 0 so that,
for each k ≥ k0, there exist ρk > rk > 0 such that

(J1) ak = inf{I(u) : u ∈ Zk, ‖u‖ = ρk} ≥ 0.

(J2) bk = max{I(u) : u ∈ Yk, ‖u‖ = rk} < 0.

(J3) dk = inf{I(u) : u ∈ Zk, ‖u‖ ≤ ρk} → 0 as k → +∞.

(J4) I satisfies the (PS )∗c condition for every c ∈ [dk0 , 0).

Then I has a sequence of negative critical values converging to 0.

Definition 4.1 We say that the functional I satisfies the (PS )∗c condition (with respect to (Yn)), if
any sequence (un j ) ⊂ X such that n j → +∞, un j ∈ Yn j , I(un j ) → c and (I|Yn j

)′(un j ) → 0, contain a
subsequence converging to a critical point of I.

In the present paper we choose X = W1,−→p (x)
0 (Ω). To apply the fountain theorem and the dual

fountain theorem, we will operate with energy functionals and rely on the critical point theory. This
is why we provide properties of some of the functionals that will be involved in our future calculus.
We start with Λi : X → R, i ∈ {1, . . . ,N}, defined by

Λi(u) =

∫
Ω

Ai(x, ∂xi u) dx.

for all u ∈ X.

Proposition 4.2 (see [19]) For i ∈ {1, . . . ,N},

(i) the functional Λi is well-defined on X,

(ii) the functional Λi is of class C1(X,R) and

〈Λ′i(u), ϕ〉 =

∫
Ω

ai(x, ∂xi u)∂xiϕdx,

for all u, ϕ ∈ X. In addition Λ′i is continuous, bounded and strictly monotone.

(iii) Λi is weakly lower semi-continuous.
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Denote by Λ : X → R the functional

Λ(u) =

∫
Ω

N∑
i=1

Ai(x, ∂xi u)dx.

We recall the following result concerning the functional Λ.

Lemma 4.4 (see [20]) Assume that the sequence (un) converges weakly to u in X and

lim sup
n→∞

∫
Ω

N∑
i=1

ai(x, ∂xi un)(∂xi un − ∂xi u) dx ≤ 0.

Then (un) converges strongly to u in X.

In the sequel, we use ci, to denote the general nonnegative or positive constant (the exact value may
change from line to line).

5 Existence of two solutions
This section is devoted to the proof of Theorem 3.1, which is essentially based on the mountain pass
theorem [3] combined with the Ekeland variational principle [11]. We refer to the recent paper [22]
for several relevant applications of the mountain pass theorem.

Let us define the functional Iλ : X → R by

Iλ(u) =

∫
Ω

 N∑
i=1

Ai(x, ∂xi u) +
b(x)
P+

+

|u|P
+
+ −

λ

q(x)
|u|q(x) −

λ

γ(x)
|u|γ(x)

 dx.

Then, the functional Iλ associated with problem (3.4) is well defined and of C1 class on X. Moreover,
we have

〈I′λ(u), ϕ〉 =

∫
Ω

{ N∑
i=1

ai(x, ∂xi u)∂xiϕ + b(x)|u|P
+
+−2uϕ−

λ|u|q(x)−2uϕ − λ|u|γ(x)−2uϕ
}

dx,

for all u, ϕ ∈ X. Thus, weak solutions of problem (3.4) are exactly the critical points of the functional
Iλ. Due to the Proposition 4.2, we can show that Iλ is weakly lower semi-continuous in X. The
following lemma plays an important role in our arguments.

Lemma 5.1 The following assertions hold:

(i) there exist λ∗ > 0 and δ, r > 0 such that for any λ ∈ (0, λ∗), we have Iλ(u) ≥ δ for all u ∈ X
with ‖u‖ = r;

(ii) there exists ϕ ∈ X, ϕ , 0, such that limt→∞ Iλ(tϕ) = −∞;

(iii) there exists ψ ∈ X, ψ ≥ 0, ψ , 0 such that Iλ(tψ) < 0 for all t > 0 small enough.

