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Abstract This paper is concerned with the existence and multiplicity of solutions for sin-

gular Kirchhoff-type problems involving the fractional p-Laplacian operator. More precisely,

we study the following nonlocal problem:





M

(∫∫

R2N

|x|α1p|y|α2p|u(x) − u(y)|p

|x − y|N+ps
dxdy

)
Ls

pu = |x|βf(u) in Ω,

u = 0 in R
N \ Ω,

where Ls
p is the generalized fractional p-Laplacian operator, N ≥ 1, s ∈ (0, 1), α1, α2, β ∈ R,

Ω ⊂ R
N is a bounded domain with Lipschitz boundary, and M : R

+

0 → R
+

0 , f : Ω → R

are continuous functions. Firstly, we introduce a variational framework for the above prob-

lem. Then, the existence of least energy solutions is obtained by using variational methods,

provided that the nonlinear term f has (θp − 1)-sublinear growth at infinity. Moreover, the

existence of infinitely many solutions is obtained by using Krasnoselskii’s genus theory. Fi-

nally, we obtain the existence and multiplicity of solutions if f has (θp−1)-superlinear growth

∗Received April 7, 2021. The first author was supported by National Natural Science Foundation of

China (11601515) and Fundamental Research Funds for the Central Universities (3122017080); the second

author acknowledges the support of the Slovenian Research Agency grants P1-0292, J1-8131, N1-0064, N1-0083,

and N1-0114; the third author was supported by National Natural Science Foundation of China (11871199

and 12171152), Shandong Provincial Natural Science Foundation, PR China (ZR2020MA006), and Cultivation

Project of Young and Innovative Talents in Universities of Shandong Province.
†Corresponding author



1210 ACTA MATHEMATICA SCIENTIA Vol.42 Ser.B

at infinity. The main features of our paper are that the Kirchhoff function may vanish at

zero and the nonlinearity may be singular.

Key words Fractional Kirchhoff equation; singular problems; variational and topological

methods

2010 MR Subject Classification 35R11; 35A15; 47G20

1 Introduction and Main Results

Let N ≥ 1, p ≥ 1, q ≥ 1, τ > 0, 0 ≤ a ≤ 1, α, β, γ ∈ R be such that

1

τ
+

γ

N
,

1

p
+

α

N
,

1

q
+

β

N
> 0

and

1

τ
+

γ

N
= a

(
1

p
+

α − 1

N

)
+ (1 − a)

(
1

q
+

β

N

)
.

In the case a > 0, we assume in addition that, with γ = aσ + (1 − a)β, 0 ≤ α − σ ≤ 1 if
1
τ + γ

N = 1
p + α−1

N .

Caffarelli, Kohn and Nirenberg [5] proved the following well-known Caffarelli-Kohn-Nirenberg

inequality:

‖|x|γu‖Lτ(RN ) ≤ C ‖|x|α∇u‖a
Lp(RN )

∥∥|x|βu
∥∥1−a

Lq(RN )
for u ∈ C1

0 (RN ).

In particular, if a = 1, this inequality becomes

‖|x|γu‖Lτ(RN ) ≤ C ‖|x|α∇u‖Lp(RN ) for u ∈ C1
0 (RN ).

After that, existence and multiplicity of solutions for singular elliptic problems have been inves-

tigated by using the Caffarelli-Kohn-Nirenberg inequality. Indeed, due to the Caffarelli-Kohn-

Nirenberg inequality, one can study the existence and multiplicity of solutions for some singular

elliptic equations like

−div(a(x)|∇u|p−2∇u) = b(x)f(u),

where a(x) is a nonnegative function satisfying inf
x

a(x) = 0 and b is a function satisfying

inf
x

b(x) = 0. For instance, Felli and Schneider in [17] considered the equation

−div(|x|−2a∇u) − λ|x|2(1+a)u = (1 + εk(x))|x|bpup−1 in R
N .

The authors obtained the existence of positive solutions and non-radial solutions as ε small

enough. Ghergu and Rădulescu [16] studied the singular elliptic equation:

−div(|x|−2a∇u) = K(x)|x|−bp|u|p−2u + λg(x) in R
N .

Under suitable assumptions on K, the authors obtained two distinct solutions as λ small enough

by using Ekeland’s variational principle and the mountain pass theorem. In [10], Chu et al.

studied the existence and the qualitative properties of solutions for the singular p-Laplacian

type problem



−div(|x|−βa(x,∇u)) = λf(x, u) in Ω,

u = 0 on ∂Ω,
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where the operator div(|x|−βa(x,∇u)) is a general form of the singular p-Laplacian

div(|x|αp|∇u|p−2∇u) and f satisfies (p− 1)-sublinear growth at infinity. The authors obtained

two nontrivial solutions by using variational methods. In [9], Caristi et al. discussed the

following nonlocal degenerate problem:




−M

(∫

Ω

|x|−ap|∇u(x)|pdx

)
div(|x|−ap|∇u|p−2∇u) = λ|x|−p(a+1)+cf(u) in Ω,

u = 0 on ∂Ω,

where M : R+ → R+ is a continuous function satisfying that m0t
α−1 ≤ M(t) ≤ m1t

α−1 for

all t ∈ R+, where m1 > m0 and 1 < α < min
{

N
N−p , N−p(a+1)+c

N−p(a+1)

}
, and the nonlinear term f

satisfies the following conditions:

(A1) there exists a constant ν > m1αp
m0

such that 0 < νF (t) ≤ tf(t) for all t ∈ R \ {0};

(H1) lim
|t|→∞

f(t)
|t|αp−1 = 0.

Under the above conditions, the authors obtained the existence and multiplicity of solutions.

