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Abstract
We consider an anisotropic double-phase problem plus an indefinite potential. The
reaction is superlinear. Using variational tools together with truncation, perturbation
and comparison techniques and critical groups, we prove a multiplicity theorem pro-
ducing five nontrivial smooth solutions, all with sign information and ordered. In this
process we also prove two results of independent interest, namely a maximum princi-
ple for anisotropic double-phase problems and a strong comparison principle for such
solutions.
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1 Introduction and origin of double-phase problems

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper we deal

with the following anisotropic double phase Dirichlet problem

{−�p(z)u(z) − �q(z)u(z) + ξ(z)|u(z)|p(z)−2u(z) = f (z, u(z)) in �,

u|∂� = 0.
(1)

In this problem, we assume that p, q ∈ C1(�) and 1 < q− ≤ q(z) ≤ q+ <

p− ≤ p(z) ≤ p+ < p∗(z), where p∗(z) = Np(z)
N−p(z) if p+ < N and +∞ otherwise.

The potential function ξ ∈ L∞(�) is sign-changing and so the differential operator
(left-hand side) of problem (1) is not coercive. The reaction f (z, x) is a Carathéodory
function (that is, for all x ∈ R the mapping z �→ f (z, x) is measurable and for a.a.
z ∈ � the function x �→ f (z, x) is continuous) which exhibits (p+ − 1)-superlinear
growth near ±∞, but without satisfying the Ambrosetti-Rabinowitz condition (the
AR-condition). Using variational tools from the critical point theory, together with
truncation, perturbation and comparison techniques and critical groups, we show that
the problem has at least five nontrivial smooth solutions, all with sign information and
ordered.

The energy functional associated to problem (1) is a double-phase variational
integral, according to the terminology of Marcellini and Mingione. Problems with
unbalanced growth have been studied for the first time by Ball [4,5] in relationship
with patterns arising in nonlinear elasticity. More precisely, if � is a bounded domain
in R

N , u : � → R
N is the displacement and if Du is the N × N matrix of the

deformation gradient, then Ball studied the total energy, which can be represented by
an integral of the type

I (u) =
∫

�

f (x, Du(x))dx, (2)

where the energy function f = f (x, ξ) : � × R
N×N → R is quasiconvex with

respect to ξ . One of the simplest examples considered by Ball is given by functions f
of the type

f (ξ) = g(ξ) + h(det ξ),

where det ξ is the determinant of the N ×N matrix ξ , and g, h are nonnegative convex
functions, which satisfy the growth conditions

g(ξ) ≥ c1 |ξ |p; lim
t→+∞ h(t) = +∞,

where c1 is a positive constant and 1 < p < N . The condition p ≤ N is necessary
to study the existence of equilibrium solutions with cavities, that is, minima of the
integral (2) that are discontinuous at one point where a cavity forms; in fact, every
u with finite energy belongs to the Sobolev space W 1,p(�,RN ), and thus it is a
continuous function if p > N .
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The mathematical analysis of double-phase integral functionals has been initiated
by Marcellini [20,21]. Marcellini considered continuous functions f = f (x, u) with
unbalanced growth that satisfy

c1 |u|q ≤ | f (x, u)| ≤ c2 (1 + |u|p) for all (x, u) ∈ � × R,

where c1, c2 are positive constants and 1 ≤ q ≤ p. These contributions are in relation-
ship with the works of Zhikov [37,38], in order to describe the behavior of phenomena
arising in nonlinear elasticity. In fact, Zhikov intended to provide models for strongly
anisotropic materials in the context of homogenisation. These functionals revealed to
be important also in the study of duality theory and in the context of the Lavrentiev
phenomenon. In particular, Zhikov considered the following three model functional
in relation to the Lavrentiev phenomenon:

M(u) :=
∫

�

c(x)|∇u|2dx, 0 < 1/c(·) ∈ Lt (�), t > 1

V(u) :=
∫

�

|∇u|p(x)dx, 1 < p(x) < ∞

Pp,q(u) :=
∫

�

(|∇u|p + a(x)|∇u|q)dx, 0 ≤ a(x) ≤ L, 1 < p < q.

(3)

The functional M is well-known and there is a loss of ellipticity on the set
{x ∈ �; c(x) = 0}. This functional has been studied at length in the context of
equations involving Muckenhoupt weights. The functional V has also been the object
of intensive interest nowadays and a huge literature was developed on it. The energy
functional defined by V was used to build models for strongly anisotropic materials:
in a material made of different components, the exponent p(x) dictates the geometry
of a composite that changes its hardening exponent according to the point. The func-
tional Pp,q defined in (3) appears as an upgraded version of V . Again, in this case,
the modulating coefficient a(x) dictates the geometry of the composite made by two
differential materials, with hardening exponents p and q, respectively. The study of
non-autonomous functionals characterized by the fact that the energy density changes
its ellipticity and growth properties according to the point has been continued in a
series of remarkable papers by Mingione et al. [6,7,9].