Proof. (i) Since q(x) and γ(x) fulfil (4.6), by Proposition 4.1, we deduce that X is continuously
embedded in Lq(x)(Ω) and Lγ(x)(Ω). It follows that there exist two positive constants c1 and c2 such
that ∫

Ω

|u|q(x)dx ≤ c1

(
‖u‖q

−

+ ‖u‖q
+
)
, (5.7)

and ∫
Ω

|u|γ(x)dx ≤ c2

(
‖u‖γ

−

+ ‖u‖γ
+
)
, (5.8)
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for all u ∈ X. Using the hypothesis (A2), (B), relations (5.7) and (5.8) yield

Iλ(u) =

∫
Ω

{ N∑
i=1

Ai(x, ∂xi u) +
b(x)
P+

+

|u|P
+
+ −

λ

q(x)
|u|q(x) −

λ

γ(x)
|u|γ(x)

}
dx

≥
1

P+
+

N∑
i=1

∫
Ω

|∂xi u|
pi(x)dx +

b0

P+
+

|u|P
+
+

LP+
+ (Ω)
−
λc1

q−
(
‖u‖q

−

+ ‖u‖q
+
)

−
λc2

γ−

(
‖u‖γ

−

+ ‖u‖γ
+
)
.

(5.9)

Next, we focus our attention on the case when u ∈ X and ‖u‖ < 1. For such an element u, we have
|∂xi u|pi(x) < 1, i ∈ {1, . . . ,N} and by Proposition 2.2, we obtain

N∑
i=1

∫
Ω

|∂xi u|
pi(x)dx ≥

N∑
i=1

|∂xi u|
p+

i
pi(x) ≥

N∑
i=1

|∂xi u|
P+

+

pi(x)

≥ N
(∑N

i=1 |∂xi u|pi(x)

N

)P+
+

=
‖u‖P

+
+

NP+
+−1

.

(5.10)

Using (B), we can write
1

P+
+

∫
Ω

b(x)|u|P
+
+ dx ≥

b0

P+
+

|u|P
+
+

LP+
+ (Ω)
≥ 0. (5.11)

Taking into consideration (5.10) and (5.11), the inequality (5.9) reduces to

Iλ(u) ≥
‖u‖P

+
+

P+
+NP+

+−1
−
λc1

q−
(
‖u‖q

−

+ ‖u‖q
+
)
−
λc2

γ−

(
‖u‖γ

−

+ ‖u‖γ
+
)

≥
[
c3‖u‖P

+
+ − c4λ(‖u‖q

−

+ ‖u‖q
+

)
]

+
[
c3‖u‖P

+
+ − c5λ(‖u‖γ

−

+ ‖u‖γ
+

)
]
.

Since the function g : [0, 1]→ R defined by

g(t) = c3 − c4tq+−P+
+ − c4tq−−P+

+

is positive in a neighborhood of the origin, it follows that there exists r ∈ (0, 1) such that g(r) > 0.
On the other hand, defining

λ∗ = min
{
1,

c3

2c5
min{rP+

+−γ
−

, rP+
+−γ

+

}
}
,

we deduce that, provided λ < λ∗, there exists δ > 0 such that for any u ∈ X with ‖u‖ = r we have
Iλ(u) ≥ δ.

(ii) From (A0) and (A1), we have

Ai(x, η) =

∫ 1

0
ai(x, tη)ηdt ≤ c6(|η| +

1
pi(x)

|η|pi(x)),

for all x ∈ Ω and η ∈ RN , where c6 = maxi∈{1,...,N} ci. Therefore

∫
Ω

N∑
i=1

Ai(x, ∂xi u)dx ≤ c6

N∑
i=1

∫
Ω

(
|∂xi u| +

|∂xi u|
pi(x)

pi(x)

)
dx.
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Let ϕ ∈ C∞0 (Ω), ϕ , 0. For any t > 1, we find

Iλ(tϕ) =

∫
Ω

{ N∑
i=1

Ai(x, ∂xi (tϕ)) +
b(x)
P+

+

|tϕ|P
+
+ −

λ

q(x)
|tϕ|q(x) −

λ

γ(x)
|tϕ|γ(x)

}
dx

≤ c6

N∑
i=1

∫
Ω

(
|∂xi (tϕ)| +

|∂xi (tϕ)|pi(x)

pi(x)

)
dx +

1
P+

+

∫
Ω

b(x)|tϕ|P
+
+ dx

−λ

∫
Ω

1
q(x)
|tϕ|q(x) dx − λ

∫
Ω

1
γ(x)
|tϕ|γ(x) dx

≤ c6tP+
+

N∑
i=1

∫
Ω

(
|∂xiϕ| +

1
P−−
|∂xiϕ|

pi(x)
)

dx +
tP+

+

P+
+

∫
Ω

b(x)|ϕ|P
+
+ dx

−
λtq−

q+

∫
Ω

|ϕ|q(x) dx.