However, it seems that assumptions (A1) and (H1) can not hold simultaneously. The paper

[21] extended the Caffarelli-Kohn-Nirenberg inequality to the case of variable exponent Sobolev

spaces and obtained the existence of solutions for a class of singular p(x)-Laplacian equations

by using variational methods.

The issue of the Caffarelli-Kohn-Nirenberg inequalities in fractional Sobolev spaces is quite

delicate. Very recently, Nguyen and Squasssina in [28] proved that the following fractional

Caffarelli-Kohn-Nirenberg inequality (see also [1] for a special case): Let s ∈ (0, 1), α1, α2, α ∈ R

with α1 + α2 = α, and N ≥ 1, p > 1, q ≥ 1, τ > 0, 0 < a ≤ 1, β, γ ∈ R be such that

1

τ
+

γ

N
= a

(
1

p
+

α − s

N

)
+ (1 − a)

(
1

q
+

β

N

)
.

In the case a > 0, assume in addition that, with γ = aσ + (1− a)β, 0 ≤ α− σ and α− σ ≤ 1 if
1
τ + γ

N = 1
p + α−s

N . Under the above assumptions, Nguyen and Squassina in [28] proved that if
1
τ + γ

N > 0, then

‖|x|γu‖Lτ(RN ) ≤ C[u]aW s,p,α(RN )‖|x|
βu‖1−a

Lq(RN )
for u ∈ C1

0 (RN ); (1.1)

if 1
τ + γ

N < 0, then

‖|x|γu‖Lτ (RN ) ≤ C[u]aW s,p,α(RN )

∥∥|x|βu
∥∥1−a

Lq(RN )
for u ∈ C1

0 (RN \ {0}),

where

[u]W s,p,α(RN ) =

(∫∫

R2N

|x|α1p|y|α2p|u(x) − u(y)|p

|x − y|N+ps
dxdy

)1/p

.

Inspired by the above works, in this paper, we study the following singular fractional

Kirchhoff type problem:





M

(∫∫

R2N

|x|α1p|y|α2p|u(x) − u(y)|p

|x − y|N+ps
dxdy

)
Ls

pu = |x|βf(u) in Ω,

u = 0 in R
N \ Ω,

(1.2)

where N ≥ 1, s ∈ (0, 1), α1, α2 ∈ R, Ω ⊂ RN is a bounded domain with Lipschitz boundary

containing zero, M : [0,∞) → [0,∞) is a continuous function, f : Ω → R is a continuous
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function, and Ls
p is the generalized fractional p-Laplacian operator which, up to a normalization

constant, is defined as follows:

〈Ls
pu, v〉 =

∫∫

R2N

|x|α1p|y|α2p|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))

|x − y|N+ps
dxdy,

for all u, v ∈ C∞
0 (RN ). Especially, as α1 = α2 = 0 and p = 2, the above operator reduces to the

well-known fractional Laplace operator (−∆)s. Furthermore, if s → 1−, then (−∆)s becomes

the classic Laplace operator −∆ (see [14, Proposition 4.4]).

Since the pioneering work of Caffarelli and Silvestre in [7], a lot of attention has been

attracted to investigate problems involving fractional Laplace operator. Especially, much effort

has been focused on the subcritical and critical growth of the nonlinearities, which lead us to

study various variational problems using the critical point theory. Problems like (1.2) appeared

in many fields of real world, for example, continuum mechanics, phase transition phenomena,

population dynamics, minimal surfaces and anomalous diffusion. In fact, fractional Laplace

operator can be viewed as the typical outcome of stochastically stabilization of Lévy processes;

we refer to [2, 6, 14, 20] for more details.

Problem (1.2) also involves the study of Kirchhoff-type problems. In fact, such problems

arise in various models of physical and biological systems. In particular, the existence results

concerning Kirchhoff-type problems are more and more abundant in recent years. More pre-

cisely, Kirchhoff in [19] established a model governed by the equation

ρ
∂2u

∂t2
−

(
p0

h
+

E

2L

∫ L

0

∣∣∣∣
∂u

∂x

∣∣∣∣
2

dx

)
∂2u

∂x2
= 0, (1.3)

where u = u(x, t) denotes the lateral displacement, E is the Young modulus, ρ is the mass

density, h is the cross-section area, L is the length and p0 is the initial axial tension. In fact,

Equation (1.3) extends the classical D’Alembert wave equation based on a physical consid-

eration; that is, enclosing the effects of the changes in the length of the strings during the

vibrations. In particular, Fiscella and Valdinoci in [18] proposed a stationary Kirchhoff model

involving the fractional Laplacian by investigating the nonlocal aspect of the tension; see [18,

Appendix A] for further details.

Throughout the paper, without explicit mention, we assume that M : R
+
0 → R

+
0 is a

continuous function and verifies (M0) or (M1) and (M2) as below.

(M0) There exist m0 > 0 and θ > 1 such that M(t) ≥ m0t
θ−1 for all t ≥ 0;

(M1) For any d > 0 there exists κ := κ(d) > 0 such that M(t) ≥ κ for all t ≥ d;

(M2) There exists θ ∈ (1, N/N − sp) such that

θM (t) ≥ M(t)t, ∀t ≥ 0,

where M (t) =
∫ t

0
M(τ)dτ .

A simple example of M is given by M(t) = a0 + b0θ tθ−1 for all t ≥ 0 and some θ > 1,

where a0, b0 ≥ 0 and a0 + b0 > 0. When M is of this type, problem (1.2) is called to be

degenerate if a = 0, while it is named non-degenerate if a > 0. In recent years, Kirchhoff-

type fractional problems have triggered more and more attention. Existence results for non-

degenerate Kirchhoff-type fractional Laplacian problems were given, for example, in [30, 32].