This work continues the recent paper by Papageorgiou, Rădulescu & Repovš [26],
where the authors consider parametric equations driven by the p(z)-Laplacian plus
an indefinite potential term. In the reaction there are the competing effects of a para-
metric concave term and of a superlinear (convex) perturbation (“concave-convex”
problem). The authors focus on positive solutions and they prove a bifurcation-type
result describing the changes in the set of positive solutions as the parameter λ > 0
varies. We also mention the work of Papageorgiou & Vetro [28], who also deal with
anisotropic double phase problems with no potential term (that is, ξ ≡ 0) and with a
superlinear reaction that has a different geometry near zero. They prove a multiplicity
theorem producing three nontrivial solutions. However, they do not prove the exis-
tence of nodal solutions. Finally, we mention the work of Gasiński & Papageorgiou
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[14] on superlinearNeumann problems driven by the p(z)-Lapacian.Other anisotropic
boundary value problems (including double phase problems) can be found in the book
of Rădulescu & Repovš [31] and in the papers of Bahrouni, Rădulescu & Repovš
[2,3], Cencelj, Rădulescu & Repovš [8], Papageorgiou, Vetro and Vetro [29], Ragusa
and Tachikawa [30], Vetro and Vetro [34], and Zhang & Rădulescu [36].

The features of this paper are the following:
(i) we are concerned with an anisotropic model with double-phase, namely the

problem is driven by two differential operators with variable growth;
(ii) we develop a refined mathematical analysis (that combines variational and

topological methods) in order to study multiplicity properties of solutions;
(iii) we establish both a maximum principle for anisotropic double-phase problems

and a strong comparison principle for solutions of anisotropic PDEs with unbalanced
growth.

2 Auxiliary results and hypotheses

The study of anisotropic boundary value problems uses variable exponent Lebesgue
and Sobolev spaces. A comprehensive presentation of the theory of such spaces can
be found in the book of Diening, Harjulehto, Hästo & Ruzička [10].

Let

L∞
1 (�) = {p ∈ L∞(�) : 1 ≤ essinf

�
p}.

Given p ∈ L∞
1 (�), we define

p− = essinf
�

p and p+ = esssup
�

p.

We also let M(�) = {u : � → R measurable}. We identify two such functions
which differ on a Lebesgue null set.

Given p ∈ L∞
1 (�), we define the variable exponent Lebesgue space L p(z)(�) by

L p(z)(�) =
{
u ∈ M(�) :

∫
�

|u|p(z)dz < ∞
}

.

This space is furnished with the so-called Luxemburg norm defined by

‖u‖p(z) = inf

{
λ > 0 :

∫
�

( |u|
λ

)p(z)

dz ≤ 1

}
.

Using these variable exponent Lebesgue spaces, we can define the corresponding
variable exponent Sobolev spaces by

W 1,p(z)(�) = {u ∈ L p(z)(�) : |Du| ∈ L p(z)(�)}.
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The norm of this space is given by

‖u‖1,p(z) = ‖u‖p(z) + ‖Du‖p(z).

The space W 1,p(z)
0 (�) is defined to be the ‖ · ‖1,p(z)-closure of the compactly

supported elements of W 1,p(z)(�). If p ∈ C1(�), then

W 1,p(z)
0 (�) = C∞

c (�)
‖·‖1,p(z)

.

When p− > 1, then the spaces L p(z)(�), W 1,p(z)(�), W 1,p(z)
0 (�) are separable

and uniformly convex (thus, reflexive too).
The critical Sobolev exponent is defined by

p∗(z) =
{

Np(z)
N−p(z) , if p(z) < N
+∞, if N ≤ p(z).

Suppose p, q ∈ C(�), p+ < N and 1 ≤ q(z) ≤ p∗(z) (resp. 1 ≤ q(z) < p∗(z))
for all z ∈ �. Then we have

W 1,p(z)(�) ↪→ Lq(z)(�) continuously

(resp., W 1,p(z)(�) ↪→ Lq(z)(�) compactly).

Let p, p′ ∈ L∞
1 (�) and assume that 1

p(z) + 1
p′(z) = 1 for a.a. z ∈ �. We have

L p(z)(�)∗ = L p′(z)(�) and the following Hölder-type inequality holds

∫
�

|uv|dz ≤
(

1

p−
+ 1

p′−

)
‖u‖p(z)‖v‖p′(z)

for all u ∈ W 1,p(z)(�), v ∈ W 1,p′(z)(�).
When p ∈ C1(�), the Poincaré inequality holds for the space W 1,p(z)

0 (�), namely
there exists C∗ > 0 such that

‖u‖p(z) ≤ C∗‖Du‖p(z) for all u ∈ W 1,p(z)
0 (�).

The following modular functions are important in the study of these anisotropic
spaces:

ρp(u) =
∫

�

|u|p(z)dz for all u ∈ L p(z)(�),

ρp(Du) =
∫

�

|Du|p(z)dz for all u ∈ W 1,p(z)
0 (�).

The next propositions reveal the close relation between these modular functions
and the norms of the spaces.
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Proposition 1 If p ∈ L∞
1 (�), then the following properties hold:

(a) for u ∈ L p(z)(�), u �= 0, we have

‖u‖p(z) = λ ⇔ ρp

(u
λ

)
= 1;

(b) ‖u‖p(z) < 1 (resp. = 1, > 1) ⇔ ρp(u) < 1 (resp. = 1, > 1);
(c) ‖u‖p(z) < 1 ⇒ ‖u‖p+

p(z) ≤ ρp(u) ≤ ‖u‖p−
p(z),

‖u‖p(z) > 1 ⇒ ‖u‖p−
p(z) ≤ ρp(u) ≤ ‖u‖p+

p(z);
(d) ‖un‖p(z) → 0 ⇔ ρp(un) → 0;
(e) ‖un‖p(z) → +∞ ⇔ ρp(un) → +∞.