Since P+
+ < q−, we infer that limt→∞ Iλ(tϕ) = −∞.

(iii) Let ψ ∈ C∞0 (Ω), ψ ≥ 0, ψ , 0, t ∈ (0, 1). By (A0) and (A1), we find

Iλ(tψ) =

∫
Ω

{ N∑
i=1

Ai(x, ∂xi (tψ)) +
b(x)
P+

+

|tψ|P
+
+ −

λ

q(x)
|tψ|q(x) −

λ

γ(x)
|tψ|γ(x)

}
dx

≤ c6

N∑
i=1

∫
Ω

(
|∂xi (tψ)| +

|∂xi (tψ)|pi(x)

pi(x)

)
dx +

1
P+

+

∫
Ω

b(x)|tψ|P
+
+ dx

−λ

∫
Ω

1
q(x)
|tψ|q(x) dx − λ

∫
Ω

1
γ(x)
|tψ|γ(x) dx

≤ c6tP−−
N∑

i=1

∫
Ω

(
|∂xiψ| +

1
P−−
|∂xiψ|

pi(x)
)
dx +

tP+
+

P+
+

∫
Ω

b(x)|ψ|P
+
+ dx

−
λtγ

+

γ+

∫
Ω

|ψ|γ(x)dx < 0,

for all t < ρ
1

P+
+−γ

+ , with

0 < ρ < min
{

1,
λ
∫

Ω
|ψ|γ(x)dx

γ+
[
c6

∑N
i=1

∫
Ω

(
|∂xiψ| +

1
P−−
|∂xiψ|

pi(x)
)

dx + 1
P+

+

∫
Ω

b(x)|ψ|P+
+ dx

]}.
The proof of Lemma 5.1 is complete.

Lemma 5.2 The functional Iλ satisfies the Palais-Smale condition in X.

Proof. Let (un) ⊂ X be a sequence such that

Iλ(un)→ c7 and I′λ(un)→ 0 as n→ ∞. (5.12)

We claim that (un) is bounded. Arguing by contradiction. We assume that, passing eventually to a
subsequence still denote by (un), ‖un‖ → ∞ as n→ ∞. Using relation (5.12), for n large enough, we
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have

1 + c7 + ‖un‖ ≥ Iλ(un) −
1
q−
〈I′λ(un), un〉

≥

N∑
i=1

∫
Ω

[
Ai(x, ∂xi un) +

1
P+

+

b(x)|un|
P+

+ −
λ

q(x)
|un|

q(x) −
λ

γ(x)
|un|

γ(x)
]

dx

−
1
q−

N∑
i=1

∫
Ω

[
ai(x, ∂xi un)∂xi un + b(x)|un|

P+
+ − λ|un|

q(x) − λ|un|
γ(x)

]
dx

≥

N∑
i=1

∫
Ω

[
Ai(x, ∂xi un) −

1
q−

ai(x, ∂xi un)∂xi un

]
dx

+
( 1

P+
+

−
1
q−

) ∫
Ω

b(x)|u|P
+
+ dx + λ

∫
Ω

( 1
q−
−

1
q(x)

)
|un|

q(x) dx

−λ

∫
Ω

( 1
γ(x)

−
1
q−

)
|un|

γ(x) dx.

(5.13)

From (A2), for all x ∈ Ω and i ∈ {1, . . . ,N} we have

ai(x, ∂xi un)∂xi un ≤ pi(x)Ai(x, ∂xi un) ≤ P+
+Ai(x, ∂xi un),

which implies

−
1
q−

ai(x, ∂xi un)∂xi un ≥ −
P+

+

q−
Ai(x, ∂xi un).