While some recent existence results concerning the degenerate case of Kirchhoff-type fractional
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Laplacian equations were obtained; see [4, 8, 12, 22–25, 31, 33, 34] and references therein. It is

worth pointing out that the degenerate case is rather interesting and is treated in some famous

works concerning Kirchhoff theory; see for instance [13]. From a physical point of view, it seems

rational to describe a realistic model by M(0) = 0, which means that the base tension of the

string vanishes.

Throughout the paper, we assume that f : Ω → R is a continuous function. In the following,

we enumerate the assumptions concerning the nonlinear term f , but keep in mind that they

will not be fulfilled simultaneously:

(f0) f is odd, that is, f(−t) = −f(t) for all t ∈ R;

(f1) lim
|t|→∞

f(t)
|t|θp−1 = 0;

(f2) there exists q ∈ (1, p) such that F (t) ≥ |t|q, where F (t) :=
∫ t

0 f(τ)dτ ;

(f3) there exist q > θp and C > 0 such that

|f(t)| ≤ C|t|q−1, for each t ∈ R;

(f4) there exist µ > θp and T > 0 such that f satisfies the Ambrosetti-Rabinowtiz type

condition, i.e.,

µF (t) ≤ tf(t), for all |t| > T.

A simple example of function f satisfying (f1) − (f2) is given by

f(x, t) =




|t|q−2t + |t|r−2t if |t| ≤ 1,

2|t|r−2t if |t| > 1,

where 1 < r < p < q < p∗s := Np/(N − sp).

Remark 1.1 From (f1) one can deduce that f is (θp−1)-sublinear at infinity, while from

(f4) one can deduce that f is (θp − 1)-superlinear at infinity.

Definition 1.2 We say that u ∈ W s,p
0 (Ω, |x|αp) is a (weak) solution of problem (1.2), if

it holds that

M

(∫∫

R2N

|x|α1p|y|α2p|u(x) − u(y)|p

|x − y|N+ps
dxdy

)
〈Ls

pu, ϕ〉 =

∫

Ω

|x|βf(u)ϕdx

for all ϕ ∈ W s,p
0 (Ω, |x|αp).

We always assume that s ∈ (0, 1), α1, α2 ∈ R, α = α1 + α2, N ≥ 1, and Ω ⊂ RN is a

bounded domain with Lipschitz boundary and 0 ∈ Ω. Now we are in a position to introduce

two existence results involving the case that the nonlinearity f is (θp − 1)-sublinear at infinity.

Theorem 1.3 Assume that M fulfills (M0) and f satisfies (f1)–(f2). If β > (α − s)θp +

N(θ−1), then problem (1.2) has a least energy solution in W s,p
0 (Ω, |x|αp) with negative energy.

Moreover, we get the existence of infinitely many solutions of problem (1.2).

Theorem 1.4 Assume that M fulfills (M0) and f satisfies (f0), (f1) and (f2). If β >

(α − s)θp + N(θ − 1), then problem (1.2) has infinitely many solutions in W s,p
0 (Ω, |x|αp) with

negative energy.

We also obtain the existence and multiplicity of solutions for problem (1.2) when the non-

linearity f is (θp − 1)-superlinear at infinity.
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Theorem 1.5 Assume that M fulfills (M1)–(M2) and f satisfies (f3)–(f4). If β >

(α − s)q + N(q/p − 1), then problem (1.2) admits a nontrivial mountain pass solution in

W s,p
0 (Ω, |x|αp).

Theorem 1.6 Assume that M fulfills (M1)–(M2) and f satisfies (f0) and (f3)–(f4). If

β > (α − s)q + N(q/p − 1), then problem (1.2) has infinitely many solutions in W s,p
0 (Ω, |x|αp).

Remark 1.7 If α1 = α2 = α, then we can define Ls
p as follows: for any x ∈ RN

Ls
pu(x) = lim

ε→0+

∫

RN\Bε(x)

|x|αp|y|αp|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|N+ps
dy

along any u ∈ C∞
0 (RN ).

To the best of our knowledge, Theorems 1.3–1.6 are the first existence and multiplicity

results for singular Kirchhoff-type problems in the fractional setting.

The rest of the paper is organized as follows: in Section 2, we introduce a variational

framework of problem (1.2) and give some necessary properties for the functional setting. In

Section 3, we obtain the existence of least energy solution for problem (1.2). In Section 4,

the existence of infinitely many solutions is obtained by using genus theory. In Section 5, a

mountain pass solution and infinitely many solutions for problem (1.2) are obtained by using

the mountain pass theorem and the symmetric mountain pass theorem, respectively.

2 Variational Framework and Preliminary Results

We first provide some basic functional setting that will be used in the next sections. Let

1 < p < ∞ and define W s,p
0 (Ω) as the completion of C∞

0 (Ω) with respect to the norm

[u]s,p =

(∫∫

R2N

|u(x) − u(y)|p

|x − y|N+ps
dxdy

)1/p

.

Let W s,p
0 (Ω, |x|αp) be the completion of C∞

0 (Ω) with respect to the norm

‖u‖ =

(∫∫

R2N

|x|α1p|y|α2p|u(x) − u(y)|p

|x − y|N+ps
dxdy

)1/p

.

Using a similar discussion as in [32], the space W s,p
0 (Ω, |x|αp) is a reflexive Banach space. Let

1 < q < ∞ and β ∈ R. Define the weighted Lebesgue space

Lq(Ω, |x|β) =

{
u : Ω → R is measurable

∣∣∣∣
∫

Ω

|x|β |u(x)|qdx < ∞

}
,

endowed with the norm

‖u‖q,β =

(∫

Ω

|x|β |u(x)|qdx

)1/q

.