Proposition 2 If p ∈ C1(�), then the following properties hold:

(a) for u ∈ W 1,p(z)
0 (�), u �= 0, we have

‖u‖1,p(z) = λ ⇔ ρp

(
Du

λ

)
= 1;

(b) ‖u‖1,p(z) < 1 (resp. = 1, > 1) ⇔ ρp(Du) < 1 (resp. = 1, > 1);
(c) ‖u‖1,p(z) < 1 ⇒ ‖u‖p+

1,p(z) ≤ ρp(Du) ≤ ‖u‖p−
1,p(z) and

‖u‖1,p(z) > 1 ⇒ ‖u‖p−
1,p(z) ≤ ρp(Du) ≤ ‖u‖p+

1,p(z);
(d) ‖un‖1,p(z) → 0 ⇔ ρp(Dun) → 0;
(e) ‖un‖1,p(z) → +∞ ⇔ ρp(Dun) → +∞.

For p ∈ C1(�), we have

W 1,p(z)
0 (�)∗ = W−1,p′(z)(�)

(
1

p(z)
+ 1

p′(z)
= 1

)
.

Then we consider the operator Ap : W 1,p(z)
0 (�) → W−1,p′(z)(�) defined by

〈Ap(u), h〉 =
∫

�

|Du|p(z)−2(Du, Dh)RN dz for all u, h ∈ W 1,p(z)
0 (�).

From Gasiński & Papageorgiou [14] (see also Rădulescu & Repovš [31, p. 40]),
we have:

Proposition 3 The map Ap : W 1,p(z)
0 (�) → W−1,p′(z)(�) is bounded (that is, it

maps bounded sets to bounded sets), continuous, strictly monotone (hence maximal
monotone, too) and of type (S)+, that is,

“un
w→ u in W 1,p(z)

0 (�), lim sup
n→∞

〈Ap(un), un − u〉 ≤ 0 ⇒ un → u in W 1,p(z)
0 (�).
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Our hypotheses on the exponents p, q and the potential function ξ are:
H0: p, q ∈ C1(�), 1 < q− ≤ q(z) ≤ q+ < p− ≤ p(z) ≤ p+ < p∗(z) for all

z ∈ �, ξ ∈ L∞(�).
For every x ∈ R, we set x± = max{±x, 0} and then given u ∈ W 1,p(z)

0 (�) we
define u±(z) = u(z)± for all z ∈ �. We know that

u± ∈ W 1,p(z)
0 (�), u = u+ − u−, |u| = u+ + u−.

Given u, v ∈ W 1,p(z)
0 (�) with u ≤ v, we define:

[u, v] = {h ∈ W 1,p(z)
0 (�) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ �},

intC1
0 (�)[u, v] = the interior in C1

0(�) of [u, v],
[u) = {h ∈ W 1,p(z)

0 (�) : u(z) ≤ h(z) for a.a. z ∈ �}.

A set S ⊆ W 1,p(z)
0 (�) is said to be “downward directed” (resp., “upward directed”),

if for all u1, u2 ∈ S, we can find u ∈ S such that u ≤ u1, u ≤ u2 (resp., for all
v1, v2 ∈ S, we can find v ∈ S such that v1 ≤ v, v2 ≤ v).

Let X be a Banach space and ϕ ∈ C1(X ,R). We say that ϕ(·) satisfies the “C-
condition”, if the following property holds:

“Every sequence {un}n≥1 ⊆ X such that

{ϕ(un)}n≥1 ⊆ R is bounded,

(1 + ‖un‖)ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence” .

For ϕ(·) we define

Kϕ = {u ∈ X : ϕ′(u) = 0} (critical set of ϕ),

and for c ∈ R, we denote ϕc = {u ∈ X : ϕ(u) ≤ c}.
If (Y1,Y2) is a topological pair such that Y2 ⊆ Y1 ⊆ X , for every k ∈ N0, we denote

by Hk(Y1,Y2) the kth relative singular homology groupwith integer coefficients. Then
for u ∈ Kϕ isolated and c = ϕ(u), we define the “kth critical group” of ϕ(·) at u, by

Ck(ϕ, u) = Hk(ϕ
c ∩U , ϕc ∩U \ {u}), k ∈ N0,

with U a neighborhood of u, such that Kϕ ∩ ϕc ∩ U = {u}. The excision prop-
erty of singular homology implies that this definition is independent of the isolating
neighborhood U .

The regularity theory for anisotropic problems will lead us to the Banach space

C1
0(�) = {u ∈ C1(�) : u|∂� = 0}.
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This is an ordered Banach space with positive (order) cone

C+ = {u ∈ C1
0(�) : u(z) ≥ 0 for all z ∈ �}.

This cone has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ �,

∂u

∂n
|∂� < 0

}
,

with n(·) being the outward unit normal on ∂�.
In what follows, we denote by ‖ · ‖ the norm of the Sobolev space W 1,p(z)

0 (�). On
account of the Poincaré inequality, we have

‖u‖ = ‖Du‖p(z) for all u ∈ W 1,p(z)
0 (�).

Next, we will prove two auxiliary results which are actually of independent inter-
est. The first is a strong maximum principle for anisotropic double phase problems.
Our result complements the analogous result by Zhang [35]. His conditions on the
differential operator do not cover double phase problems (see conditions (3)-(7) in
[35]).