Joining together the previous inequality into relation (5.13) we obtain

1 + c7 + ‖un‖ ≥
(
1 −

P+
+

q−
) N∑

i=1

∫
Ω

Ai(x, ∂xi un)dx − c8‖un‖
γ+

.

Again from (A2) we have

Ai(x, ∂xi un) ≥
1

pi(x)
|∂xi un|

pi(x) ≥
1

P+
+

|∂xi un|
pi(x),

for all x ∈ Ω and i ∈ {1, . . . ,N}, thus

1 + c7 + ‖un‖ ≥
( 1

P+
+

−
1
q−

) N∑
i=1

∫
Ω

|∂xi un|
pi(x) dx − c8‖un‖

γ+

. (5.14)

For each i ∈ {1, 2, . . . ,N} and n we define

αi,n =

{
P+

+ if |∂xi un|pi(x) < 1,
P−− if |∂xi un|pi(x) > 1.

Using Proposition 2.2 and Jensen’s inequality (applied to the convex function h : R+ → R+, h(t) =

tP−− , P−− > 1) or the generalized mean inequality, for n large enough we have

N∑
i=1

∫
Ω

|∂xi un|
pi(x)dx ≥

N∑
i=1

|∂xi un|
αi,n

pi(x)

≥

N∑
i=1

|∂xi un|
P−−
pi(x) −

∑
{i;αi,n=P+

+}

(
|∂xi un|

P−−
pi(x) − |∂xi un|

P+
+

pi(x)

)
≥ N

(∑N
i=1 |∂xi un|

pi(x)

N

)P−−
− N

=
||un||

P−−

NP−−−1
− N.

(5.15)
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Taking into consideration (5.15), we get

1 + c7 + ‖un‖ ≥
( 1

P+
+

−
1
q−

)(‖un‖
P−−

N p−−−1
− N

)
− c8‖un‖

γ+

.

Dividing the above inequality by ‖un‖
P−− and passing to the limit as n→ ∞we obtain a contradiction,

since q− > P+
+ and P−− > γ+. It follows that (un) is bounded in X. This information combined with

the fact that X is reflexive implies that there exists a subsequence, still denote by (un), and u0 ∈ X
such that (un) converges weakly to u0 in X.

Using (5.12) we infer that
lim
n→∞
〈I′λ(un), un − u0〉 = 0,

more precisely,

lim
n→∞

∫
Ω

[ N∑
i=1

ai(x, ∂xi un)(∂xi un − ∂xi u0)+

b(x)|un|
P+

+−2un(un − u0)−
λ|un − u0|

q(x) − λ|un − u0|
γ(x)

]
dx = 0.

(5.16)

Note that q(x), γ(x) and P+
+ fulfill (4.6), hence Proposition 4.1 yields that the embeddings X ↪→

Lq(x)(Ω), X ↪→ Lγ(x)(Ω) and X ↪→ LP+
+ (Ω) are compact. Thus (un) converges strongly to u0 in

Lq(x)(Ω), Lγ(x)(Ω) and also in LP+
+ (Ω). By these facts and using Propositions 2.1-2.2, relation (5.16)

reduces to

lim
n→∞

∫
Ω

N∑
i=1

ai(x, ∂xi un)(∂xi un − ∂xi u0) dx = 0.

Using Lemma 4.4, we deduce that (un) converges strongly to u0 in X, in other words Iλ satisfies the
Palais-Smale condition.

5.1 Proof of Theorem 3.1 concluded
By Lemmas 5.1 and 5.2, all assumptions of the mountain pass theorem in [3] are satisfied. Then
we deduce u0 as a nontrivial critical point of the functional Iλ with Iλ(u0) = c7 and thus a nontrivial
weak solution of problem (3.4).

We now prove that there exists a second weak solution u1 ∈ X such that u1 , u0. Indeed, let λ∗

as in the proof of Lemma 5.1(i) and assume that λ < λ∗. By Lemma 5.1(i), it follows that on the
boundary of the ball centered at the origin and of radius r in X, denoted by Br(0) = {ω ∈ X; ‖ω‖ < r},
we have

inf
∂Br(0)

Iλ(u) > 0.

On the other hand, by Lemma 5.1(iii), there exists ϕ ∈ X such that

Iλ(tϕ) < 0 for t > 0 small enough .