The next fractional Caffarelli-Kohn-Nirenberg inequality will be used later, which was ob-

tained in [28]. In fact, by taking a = 1 in (1.1), we have

Theorem 2.1 Let s ∈ (0, 1), 1 < p < N/s, α > −(N − sp)/p and α − s ≤ γ ≤ α. Set

p∗α,γ,s := Np/(N − p(γ − α + s)). Then there exists C(N, α, s) > 0 such that

(∫

RN

|x|γp∗

α,γ,s |u|p
∗

α,γ,sdx

)1/p∗

α,γ,s

≤ C(N, α, s)‖u‖ for all u ∈ C∞
0 (RN ).
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Using Theorem 2.1, we have the following embedding theorem:

Theorem 2.2 Let s ∈ (0, 1), 1 < p < N/s and α > −(N − sp)/p. Then W s,p
0 (Ω, |x|αp)

is continuously embedded in Lq(Ω, |x|β), if 1 ≤ q ≤ p∗s and β ≥ (α − s)q + N(q/p − 1); the

embedding is compact if 1 ≤ q < p∗s and β > (α − s)q + N(q/p − 1).

Proof If q = p∗s and β = (α− s)q + N(q/p− 1) = αp∗s, then by taking γ = α in Theorem

2.1, the embedding W s,p
0 (Ω, |x|αp) →֒ Lp∗

s (Ω, |x|β) is continuous. If 1 ≤ q < p∗s, then we take

α − s < γ < α such that

q < p∗α,γ,s =
Np

N − p(γ − α + s)
<

Np

N − sp
= p∗s.

Let u ∈ W s,p
0 (Ω, |x|αp). Then by the Hölder inequality, we have

∫

Ω

|x|β |u|qdx ≤

(∫

Ω

|x|
(β−γq)

p∗

γ,α,s

p∗

γ,α,s−q dx

) p∗

γ,α,s−q

p∗

γ,α,s

(∫

Ω

|x|γp∗

γ,α,s |u(x)|p
∗

γ,α,s

) q

p∗

γ,α,s

. (2.1)

Since β > (α − s)q + N(q/p − 1), we get

−(β − γq)
p∗γ,α,s

p∗γ,α,s − q
< N.

Thus, it follows that

(∫

Ω

|x|
(β−γq)

p∗

γ,α,s

p∗

γ,α,s−q dx

) p∗

γ,α,s−q

p∗

γ,α,s

< ∞.

It follows from (2.1) and Theorem 2.1 that

∫

Ω

|x|β |u|qdx ≤ C

(∫

Ω

|x|γp∗

γ,α,s |u(x)|p
∗

γ,α,s

) q

p∗

γ,α,s

≤ C‖u‖q,

which yields that the embedding W s,p
0 (Ω, |x|αp) →֒ Lq(Ω, |x|β) is continuous.

Next we show that the embedding W s,p
0 (Ω, |x|αp) →֒ Lq(Ω, |x|β) is compact. To this aim,

let {un} be a bounded sequence in W s,p
0 (Ω, |x|αp). For any R > 0 with BR(0) ⊂ Ω is a ball

centered at 0 with radius R. Then {un} is a bounded sequence in W s,p
0 (Ω\BR(0)). By Theorem

7.1 in [14], we obtain that there is a convergent subsequence of {un} in Lq(Ω \ BR(0)). By

choosing a diagonal sequence, without loss of generality, we assume that {un} converges in

Lq(Ω \ BR(0)) for any R > 0.

On the other hand, for 1 ≤ q < p∗s, we take α − s < γ < α such that

q < p∗α,γ,s < p∗s.

Since the embedding is continuous, we obtain that {un} is bounded in Lp∗

α,γ,s(Ω, |x|γp∗

α,γ,s).

Then by the Hölder inequality, for any R > 0 small enough and n, m ∈ N, we deduce that
∫

BR(0)

|x|β |um − un|
qdx

≤

(∫

BR(0)

|x|
(β−γq)

p∗

α,γ,s

p∗

α,γ,s−q dx

) p∗

α,γ,s−q

p∗

α,γ,s

(∫

Ω

|x|γp∗

α,γ,s |um − un|
p∗

α,γ,sdx

) q

p∗

α,γ,s

≤ C

(∫

BR(0)

|x|
(β−γq)

p∗

α,γ,s

p∗

α,γ,s−q dx

) p∗

α,γ,s−q

p∗

α,γ,s
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≤ C

(∫ R

0

t
N−1+(β−γq)

p∗

α,γ,s

p∗

α,γ,s−q dt

) p∗

α,γ,s−q

p∗

α,γ,s

= C

(
R

N+(β−γq)
p∗

α,γ,s

p∗

α,γ,s−q

) p∗

α,γ,s−q

p∗

α,γ,s

,

where C > 0 denotes various constants independent of n, m. As β > q(α − s) + N(q/p − q), it

follows that N + (β − γq)
p∗

α,γ,s

p∗

α,γ,s−q > 0. Thus, for any ε > 0 there exists R > 0 such that
∫

BR(0)

|x|β |um − un|
qdx <

ε

2
∀n, m ∈ N.

Then we can choose n0 ∈ N such that
∫

Ω\BR(0)

|x|β |un − um|qdx ≤ Cβ

∫

Ω\BR(0)

|un − um|qdx ≤
ε

2
,

where Cβ = Rβ if β < 0 and Cβ = (diam(Ω))β if β > 0. Therefore, we conclude
∫

Ω

|x|β |un − um|qdx ≤ ε ∀n, m ∈ N.