So, let f ∈ L∞(�) and consider the following double phase Dirichlet problem

− �p(z)u(z) − �q(z)u(z) = f (z) in �, u|∂� = 0. (4)

By an “upper solution” (resp., “lower solution”) of problem (4), wemean a function
u ∈ W 1,p(z)(�) such that u|∂� ≥ 0 (resp., u|∂� ≤ 0) and

〈Ap(z)(u), h〉 + 〈Aq(z)(u), h〉 ≥
∫

�

f (z)u(z)dz (resp., ≤)

for all h ∈ W 1,p(z)
0 (�), h ≥ 0.

Proposition 4 If hypotheses H0 hold, u ∈ C1(�), u �= 0 is an upper solution for (4)
and u(z) ≥ 0 for all z ∈ �, then u ∈ intC+.

Proof First we show that u(z) > 0 for all z ∈ �.
Arguing by contradiction, suppose we can find z1, z2 ∈ � and an open ball B2ρ(z2)

such that z1 ∈ ∂B2ρ(z2), u(z1) = 0 and u|B2ρ(z2) > 0.
Let m = inf{u(z) : z ∈ Bρ(z2)} > 0. We have

u(z1) = 0, Du(z1) = 0 and
m

ρ
→ 0+ as ρ → 0+

(by l’Hospital’s rule) . (5)
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We introduce the following items

�1 = {z ∈ � : ρ < |z − z2| < 2ρ}, q1 = q(z1), a = sup{|∇ p(z)| : z ∈ �1}
η = 8a + 2, k = −η ln

m

ρ
+ 2(N − 1)

ρ
,

v(t) = m

⎡
⎣e

kt
q1−1 − 1

e
kρ

q1−1 − 1

⎤
⎦ for all t ∈ [0, ρ].

We can easily check that

(
m

ρ

)3

≤ v′(t) ≤ 1 for all t ∈ [0, ρ]. (6)

Choose ρ > 0 small so that

m

ρ
< 1 (see (5)) and

q(z) − 1

q1 − 1
≥ 1

2
for all z ∈ �1.

To simplify things, we may take without any loss of generality z2 = 0. We set
r = |z − z2|, t = 2ρ − r . For t ∈ [0, ρ] and r ∈ [ρ, 2ρ], we set

y(r) = v(2ρ − r) = v(t),

⇒ y′(r) = −v′(t), y′′(r) = v′′(t).

From (4) we have

div
[
|Dy|p(z)−2Dy + |Dy|q(z)−2Dy

]
+ f (z)

= (p(z) − 1)(v′(t))p(z)−1v′′(t) − N − 1

r
(v′(t))p(z)−1

−(v′(t))p(z)−1 ln v′(t)
N∑

k=1

∂ p

∂zk

zk
r

+(q(z) − 1)(v′(t))q(z)−1v′′(t) − N − 1

r
(v′(t))q(z)−1

−(v′(t))q(z)−1 ln v′(t)
N∑

k=1

∂q

∂zk

zk
r

+ f (z)

≥ 2v(t)p(z)
[
1

2
k + M ln v′(t) − N − 1

r

]

+ f (z) (see (6) and recall that q(·) < p(·))
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≥ − ln
m

ρ
v′(t)p(z)−1 + f (z) ≥ 0 for ρ > 0 small,

⇒ y(·) is a lower solution of (4) on �1.

Note that y ≤ u on ∂�1. So, by Lemma 2.3 of Zhang [35] we have that

y(|z|) ≤ u(z) for all z ∈ �1.

Hence we have

lim
μ→0+

u(z1 + μ(z2 − z1)) − u(z1)

μ

≥ lim
μ→0+

y(|z1 + μ(z2 − z1)|) − y(|z1|)
μ

= v′(0) > 0 (7)

which contradicts (5). Therefore we infer that

u(z) > 0 for all z ∈ �.

Next, let z1 ∈ ∂� and let ρ > 0 be small. We set z2 = z1 − 2ρn(z1) and have

B2ρ(z2) ⊆ � and z1 ∈ ∂B2ρ(z2).

Let �′
1 = {z ∈ � : ρ < |z − z2| < 2ρ} and choose 0 < β < inf{u(z) :

z ∈ ∂Bρ(z2)} small. From the first part of the proof, we know that there exists a

lower solution y ∈ C1(�
′
1) ∩ C2(�′

1) of (4) such that y ≤ u in �1, y(z1) = 0 and
∂u
∂n (z1) ≤ ∂ y

∂n (z1) < 0 (see (7)). We conclude that u ∈ intC+. ��
The second auxiliary result is a strong comparison principle which complements

Proposition 2.4 of Papageorgiou, Rădulescu & Repovš [26] and extends to anisotropic
problems Proposition 2.10 of Papageorgiou, Rădulescu & Repovš [24].

In what follows, we denote by D+ the following open cone in C1(�):

D+ =
{
u ∈ C1(�) : u(z) > 0 for all z ∈ �,

∂u

∂n
|∂�∩u−1(0) < 0

}
.