Moreover, for u ∈ Br(0),

Iλ(u) ≥
[
c3‖u‖P

+
+ − c4λ(‖u‖q

−

+ ‖u‖q
+

)
]

+
[
c3‖u‖P

+
+ − c5λ(‖u‖γ

−

+ ‖u‖γ
+

)
]
.

It follows that
−∞ < c9 = inf

Br(0)
Iλ(u) < 0.

We let now 0 < ε < inf∂Br(0) Iλ − infBr(0) Iλ. Applying Ekeland variational principle [11] to the
functional Iλ : Br(0)→ R, we find uε ∈ Br(0) such that

Iλ(uε) < inf
Br(0)

Iλ + ε

Iλ(uε) < Iλ(u) + ε‖u − uε‖, u , uε.
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Since
Iλ(uε) ≤ inf

Br(0)
Iλ + ε ≤ inf

Br(0)
Iλ + ε < inf

∂Br(0)
Iλ,

we deduce that uε ∈ Br(0). Now, we define K : Br(0) → R by K(u) = Iλ(u) + ε‖u − uε‖. It is clear
that uε is a minimum point of K and thus

K(uε + tv) − K(uε)
t

≥ 0,

for small t > 0 and v ∈ Br(0). The above relation yields

Iλ(uε + tv) − Iλ(uε)
t

+ ε‖v‖ ≥ 0.

Letting t → 0 it follows that 〈I′λ(uε), v〉 + ε‖v‖ > 0 and we infer that ‖I′λ(uε)‖ ≤ ε. We deduce that
there exists a sequence (vn) ⊂ Br(0) such that

Iλ(vn)→ c9 and I′λ(vn)→ 0. (5.17)

It is clear that (vn) is bounded in X. Thus, there exists u1 ∈ X such that, up to a subsequence, (vn)
converges weakly to u1 in X. Actually, with similar arguments as those used in the proof that the
sequence un → u0 in X we can show that vn → u1 in X. Thus, by relation (5.17),

Iλ(u1) = c9 < 0 and I′λ(u1) = 0,

hence u1 is a nontrivial weak solution for problem (3.4). �

Finally, since

Iλ(u0) = c7 > 0 > c9 = Iλ(u1),

we see that u0 , u1. Thus, problem (3.4) has two nontrivial weak solutions.

6 Infinitely many high or small energy solutions
Since in this section, we are concerned with the existence of multiple weak solutions of problem
(3.5), we begin by giving the definition of such solutions.

Definition 6.1 A function u ∈ X which verifies∫
Ω

{ N∑
i=1

ai(x, ∂xi )∂xiϕ + b(x)|u|P
+
+−2uϕ − λ|u|q(x)−2uϕ − µ|u|γ(x)−2uϕ

}
dx = 0,

for all ϕ ∈ X is called a weak solution of problem (3.5).

We associate to problem (3.5) the energy functional Iλ,µ : X → R defined by

Iλ,µ(u) =

∫
Ω

{ N∑
i=1

Ai(x, ∂xi u) +
b(x)
P+

+

|u|P
+
+ −

λ

q(x)
|u|q(x) −

µ

γ(x)
|u|γ(x)

}
dx.

Due to Proposition 4.2, by a standard calculus it can be shown that Iλ,µ is well defined and Iλ,µ ∈
C1(X,R) with

〈I′λ,µ(u), ϕ〉 =

∫
Ω

{ N∑
i=1

ai(x, ∂xi u)∂xiϕ + b(x)|u|P
+
+−2uϕ − λ|u|q(x)−2uϕ − µ|u|γ(x)−2uϕ

}
dx,
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for all u, ϕ ∈ X. Hence any critical point u ∈ X of Iλ,µ is a weak solution of problem (3.5).
We will use Lemma 4.2 to prove Theorem 3.2 (i) and Lemma 4.3 to prove Theorem 3.2 (ii),

respectively. We will show that hypotheses (H1)-(H3) and (J1)-(J4) are fulfilled. To this end we
will prove the following auxiliary results.

Lemma 6.1 For every k ∈ N, there exists rk > 0 such that infu∈Zk , ‖u‖=rk Iλ,µ(u) → +∞, when k →
+∞.