This means that {un} is a Cauchy sequence in Lq(Ω, |x|β). �

To study solutions of problem (1.2), we define the associated functional I : W s,p
0 (Ω, |x|αp) →

R as follows:

I(u) = Φ(u) − Ψ(u) for all u ∈ W
s,N/s
0 (Ω, |x|αp),

where

Φ(u) =
1

p
M (‖u‖p) and Ψ(u) =

∫

Ω

|x|βF (u)dx.

By assumption (f2), for any ε > 0 there exists Tε > 0 such that

|f(t)| ≤ ε|t|θp−1, ∀|t| > Tε.

Thus,

|f(t)| ≤ ε|t|θp−1 + max
|t|≤Tε

|f(t)|, ∀t ∈ R. (2.2)

Furthermore,

|F (t)| ≤
ε

θp
|t|θp + max

|t|≤T
|f(t)||t|, ∀(x, t) ∈ Ω × R. (2.3)

Using (2.3), β > (α − s)θp + N(θ − 1) and Theorem 2.2, one can verify that I is well defined,

of class C1(W s,p
0 (Ω, |x|αp), R) and

〈I ′(u), v〉 = M(‖u‖p)〈Ls
pu, v〉 −

∫

Ω

|x|βf(u)vdx,

for all u, v ∈ W s,p
0 (Ω, |x|αp). Clearly, the critical points of Iλ are exactly the weak solutions of

problem (1.2).

3 Proof of Theorem 1.3

In this section, we always assume that M satisfies (M0) and f satisfies (f1) and (f2).

Let us now recall that the functional I satisfies the (PS)c condition in W s,p
0 (Ω, |x|θp), if any

(PS)c sequence {un} ⊂ W s,p
0 (Ω, |x|θp), namely a sequence such that I(un) → c and I ′(un) → 0

as n → ∞, admits a strongly convergent subsequence in W s,p
0 (Ω, |x|θp).

In order to study the existence of least energy solutions for problem (1.2) in the sublinear

case, we will use the following direct method in the calculus of variations:
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Theorem 3.1 Let X be a reflexive Banach space with norm ‖ · ‖X . Assume that the

functional J : X → R is

(i) coercive on X , that is, J(u) → ∞ as ‖u‖X → ∞;

(ii) weakly lower semi-continuous on X , that is, for any u ∈ X and any sequence {un} ⊂ X

such that un ⇀ u weakly in X ,

J(u) ≤ lim inf
n→∞

J(un).

Then J is bounded from below on X and attains its infimum in X .

Lemma 3.2 The functional I is weakly lower semi-continuous on W s,p
0 (Ω, |x|αp).

Proof We first show that Φ is weakly lower semi-continuous on W s,p
0 (Ω, |x|αp). To this

aim, we define a functional H : W s,p
0 (Ω, |x|αp) → R as

H(u) =

∫∫

R2N

|x|α1p|y|α2p|u(x) − u(y)|p

|x − y|N+ps
dxdy ∀u ∈ W s,p

0 (Ω, |x|αp).

It is easy to verify that H ∈ C1(W s,p
0 (Ω, |x|αp), R) and H is a convex functional. Furthermore,

H is sub-differentiable and the sub-differential denoted by ∂H satisfies ∂H(u) = {H ′(u)} for all

u ∈ W s,p
0 (Ω, |x|αp). Assume that {un} ⊂ W s,p

0 (Ω, |x|αp), u ∈ W s,p
0 (Ω, |x|αp) and un ⇀ u weakly

in W s,p
0 (Ω, |x|αp) as n → ∞. By the definition of sub-differential, we have

H(un) − H(u) ≥ 〈H ′(u), un − u〉,

which yields that H(u) ≤ lim inf
n→∞

H(un). Without loss of generality, we assume that t0 :=

lim inf
n→∞

H(un) > 0. Since M (t) : [0,∞) → (0,∞) is continuous, for any ε > 0 there exists δ > 0

such that for all |t − t0| < δ, it holds that

M (t0) − ε < M (t) < M (t0) + ε.

Choose t0−δ < t1 < t0 < t2 < t0+δ. By the assumption on M , we know that M is a increasing

function. It follows that

M (t0) − ε < M (t1) ≤ M (t) ≤ M (t2) < M (t0) + ε ∀t ∈ [t1, t2].

On the other hand, by t0 := lim inf
n→∞

H(un), we obtain that there are at most finite numbers

n such that H(un) > t1, and so there are at most finite numbers n such that M (H(un)) >

M (t1) > M (t0) − ε. Moreover, there are infinitely many n such that H(un) < t2. Thus,

there are infinitely many n such that M (H(un)) < M (t2) < M (t0) + ε. Then we get

lim inf
n→∞

M (‖un‖p) = M (lim inf
n→∞

‖un‖p). Therefore, we deduce that M (‖u‖p) ≤ lim inf
n→∞

M (‖un‖p),

which means that Φ(u) = 1
pM (‖u‖p) is weakly lower semi-continuous on W s,p

0 (Ω, |x|αp).

Next we prove that Ψ is weakly continuous on W s,p
0 (Ω, |x|αp). By (f2), there exists C > 0

such that |f(t)| ≤ C(1+|t|θp−1) for all t ∈ R. It follows from Theorem 2.2 that W s,p
0 (Ω, |x|αp) →֒

Lθp(Ω, |x|β) is compact for β > θp(α − s) + N(θ − 1). Using a standard argument, one can

deduce that Ψ is weakly continuous on W s,p
0 (Ω, |x|αp).

In conclusion, we obtain that I(u) = Φ(u) − Ψ(u) is a weakly lower semi-continuous func-

tional on W s,p
0 (Ω, |x|αp). �

Lemma 3.3 The functional I is coercive and satisfies the (PS)c condition.
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Proof For any ε > 0, by (M1) and (2.3), we obtain that for all u ∈ W s,p
0 (Ω, |x|αp) with

‖u‖ ≥ 1,

I(u) ≥
m0

θp
‖u‖θp −

1

θp

∫

Ω

|x|β |u|θpdx −
(

max
|t|≤Tε

f(t)
)∫

Ω

|x|β |u|dx.