Proposition 5 If hypotheses H0 hold, ξ, h, g ∈ L∞(�), ξ(z) ≥ 0 for a.a. z ∈ �

0 < η ≤ g(z) − h(z) for a.a. z ∈ �,

and u, v ∈ C1(�) satisfy u ≤ v on � and

−�p(z)u − �q(z)u + ξ(z)|u|p(z)−2u = h(z) in �

−�p(z)v − �q(z)v + ξ(z)|v|p(z)−2v = g(z) in �,

then v − u ∈ D+.
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Proof Let y = v − u. Then y ∈ C1(�), y ≥ 0. Also let A(z) = (ai j (z))Ni, j=1 be the
N × N matrix with entries defined by

ai j (z) =
∫ 1

0
[(1 − t)Du(z) + t Dv(z)]

[
δi j + (p(z) − 2)

×Di ((1 − t)u + tv)Dj ((1 − t)u + tv)

|(1 − t)Du + t Dv|2
+(q(z) − 2)

Di ((1 − t)u + tv)Dj ((1 − t)u + tv)

|(1 − t)Du + t Dv|2
]
dz

with δi j being the Kronecker symbol, that is, δi j =
{
1, if i = j
0, if i �= j .

Then ai j ∈ W 1,∞(�) and by the mean value theorem we have

− div (A(z)Dy) = g(z) − h(z) − ξ(z)
[
|v|p(z)−2v − |u|p(z)−2u

]
in � (8)

(see also Guedda & Véron [16]).
Suppose that there exists z0 ∈ � such that u(z0) = v(z0). Hence y(z0) = 0. From

our hypotheses and since the function (z, x) �→ |x |p(z)−2x is uniformly continuous
on � × R, we see that we can find δ > 0 small such that

g(z) − h(z) − ξ(z)
∣∣∣|v(z)|p(z)−2v(z) − |u(z)|p(z)−2u(z)

∣∣∣ ≥ η

2
> 0

for a.a. z ∈ Bδ(z0) = {z ∈ � : |z − z0| < δ}. Then from (8) we have

−div(A(z)Dy(z)) ≥ η

2
> 0 for a.a. z ∈ Bδ(z0),

⇒ y(z) > 0 for all z ∈ Bδ(z0)

(see Theorem 4 of Vazquez [33]),

a contradiction since y(z0) = 0. So, we have

y(z) = v(z) − u(z) > 0 for all z ∈ �.

Let K0 = {z ∈ ∂� : y(z) = 0}. If K0 �= ∅, then by Proposition 4, we have

∂ y

∂n
(z0) < 0 for all z0 ∈ K0,

⇒ y = v − u ∈ D+.

The proof is now complete. ��
Now we introduce the hypotheses on the reaction f (z, x).
H : f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a.

z ∈ � and
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(i) | f (z, x)| ≤ a(z)[1 + |x |r−1] for a.a. z ∈ �, all x ∈ R, with a ∈ L∞(�),
p+ < r < p∗(z);

(ii) if F(z, x) = ∫ x
0 f (z, s)ds, then limx→±∞ F(z,x)

|x |p+ = +∞ uniformly for a.a. z ∈ �;

(iii) if β(z, x) = f (z, x)x − p+F(z, x), then there exists η ∈ L1(�) such that

β(z, x) ≤ β(z, y) + η(z) for a.a. z ∈ �, all 0 ≤ x ≤ y or y ≤ x ≤ 0;

(iv) lim
x→0

f (z, x)

|x |q−−2x
= +∞ uniformly for a.a. z ∈ � and there exists 1 < τ < q− such

that

0 ≤ lim inf
x→0

τ F(z, x) − f (z, x)x

|x |p+ uniformly for a.a. z ∈ �;

(v) we can find C0, Ĉ > 0 such that

f (z,C0) − ξ(z)C p(z)−1
0 ≤ −ϑ+ < 0 < ϑ− ≤ f (z,−Ĉ) + ξ(z)Ĉ p(z)−1

for a.a. z ∈ �.

Remark 1 Hypotheses H(i i), (i i i) imply that f (z, ·) is (p+−1) superlinear.We point
out that we do not use the AR-condition, which is common in the literature when
dealing with superlinear equations. Instead we use the quasimonotonicity hypothesis
H(i i i) onβ(z, ·). This assumption is a slight generalization of the condition used by Li
&Yang [19]. Similar conditions were used byMugnai & Papageorgiou [22] (isotropic
problems) and by Papageorgiou, Rădulescu & Repovš [26,27], Papageorgiou & Vetro
[28] (anisotropic problems). With this condition we incorporate in our framework
also superlinear functions with “slower” growth near ±∞ which fail to satisfy the
AR-condition. For example, consider the function with the exponents p, q ∈ C1(�)

f (z, x) =
⎧⎨
⎩

|x |p+−2x ln |x | + C − 1, if x < −1
|x |τ−2x − C |x |s−2x, if − 1 ≤ x ≤ 1
|x |p+−2x ln |x | + 1 − C, if 1 < x

with 1 < τ < q− < p+ ≤ s and 1− essinf
�

ξ < C . This function satisfies hypotheses

H but fails to satisfy the AR-condition (see [1]). Hypotheses H(iv), (v) imply that
f (z, ·) near zero has a kind of oscillatory behavior. Finally, we mention that another
superlinearity condition for anisotropic equations was used by Gasiński & Papageor-
giou [14].

3 Constant sign solutions

In this section we produce constant sign solutions.
Wefirst produce two constant solutions. One solution is positive in the order interval

[0,C0] and the other solution is negative in the order interval [−Ĉ, 0]. To produce
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these two solutions, we do not need the hypotheses concerning the asymptotic behavior
of f (z, ·) (hypotheses H(i i), (i i i)).