Proof. By (A2) and (B) for any u ∈ Zk, ‖u‖ = rk > 1 (rk will be specified below), when λ > 0, µ ∈ R
we have

Iλ,µ(u) =

∫
Ω

{ N∑
i=1

Ai(x, ∂xi u) +
b(x)
P+

+

|u|P
+
+ −

λ

q(x)
|u|q(x) −

µ

γ(x)
|u|γ(x)

}
dx

≥
1

P+
+

N∑
i=1

∫
Ω

|∂xi u|
pi(x) dx +

b0

P+
+

∫
Ω

|u|P
+
+ dx −

λ

q−

∫
Ω

|u|q(x) dx − |µ|
∫

Ω

1
γ(x)
|u|γ(x) dx

≥
1

P+
+

N∑
i=1

∫
Ω

|∂xi u|
pi(x) dx +

b0

P+
+

|u|P
+
+

LP+
+ (Ω)
−
λ

q−

∫
Ω

|u|q(x) dx −
c10|µ|

γ−
‖u‖γ

+

.

(6.18)
Taking into consideration relations (5.11) and (5.15), the inequality (6.18) reduces to

Iλ,µ(u) ≥
‖u‖P

−
−

P+
+NP−−−1

−
λ

q−

∫
Ω

|u|q(x)dx −
c10|µ|

γ−
‖u‖γ

+

.

Since P−− > γ
+, there exists r0 > 0 large enough such that c10 |µ|

γ−
‖u‖γ

+

≤ 1
2P+

+NP−−−1 ‖u‖
P−− as r = ‖u‖ ≥ r0.

If |u|q(x) ≤ 1 then
∫

Ω
|u|q(x)dx ≤ |u|q

−

q(x) ≤ 1. However, if |u|q(x) > 1 then
∫

Ω
|u|q(x)dx ≤ |u|q

+

q(x) ≤

(βk‖u‖)q+

. So, we conclude that

Iλ,µ(u) ≥


1

2P+
+NP−−−1 ‖u‖

P−− −
λc11
q− if |u|q(x) ≤ 1,

1
2P+

+NP−−−1 ‖u‖
P−− − λ

q− (βk ||u||)q+

if |u|q(x) > 1,

≥
1

2P+
+NP−−−1

‖u‖P
−
− −

λ

q−
(βk‖u‖)q+

− c12.

Choose rk =
(
λ
q− NP−−−1q+β

q+

k

) 1
P−−−q+ . Then

Iλ,µ(u) ≥
1

NP−−−1

( 1
P+

+

−
1
q+

)
rP−−

k − c12 → +∞ as k → +∞,

because P+
+ < q− ≤ q+ and βk → 0 as k → +∞. So, we can deduce for u ∈ Zk with ‖u‖ = rk > 1,

Iλ,µ(u)→ +∞ as k → +∞ and the proof is complete.

Lemma 6.2 For every k ∈ N there exists ρk > rk (rk given by Lemma 6.1) such that

max
u∈Yk , ‖u‖=ρk

Iλ,µ(u) ≤ 0.
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Proof. From (A0) and (A1), for any u ∈ Yk\{0} with ‖u‖ = 1 and 1 < ρk = tk with tk → ∞,
λ > 0, µ ∈ R, we have

Iλ,µ(tku) =

∫
Ω

N∑
i=1

Ai(x, ∂xi (tku))dx +
1

P+
+

∫
Ω

b(x)|tku|P
+
+ dx − λ

∫
Ω

1
q(x)
|tku|q(x) dx

−µ

∫
Ω

1
γ(x)
|tku|γ(x) dx

≤ c6

N∑
i=1

∫
Ω

(
|∂xi (tku)| +

|∂xi (tku)|pi(x)

pi(x)

)
dx +

1
P+

+

∫
Ω

b(x)|tku|P
+
+ dx

−
λ

q+

∫
Ω

|tku|q(x)dx +
|µ|

γ−

∫
Ω

|tku|γ(x) dx

≤ c6tP+
+

k

N∑
i=1

∫
Ω

(
|∂xi u| +

|∂xi u|
pi(x)

P−−

)
dx +

tP+
+

k

P+
+

∫
Ω

b(x)|u|P
+
+ dx

−
λtq−

k

q+

∫
Ω

|u|q(x) dx +
|µ|tγ

+

k

γ−

∫
Ω

|u|γ(x) dx.