By Theorem 2.2 and β > (α − s)θp + N(θ − 1), there exists C > 0 such that
∫

Ω

|x|β |u|θpdx ≤ C‖u‖θp

and ∫

Ω

|x|β |u|dx ≤ C‖u‖.

It follows that

I(u) ≥
(m0

θp
−

ε

θp
C
)
‖u‖θp − C

(
max
|t|≤Tε

f(t)
)
‖u‖

for all u ∈ W s,p
0 (Ω, |x|αp) with ‖u‖ ≥ 1. Now choose ε = m0/(2C), we obtain

I(u) ≥
m0

2θp
‖u‖θp − C‖u‖,

which together with θp > 1 implies that I(u) → ∞ as ‖u‖ → ∞. Thus we have proved that I

is coercive.

Next we show that I satisfies the (PS)c condition. To this aim, we assume that {un} ⊂

W s,p
0 (Ω, |x|θp) is (PS)c sequence; that is, I(un) → c and I ′(un) → 0 in (W s,p

0 (Ω, |x|θp))∗. Since

I is coercive, {un} is bounded in W s,p
0 (Ω, |x|θp). Thus, up to a subsequence, we have

un ⇀ u weakly in W s,p
0 (Ω, |x|θp).

Moreover, by

|〈I ′(un), un − u〉| ≤ ‖I ′(un)‖‖un − u‖ ≤ C‖I ′(un)‖ → 0,

we deduce

lim
n→∞

〈I ′(un), un − u〉 = 0.

It follows that

M(‖un‖
p)〈Ls

pun, un − u〉 =

∫

Ω

|x|βf(un)(un − u)dx. (3.1)

By (2.2), we have
∣∣∣∣
∫

Ω

|x|βf(un)(un − u)dx

∣∣∣∣ ≤ C

∫

Ω

|x|β(|un − u| + |un − u|θp)dx,

which converges to zero by Theorem 2.2. It follows from (3.1) that

lim
n→∞

M(‖un‖
p)〈Ls

pun, un − u〉 = 0,

which, together with the fact that 〈Ls
p(u), un − u〉 = 0, yields that

lim
n→∞

M(‖un‖
p)
[
〈Ls

pun, un − u〉 − 〈Ls
p(u), un − u〉

]
= 0. (3.2)

If inf
n≥1

‖un‖ > 0, by (3.2) and (M1) we have

lim
n→∞

[
〈Ls

pun, un − u〉 − 〈Ls
p(u), un − u〉

]
= 0.
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Then using a similar discussion as in [32, Lemma 3.6], we can obtain that un → u in W s,p
0 (Ω, |x|αp).

If inf
n≥1

‖un‖ = 0, then up to a subsequence we obtain that un → 0 in W s,p
0 (Ω, |x|αp). �

Proof of Theorem 1.3 By Theorem 3.1, Lemmas 3.2 and 3.3, the functional I has a

global minimizer u ∈ W s,p
0 (Ω, |x|αp), which is a least energy solution of problem (1.2). Now we

prove that u is nontrivial. Choose a nonnegative function v ∈ W s,p
0 (Ω, |x|αp) with ‖v‖ = 1 and

0 < max
x∈Ω

v(x) ≤ 1. Then it follows from the definition of I and (f2) that

I(tv) =
1

p
M (tp‖v‖p) −

∫

Ω

|x|βF (tv)dx

≤
1

p

(
max

τ∈[0,1]
M(τ)

)
tp − tq

∫

Ω

|x|β |v|qdx

< 0 for 0 < t < 1 small enough,

thanks to p > q. Thus, we can choose some t > 0 such that I(tv) < 0. Then by the minimality

of u, we have

I(u) ≤ I(tv) < 0 = I(0),

which yields that u is nontrivial. �

4 Proof of Theorem 1.4

In this section we study the existence of infinitely many solutions of problem (1.2). To this

end, we mainly use a classical result due to Clark (see [11]). Before stating our result, we first

recall some basic notions on Krasnoselskii’s genus and its properties.

Denote by X a real Banach space. Set

Γ = {A ⊂ X \ {0} : A is compct and A = −A}.

Definition 4.1 Let A ∈ Γ and X = R
k. The genus γ(A) of A is defined by

γ(A) = min{k ≥ 1 : there exists an odd mapping φ ∈ C(A, Rk \ {0})}.

If there does not exist such a mapping for any k ≥ 1, we set γ(A) = ∞. Note that if A is a

subset which consists of finitely many pairs of points, then γ(A) = 1. Moreover, γ(∅) = 0.

Now, we list some necessary results of Krasnoselskii’s genus.

Lemma 4.2 (1) Let X = R
k and ∂Ω be the boundary of an open, symmetric and bounded

subset Ω ⊂ Rk with 0 ∈ Ω. Then γ(∂Ω) = k. In particular, let Sk−1 be a k − 1-dimensional

sphere in Rk, then γ(Sk−1) = k.

(2) Let A ⊂ X , Ω be a bounded neighborhood of 0 in Rk, and assume that there exists an

odd mapping h ∈ C(A, ∂Ω) with h a homeomorphism. Then γ(A) = k.

Theorem 4.3 (Clark’s theorem [11]) Let J ∈ C1(X, R) be a functional satisfying the

(PS)c condition. Furthermore, let us suppose that

(i) J is even, i.e., J(−u) = J(u) for all u ∈ X , and J is bounded from below;

(ii) there is a compact set A ⊂ Γ such that γ(A) = k and sup
u∈A

J(u) < J(0).