Proposition 6 If hypotheses H0 and H(i), (iv), (v) hold, then problem (1) admits two
constant sign solutions

u0 ∈ [0,C0] ∩ intC+ and v0 ∈ [−Ĉ, 0] ∩ (−intC+).

Proof First we produce the positive solution.
Let ϑ > ‖ξ‖∞ and consider the following truncation perturbation of f (z, ·):

f̂+(z, x) =
{
f (z, x+) + ϑ(x+)p(z)−1, if x ≤ −C0

f (z,C0) + ϑC p(z)−1
0 , if −C0 < x .

(9)

This is a Carathéodory function. We set F̂+(z, x) =
∫ x

0
f̂+(z, s)ds and consider

the C1-functional ϕ̂+ : W 1,p(z)
0 (�) → R defined by

ϕ̂+(u) =
∫

�

1

p(z)
|Du|p(z)dz +

∫
�

1

q(z)
|Du|q(z)dz

+
∫

�

[ξ(z) + ϑ]
p(z)

|u|p(z)dz −
∫

�

F̂+(z, u)dz

for all u ∈ W 1,p(z)
0 (�).

From (9), the Poincaré inequality and since ϑ > ‖ξ‖∞, we infer that ϕ̂+(·) is
coercive. Also, from the anisotropic Sobolev embedding theorem (see Section 2), we
see that ϕ̂+(·) is sequentially weakly lower semicontinuous. So, by the Weierstrass-
Tonelli theorem, we can find u0 ∈ W 1,p(z)

0 (�) such that

ϕ̂+(u0) = inf{ϕ̂+(u) : u ∈ W 1,p(z)
0 (�)}. (10)

On account of hypothesis H(iv), given any η > 0, we can find δ = δ(η) ∈ (0,C0)

such that
F(z, x) ≥ η

q−
|x |q− for a.a. z ∈ �, all |x | ≤ δ. (11)

Let u ∈ intC+ and choose t ∈ (0, 1) small such that tu(z) ∈ [0, δ] for all z ∈ �,
t‖u‖ ≤ 1 and t‖u‖1,q(z) ≤ 1. We have

ϕ̂+(tu) ≤ C1t p−

p−
‖u‖p− + tq−

q−
‖Du‖q−

q(z) − η

q−
tq−‖u‖q+

q(z)

for some C1 > 0 (see (9),(11) and hypotheses H0).
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Since η > 0 is arbitrary, choosing η > 0 big, we have

ϕ̂+(tu) < 0

⇒ ϕ̂+(u0) < 0 = ϕ̂+(0) (see (10)),

⇒ u0 �= 0.

From (10) we have

ϕ̂′+(u0) = 0,

⇒ 〈Ap(z)(u0), h〉 + 〈Aq(z)(u0), h〉 +
∫

�

[ξ(z) + ϑ]|u0|p(z)−2u0hdz

=
∫

�

f̂+(z, u0)hdz (12)

for all h ∈ W 1,p(z)
0 (�).

In (12) we choose h = −u−
0 ∈ W 1,p(z)

0 (�). We have

∫
�

|Du−
0 |p(z)dz +

∫
�

|Du−
0 |q(z)dz +

∫
�

[ξ(z) + ϑ](u−
0 )p(z)dz = 0 (see (9)),

⇒ u0 ≥ 0, u0 �= 0 (recall that ϑ > ‖ξ‖∞).

Also, in (12) we choose (u0 − C0)
+ ∈ W 1,p(z)

0 (�). Then

∫
�

|D(u0 − C0)
+|p(z)dz +

∫
�

|D(u0 − C0)
+|q(z)dz +

∫
�

[ξ(z)

+ϑ]u p(z)−1
0 (u0 − C0)

+dz

=
∫

�

[ f (z,C0) + ϑC p(z)−1
0 ](u0 − C0)

+dz (see (9))

≤
∫

�

[ξ(z) + ϑ]C p(z)−1
0 (u0 − C0)

+dz (see hypothesis H(v)),

⇒
∫

�

[ξ(z) + ϑ][u p(z)−1
0 − C p(z)−1

0 ](u0 − C0)
+dz ≤ 0,

⇒ u0 ≤ C0 (since ϑ > ‖ξ‖∞).

Therefore we have proved that

u0 ∈ [0,C0], u0 �= 0. (13)

From (13), (9) and (12), we have

− �p(z)u0(z) − �q(z)u0(z) + ξ(z)u0(z)
p(z)−1 = f (z, u0(z)) in �. (14)
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From Fan & Zhao [12] (see also Gasiński & Papageorgiou [14]), we have u0 ∈
L∞(�). Then Theorem 1.3 of Fan [11] implies that u0 ∈ C+ \ {0} and so applying
Proposition 4, we conclude that u0 ∈ intC+.

For the negative solution, we consider the following truncation perturbation of
f (z, ·):

f̂−(z, x) =
{
f (z,−Ĉ) − ϑĈ p(z)−1, if x < −Ĉ
f (z,−x−) − ϑ(x−)p(z)−1, if −Ĉ ≤ x

(ϑ > ‖ξ‖∞).