Since dimYk < ∞ and all norms are equivalent in the finite dimensional space, it is easy to see that
I(tku)→ −∞ as k → +∞ for u ∈ Yk, due to P+

+ < q− and γ+ < P−−. Therefore, we deduce that for ρk

large enough (ρk > rk), maxu∈Yk , ‖u‖=ρk Iλ,µ(u) ≤ 0.

Lemma 6.3 The energy functional Iλ,µ satisfies the Palais-Smale condition.

Proof. The proof is similar to that of Lemma 5.2 if we use the following inequality

1 + c13 + ‖un‖ ≥ Iλ,µ(un) −
1
q−
〈I′λ,µ(un), un〉.

Now, we want to construct the geometry of the dual fountain theorem. We will show that when
µ > 0, λ ∈ R, hypotheses (J1)-(J4) are fulfilled.

Lemma 6.4 There is k0 > 0 so that, for each k ≥ k0, there exists ρk > 0 such that infu∈Zk , ‖u‖=ρk Iλ,µ(u) ≥
0.

Proof. By (A2), relations (5.10) and (5.11), for any u ∈ Zk we have

Iλ,µ(u) =

∫
Ω

{ N∑
i=1

Ai(x, ∂xi u) +
b(x)
P+

+

|u|P
+
+ −

λ

q(x)
|u|q(x) −

µ

γ(x)
|u|γ(x)

}
dx

≥
1

P+
+

N∑
i=1

∫
Ω

|∂xi u|
pi(x)dx +

b0

P+
+

|u|P
+
+

LP+
+ (Ω)
−

c14|λ|

q−
||u||q

−

dx −
µ

γ−

∫
Ω

|u|γ(x) dx

≥
1

P+
+NP+

+−1
‖u‖P

+
+ −

c14|λ|

q−
‖u‖q

−

−
µ

γ−

∫
Ω

|u|γ(x)dx.

Since P+
+ < q−, there exists ρ0 > 0 small enough such that c14 |λ|

q− ‖u‖
q− ≤ 1

2P+
+NP+

+−1 ‖u‖
P+

+ as 0 < ρ =

‖u‖ ≤ ρ0. Then from the proof above, we have

Iλ,µ(u) ≥


1

2P+
+NP+

+−1 ‖u‖
P+

+ −
c15µ
γ−

if |u|γ(x) ≤ 1,
1

2P+
+NP+

+−1 ‖u‖
P+

+ −
µ
γ−

(θk‖u‖)γ
+

if |u|γ(x) > 1.
(6.19)

Choose ρk =
( 2P+

+NP+
+−1µθ

γ+

k
γ−

) 1
P+

+−γ
+ . Then

Iλ,µ(u) ≥
1

2P+
+NP+

+−1
(ρk)P+

+ −
1

2P+
+NP+

+−1
(ρk)P+

+ = 0.
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Since P+
+ ≥ P−− > γ+, θk → 0, we know ρk → 0 as k → ∞. So we can deduce for u ∈ Zk with

||u|| = ρk, Iλ,µ(u) ≥ 0.

Lemma 6.5 For every k ≥ k0 there exists rk < ρk ( ρk given by Lemma 6.4 ) such that

max
u∈Yk , ‖u‖=rk

Iλ,µ(u) < 0 as k → +∞.

Proof. From (A0) and (A1), for v ∈ Yk with ‖v‖ = 1 and 0 < t < ρk < 1, we have

Iλ,µ(tv) ≤ c6

N∑
i=1

∫
Ω

(
|∂xi (tv)| +

|∂xi (tv)|pi(x)

pi(x)

)
dx +

1
P+

+

∫
Ω

b(x)|tv|P
+
+ dx

+
|λ|

q−

∫
Ω

tq(x)|v|q(x) dx −
µ

γ+

∫
Ω

tγ(x)|v|γ(x) dx

≤ c6tP−−
N∑

i=1

∫
Ω

(
|∂xi v| +

|∂xi v|
pi(x)

P−−

)
dx +

tP+
+

P+
+

∫
Ω

b(x)|v|P
+
+ dx

+
|λ|tq−

q−

∫
Ω

|v|q(x) dx −
µtγ

+

γ+

∫
Ω

|v|γ(x) dx.