Then J possesses at least k pairs of distinct critical points, and their corresponding critical

values are less than J(0).
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Proof of Theorem 1.4 Set

Γk = {A ⊂ Γ : γ(A) ≥ k}, ck = inf
A∈Γk

sup
u∈A

I(u), k = 1, 2, . . . ,

then it follows from Lemma 3.3 that

−∞ < c1 ≤ c2 ≤ . . . ≤ ck ≤ ck+1 ≤ . . . .

Next we prove that ck < 0 for all k ∈ N. For each k, we choose k disjoint open sets Ωi such

that
k⋃

i=1

Ωi ⊂ Ω. For i = 1, 2, . . . , k, let ei ∈ (W s,p
0 (Ω, |x|αp)

⋂
C∞

0 (Ωi)) \ {0}, with ‖ei‖ = 1,

and let

Ak = span{e1, e2, . . . , ek}.

Since Ak is finite dimensional, all norms on it are equivalent. Thus there exists a positive

constant C > 0 such that
(∫

Ω

|x|β |u|qdx

)1/q

≥ C‖u‖ for all u ∈ Ak.

By (f2), we get

I(tu) ≤
1

p

(
max

τ∈[0,1]
M(τ)

)
tp −

k∑

i=1

∫

Ωi

|x|βF (tui)dx

≤
1

p

(
max

τ∈[0,1]
M(τ)

)
tp − tq

k∑

i=1

∫

Ωi

|x|β |ui|
qdx

=
1

p

(
max

τ∈[0,1]
M(τ)

)
tp − tq

∫

Ω

|x|βuqdx

≤
1

p

(
max

τ∈[0,1]
M(τ)

)
tp − Cqtq,

for all u ∈ Sk and 0 < t ≤ 1 small enough, where Sk = {u ∈ Ak : ‖u‖ = 1}. Thus, we

can find t∗ = t(k) ∈ (0, 1) and ε∗ = ε∗(k) > 0 such that I(t∗u) ≤ −ε∗ < 0 for all u ∈ Sk.

Set St∗

k = {t∗u : u ∈ Sk}. Clearly, St∗

k is homeomorphic to Sk−1. Then γ(St∗

k ) = k and so

ck ≤ sup
u∈St∗

k

I(u) < 0 = I(0).

Since f is odd, the functional I is even. In view of Lemma 3.3, we know that all assumptions

of Theorem 4.3 are satisfied. Then the functional I admits at least k pairs of distinct critical

points. Due to the arbitrary of k, we obtain the existence of infinitely many critical points of

I. Thus, the proof is complete. �

5 Proofs of Theorems 1.5–1.6

In this section we consider the superlinear case of problem (1.2). Without special mention-

ing, we always assume that M satisfies (M1)–(M2), and f satisfies (f3)–(f4).

In the sequel, we shall make use of the following general mountain pass theorem (see [3]):

Theorem 5.1 Let X be a real Banach space and J ∈ C1(X, R) with J(0) = 0. Suppose

that

(i) there exist ρ, r > 0 such that J(u) ≥ ρ for all u ∈ X , with ‖u‖X = r;

(ii) there exists e ∈ X satisfying ‖e‖X > ρ such that J(e) < 0.
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Define H = {h ∈ C1([0, 1]; X) : h(0) = 1, h(1) = e}. Then

c = inf
h∈H

max
0≤t≤1

J(h(t)) ≥ ρ

and there exists a (PS)c sequence {un} ⊂ X .

Now we check that the functional I satisfies the mountain geometry properties (i) and (ii).

Lemma 5.2 There exist r, ρ > 0 such that I(u) ≥ ρ if ‖u‖ = r.

Proof By (M2), one can deduce

M (t) ≥ M (1)tθ, for all 0 ≤ t ≤ 1. (5.1)

By (5.1) and (f3), we obtain

I(u) ≥
1

p
M (1)‖u‖θp −

C

q

∫

Ω

|x|β |u|qdx ≥
1

p
M (1)‖u‖θp −

C

q
‖u‖q, (5.2)

for all u ∈ W s,p
0 (Ω, |x|αp) with ‖u‖ ≤ 1. Here we have used the fact that the embedding from

W s,p
0 (Ω, |x|αp) to Lq(Ω, |x|β) is continuous by Theorem 2.2, since q ∈ (θp, p∗s) and β > (α−s)θp+

N(θ − 1). Since q > θp, we can choose r ∈ (0, 1) small enough such that 1
pM (1)rp − C

q rq > 0.

Then it follows from (5.2) that I(u) ≥ ρ := 1
pM (1)rp − C

q rq > 0 for all u ∈ W s,p
0 (Ω, |x|αp),

with ‖u‖ = r. �

Lemma 5.3 There exists e ∈ W s,p
0 (Ω, |x|αp) with ‖e‖ > r such that I(e) < 0, where r is

given by Lemma 5.2.

Proof By (M2), we have

M (t) ≤ M (1)tθ for all t ≥ 1. (5.3)

Choose a nonnegative function ϕ ∈ C∞
0 (Ω) such that ‖ϕ‖ = 1. Then by (f4) and (5.3), for all

τ , with τ > 1, we have

I(τϕ) ≤
M (1)

p
τθp − τq F (T )

T µ

∫

{x∈Ω:|ϕ(x)|>T}

ϕqdx +
(

sup
|t|≤T

|F (t)|
) ∫

Ω

|x|βdx.

Since q > θp, fixing τ > 0 even large so that we have that I(e) < 0, where e = τϕ. �

Lemma 5.4 The functional I satisfies the (PS)c condition.