This is a Carathéodory function. We set F̂−(z, x) =
∫ x

0
f̂−(z, s)ds and consider

the C1-functional ϕ̂− : W 1,p(z)
0 (�) → R defined by

ϕ̂−(u) =
∫

�

1

p(z)
|Du|p(z)dz +

∫
�

1

q(z)
|Du|q(z)dz

+
∫

�

[ξ(z) + ϑ]
p(z)

|u|p(z)dz −
∫

�

F̂−(z, u)dz

for all u ∈ W 1,p(z)
0 (�).

Working as above, using this time ϕ̂−(·), we produce a negative solution

v0 ∈ [−Ĉ, 0] ∩ (−intC+).

The proof is now complete. ��
By introducing an extra mild condition on f (z, ·), we can improve the conclusion

of the previous proposition. With this stronger conclusion, we will be able to produce
in the sequel additional constant sign solutions.

The new conditions on the reaction f (z, x) are the following:
H ′: f : �×R → R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ �,

hypotheses H ′(i) → (v) are the same as the corresponding hypotheses H(i) → (v)

and

(vi) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ �, the function

x �→ f (z, x) + ξ̂ρ |x |p(z)−2x

is nondecreasing on [−ρ, ρ].
Using this perturbed monotonicity condition on f (z, ·), we obtain the following

improved version of Proposition 6.

Proposition 7 If hypotheses H0, H ′ hold, then problem (1) admits two constant sign
solutions

u0 ∈ intC1
0 (�)[0,C0] and v0 ∈ intC1

0 (�)[−Ĉ, 0].
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Proof From Proposition 6, we already have two solutions

u0 ∈ [0,C0] ∩ intC+ and v0 ∈ [−Ĉ, 0] ∩ (−intC+). (15)

Let ρ = C0 and let ξ̂ρ > 0 be as postulated by hypothesis H ′(vi). Clearly we can
always have ξ̂ρ > ‖ξ‖∞. Then

−�p(z)u0 − �q(z)u0 + [ξ(z) + ξ̂ρ]u p(z)−1
0

= f (z, u0) + ξ̂ρu
p(z)−1
0

≤ f (z,C0) + ξ̂ρC
p−1
0 (see (15) and hypothesis H ′(vi))

≤ [ξ(z) + ξ̂ρ]C p−1
0 − ϑ+

≤ −�p(z)C0 − �q(z)C0 + [ξ(z) + ξ̂ρ]C p−1
0 in �,

⇒ u0(z) < C0 for all z ∈ � (see Proposition 5),

⇒ u0 ∈ intC1
0 (�)[0,C0].

Similarly we show that v0 ∈ intC1
0 (�)[−Ĉ, 0]. ��

We will use these two solutions u0 ∈ intC+ and v0 ∈ −intC+, in order to pro-
duce two more constant sign smooth solutions localized with respect to u0 and v0
respectively.

Proposition 8 If hypotheses H0, H ′ hold, then problem (1) admits two more constant
sign solutions

û ∈ intC+, u0 ≤ û, u0 �= û,

v̂ ∈ −intC+, v̂ ≤ v0, v0 �= v̂.

Proof Let u0 ∈ intC+ and v0 ∈ −intC+ be the two constant sign solutions from
Proposition 6. From Proposition 7 we have

u0 ∈ intC1
0 (�)[0,C0] and v0 ∈ intC1

0 (�)[−Ĉ, 0]. (16)

First we will produce the second positive solution. To this end, we introduce the
following truncation perturbation of f (z, ·):

g+(z, x) =
{
f (z, u0(z)) + ϑu0(z)p(z)−1, if x ≤ u0(z)
f (z, x) + ϑx p−1, if u0(z) < x

(ϑ > ‖ξ‖∞). (17)

This is a Carathéodory function. We set G+(z, x) =
∫ x

0
g+(z, s)ds and consider

the C1-functional �+ : W 1,p(z)
0 (�) → R defined by
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�+(u) =
∫

�

1

p(z)
|Du|p(z)dz +

∫
�

1

q(z)
|Du|q(z)dz

+
∫

�

[ξ(z) + ϑ]
p(z)

|u|p(z)dz −
∫

�

G+(z, u)dz

for all u ∈ W 1,p(z)
0 (�).

Claim 1: �+ satisfies the C-condition.
Let {un}n≥1 ⊆ W 1,p(z)

0 (�) be a sequence such that

|�+(un)| ≤ C2 for some C2 > 0, all n ∈ N (18)

(1 + ‖un‖)� ′+(un) → 0 in W−1,p′(z)(�) = (W 1,p(z)
0 (�))∗ as n → ∞. (19)

From (19) we have

∣∣∣〈Ap(z)(un)h〉 + 〈Aq(z)(un), h〉 +
∫

�

[ξ(z) + ϑ]|un|p(z)−2unhdz −
∫

�

g+(z, un)hdz
∣∣∣

≤ εn‖h‖
1 + ‖un‖
for all h ∈ W 1,p(z)

0 (�), with εn → 0+. (20)

In (20) we choose h = −u−
n ∈ W 1,p(z)

0 (�). Then

∫
�

|Du−
n |p(z)dz +

∫
�

|Du−
n |q(z)dz +

∫
�

[ξ(z) + ϑ](u−
n )p(z)dz ≤ C3

for some C3 > 0, all n ∈ N (see (15)),

⇒ {u−
n }n≥1 ⊆ W 1,p

0 (�) is bounded

(recall that ϑ > ‖ξ‖∞ and see Proposition 2). (21)

In (20) we choose h = u+
n ∈ W 1,p(z)