Since dim Yk = k, conditions γ+ < P−− and P+
+ < q− imply that there exists a rk ∈ (0, ρk) such that

Iλ,µ(u) < 0 when ‖u‖ = rk. Hence bk = max{Iλ,µ(u) : u ∈ Yk, ‖u‖ = rk} < 0 and the proof is
complete.

Lemma 6.6 For every k ≥ k0 and ρk given by Lemma 6.4, we have

inf
u∈Zk , ‖u‖≤ρk

Iλ,µ(u)→ 0.

Proof. Because Yk ∩ Zk , ∅ and rk < ρk, we have

dk = inf{Iλ,µ(u) : u ∈ Zk, ‖u‖ ≤ ρk} ≤ bk = max{Iλ,µ(u) : u ∈ Yk, ‖u‖ = rk} < 0.

From (6.19), for u ∈ Zk, ||u|| ≤ ρk small enough we can write

Iλ,µ(u) ≥ 1
2P+

+NP+
+−1 ‖u‖

P+
+ −

µ
γ−
θ
γ+

k ‖u‖
γ+

≥ −
µ
γ−
θ
γ+

k ‖u‖
γ+

,

hence dk → 0, due to θk → 0 and ρk → 0 as k → +∞,

Lemma 6.7 The functional Iλ,µ satisfies the (PS )∗c condition for every c ∈ [dk0 , 0).

Proof. Suppose (un j ) ⊂ X such that n j → +∞, un j ∈ Yn j and (Iλ,µ|Yn j
)′(un j ) → 0. Assume ‖un j‖ > 1

for convenience. If λ ≥ 0, for n large enough, we have

1 + c16 + ‖un j‖ ≥ Iλ,µ(un j ) −
1
q−
〈I′λ,µ(un j ), un j〉

≥
( 1

P+
+

−
1
q−

)( ‖un j‖
P−−

NP−−−1
− N

)
− c17‖un j‖

γ+

.

Since P−− > γ
+ and q− > P+

+, we deduce that (un j ) is bounded in X.
If λ < 0, for n large enough, we can consider the inequality below to get the boundedness of (un j ).

1 + c18 + ‖un j‖ ≥ Iλ,µ(un j ) −
1
q+
〈I′λ,µ(un j ), un j〉.
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Passing if necessary to a subsequence, we can assume un j ⇀ u in X. As X = ∪n j Yn j , we can choose
vn j ∈ Yn j such that vn j → u. Hence

limn j→+∞〈I′λ,µ(un j ), un j − u〉 = lim
n j→+∞

〈I′λ,µ(un j ), un j − vn j〉

+ lim
n j→+∞

〈I′λ,µ(un j ), vn j − u〉

= lim
n j→+∞

〈
(Iλ,µ|Yn j

)′(un j ), un j − vn j

〉
= 0.

Similar to the process of verifying the Palais-Smale condition in the proof of Lemma 5.2, we con-
clude un j → u, furthermore we have I′λ,µ(un j )→ I′λ,µ(u).
Let us prove I′λ,µ(u) = 0 below. Taking ωk ∈ Yk, notice that when n j ≥ k we have

〈I′λ,µ(u), ωk〉 = 〈I′λ,µ(u) − I′λ,µ(un j ), ωk〉 + 〈I′λ,µ(un j ), ωk〉

= 〈I′λ,µ(u) − I′λ,µ(un j ), ωk〉 +
〈
(Iλ,µ|Yn j

)′(un j ), ωk

〉
.

Going to the limit on the right side of the above equation reaches

〈I′λ,µ(u), ωk〉 = 0, for all ωk ∈ Yk,

so I′λ,µ(u) = 0, this show that Iλ,µ satisfies the (PS )∗c condition for every c ∈ R.

6.1 Proof of Theorem 3.2 concluded
(i) The fact that the mapping Ai is even in η implies that Iλ,µ is even. The proof follows immediately
from Lemmas 6.1-6.3 and Lemma 4.2.

(ii) This follows by combining Lemmas 6.4–6.7 and Lemma 4.3. �
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