Proof Let {un} ⊂ W s,p
0 (Ω, |x|αp) be such that

I(un) → c and I ′(un) → 0 in (W s,p
0 (Ω, |x|αp))∗

as n → ∞. We first show that {un} is bounded. Arguing by contradiction, we assume that up

to a subsequence,

1 ≤ ‖un‖ → ∞ as n → ∞.

Using (f4) and (M2), we deduce

C + ‖un‖ ≥ I(un) −
1

µ
〈I ′(un), un〉

≥

(
1

θp
−

1

µ

)
M(‖un‖

p)‖un‖
p −

∫

Ω

|x|β(F (un) −
1

µ
f(un)un)dx

≥

(
1

θp
−

1

µ

)
κ(1)‖un‖

p −

∫

{x∈Ω:|u|>T}

|x|β(F (un) −
1

µ
f(un)un)dx
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− sup

{∣∣∣∣F (t) −
1

µ
f(t)t

∣∣∣∣ : |t| ≤ T

}∫

Ω

|x|βdx

≥

(
1

θp
−

1

µ

)
κ(1)‖un‖

p − sup

{∣∣∣∣F (t) −
1

µ
f(t)t

∣∣∣∣ : |t| ≤ T

}∫

Ω

|x|βdx.

Dividing the above inequality by ‖un‖p and letting n go to infinity, we obtain

0 ≥

(
1

θp
−

1

µ

)
κ(1),

which together with µ > θp yields a contradiction. Thus, {un} is bounded in W s,p
0 (Ω, |x|αp).

Then there exist a subsequence of {un}, still denoted by {un}, and u such that





un → u weakly in W s,p
0 (Ω, |x|αp),

un → u strongly in Lq(Ω, |x|β),

un → u a.e. in Ω.

We first show that

lim
n→∞

∫

Ω

|x|βf(un)(un − u)dx = 0. (5.4)

Indeed, by (f3) and the Hölder inequality, we have

∣∣∣∣
∫

Ω

|x|βf(un)(un − u)dx

∣∣∣∣ ≤ C

(∫

Ω

|x|β |un|
qdx

) q−1

q
(∫

Ω

|x|β |un − u|qdx

) 1
q

. (5.5)

Using Theorem 2.2, we obtain lim
n→∞0

∫
Ω |x|β |un − u|qdx = 0. Then it follows from (5.5) that

(5.4) holds true.

Due to the fact that {un} is a (PS)c sequence, we have

〈I ′(un), un − u〉 − M(‖un‖
p)〈Ls

pu, un − u〉 = o(1).

Then,

o(1) = M(‖un‖
p)(〈Ls

pun, un − u〉 − 〈Ls
pu, un − u〉) −

∫

Ω

|x|βf(un)(un − u)dx.

It follows from (5.4) that

lim
n→∞

M(‖un‖
p)(〈Ls

pun, un − u〉 − 〈Ls
pu, un − u〉) = 0.

Then by using a similar discussion as in Lemma 3.3, we conclude that ‖un −u‖ → 0 as n → ∞.

In conclusion, the proof is complete. �

Proof of Theorem 1.5 By Lemmas 5.2–5.3 and Theorem 5.1, there exists a (PS)c

sequence {un} such that I(un) → c, I ′(un) → 0, where c = inf
h∈H

max
0≤t≤1

I(h(t)) ≥ ρ and H =

{h ∈ C1([0, 1]; W s,p
0 (Ω, |x|αp)) : h(0) = 1, h(1) = e}. Furthermore, by Lemma 5.4, there exist

a subsequence of {un} (still denoted by {un}) and u ∈ W s,p
0 (Ω, |x|αp) such that un → u.

Moreover, u is a nonnegative solution of problem (1.2). �

We shall use the following symmetric mountain pass theorem to get the existence of infinitely

many solutions of problem (1.2) in the superlinear case:

Theorem 5.5 Let X be a real infinite dimensional Banach space and J ∈ C1(X, R) a

functional satisfying the (PS)c condition. Assume that J satisfies the following:
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(1) J(0) = 0 and there exist ρ, r > 0 such that J(u) ≥ ρ for all ‖u‖X = r;

(2) J is even;

(3) for all finite dimensional subspace X̃ ⊂ X , there exists R = R(X̃) > 0 such that

J(u) < 0 for all u ∈ X̃ \ BR(X̃).

Then J possesses an unbounded sequence of critical values characterized by a minimax

argument.

Proof of Theorem 1.6 By (f4), we have

F (t) ≥
F (T )

T µ
|t|µ for all |t| > T.

Set

C = sup
|t|≤T

∣∣∣∣F (t) −
F (T )

T µ
|t|µ
∣∣∣∣ .

Then, we obtain

F (t) ≥
F (T )

T µ
|t|µ − C for all t ∈ R. (5.6)

Let E be a fixed finite dimensional subspace of W s,p
0 (Ω, |x|αp). For any u ∈ E with ‖u‖ = 1,

and for all t ≥ 1 we have by (5.3) and (5.6) that

I(tu) ≤
1

p
M (1)tθp −

F (T )

T µ
tµ
∫

Ω

|x|β |u|µdx − C

∫

Ω

|x|βdx → −∞ as t → ∞.

Thus,

sup
‖u‖=R,u∈E

I(u) = sup
‖u‖=1,u∈E

I(Ru) → −∞

as R → ∞. Hence there exists R0 > 0 so large such that I(u) < 0 for all u ∈ E, with ‖u‖ = R

and R > R0. Clearly, I(0) = 0 and I is even. In view of Lemma 5.2, we know that all

assumptions of Theorem 5.5 are satisfied. Thus, problem (1.2) admits an unbounded sequence

of solutions. �
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