0 (�) and using (17), we have

−
∫

�

|Du+
n |p(z)dz −

∫
�

|Du+
n |q(z)dz

−
∫

�

[ξ(z) + ϑ](u+
n )p(z)dz +

∫
�

f (z, u+
n )u+

n dz ≤ C4

for some C4 > 0, all n ∈ N. (22)

From (18) and (21) we have

1

p+

[ ∫
�

|Du+
n |p(z)dz +

∫
�

|Du+
n |q(z)dz +

∫
�

[ξ(z) + ϑ](u+
n )p(z)dz

]

−
∫

�

F(z, u+
n )dz ≤ C5

for some C5 > 0, all n ∈ N (see (17)),
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⇒
∫

�

|Du+
n |p(z)dz +

∫
�

|Du+
n |q(z)dz +

∫
�

[ξ(z) + ϑ](u+
n )p(z)dz

−
∫

�

p+F(z, u+
n )dz ≤ p+C5

for all n ∈ N. (23)

We add (22) and (23) and obtain

∫
�

[ f (z, u+
n )u+

n − p+F(z, u+
n )]dz ≤ C6 (24)

for some C6 < 0, all n ∈ N.
Using (24) we will show that {u+

n }n≥1 ⊆ W 1,p(z)
0 (�) is bounded. Arguing by

contradiction, we assume that at least for a subsequence we have

‖u+
n ‖ → ∞ as n → ∞. (25)

Let yn = u+
n

‖u+
n ‖ for n ∈ N. Then ‖yn‖ = 1, yn ≥ 0 for all N and so we may assume

that
yn

w→ y in W 1,p(z)
0 (�) and yn → y in Lr (�) as n → ∞, y ≥ 0. (26)

Let �+ = {z ∈ � : y(z) > 0}. First we assume that |�+|N > 0 (by | · |N we
denote the Lebesgue measure on RN ). We have

u+
n (z) → +∞ for a.a. z ∈ �+,

⇒ F(z, u+
n (z))

u+
n (z)p+

→ +∞ for a.a. z ∈ �+

(see hypothesis H ′(i i)),

⇒
∫

�+

F(z, u+
n )

‖u+
n ‖p+

dz → +∞ (by Fatou’s lemma) . (27)

On account of hypotheses H ′(i), (i i), we have

F(z, x) ≥ −C7 for a.a. z ∈ �, all x ∈ R, some C7 > 0. (28)

We have

∫
�

F(z, u+
n )

‖u+
n ‖p+

dz =
∫

�+

F(z, u+
n )

‖u+
n ‖p+

dz +
∫

�\�+

F(z, u+
n )

‖u+
n ‖p+

dz

≥
∫

�+

F(z, u+
n )

‖u+
n ‖p+

dz − C7|�|N
‖u+

n ‖p+
(see (28)),

⇒ lim
n→∞

∫
�

F(z, u+
n )

‖u+
n ‖p+

dz = +∞ (see (27) and (25)). (29)
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From (18), (17) and (21), we have

− 1

p+

[ ∫
�

1

‖u+
n ‖p+−p(z)

|Dyn|p(z) +
∫

�

1

‖un‖p+−q(z)
|Dyn|q(z)dz

+
∫

�

1

‖u+
n ‖p+−p(z)

[ξ(z) + ϑ]y p(z)n dz
]

+
∫

�

F(z, u+
n )

‖u+
n ‖p+

dz ≤ C8

for some C8 > 0, all n ∈ N

⇒
∫

�

F(z, u+
n )

‖u+
n ‖p+

dz ≤ C9 for some C9 > 0, all n ∈ N

(since q+ < p(z) ≤ p+ for all z ∈ �). (30)

Comparing (29) and (28), we have a contradiction.
Next we assume that |�+|N = 0. Then y ≡ 0.
Let tn ∈ [0, 1] be such that

�+(tnu
+
n ) = max{�+(tu+

n ) : 0 ≤ t < 1}, n ∈ N. (31)

For k > 1, we set vn = k1/p− yn for all n ∈ N. We have

vn
w→ 0 in W 1,p(z)

0 (�) as n → ∞
(see (26) and recall that y = 0). (32)

From (26) it follows that

∫
�

1

p(z)
[ξ(z) + ϑ]v p(z)

n dz → 0 and
∫

�

G+(z, vn)dz → 0 as n → ∞. (33)

On account of (25), we see that we can find n0 ∈ N such that

k1/p−

‖u+
n ‖ ∈ (0, 1] for all n ≥ n0. (34)

From (31) and (34), we have

�+(tnu
+
n ) ≥ �+(vn)

=
∫

�

1

p(z)
|Dvn|p(z)dz +

∫
�

1

q(z)
|Dvn|q(z)dz +

∫
�

[ξ(z) + ϑ]
p(z)

|vn|p(z)dz

−
∫

�

G+(z, vn)dz for all n ≥ n0,

≥ 1

p+
k +

∫
�

[ξ(z) + ϑ]
p(z)

v
p(z)
n dz −

∫
�

G+(z, vn)dz

(since k > 1, ‖yn‖ = 1 and by Proposition 2)

≥ 1

2p+
k for all n ≥ n1 ≥ n0 (see (33)).



   63 Page 20 of 37 N. S. Papageorgiou et al.

But k > 1 is arbitrary. So, we infer that

�+(tnu
+
n ) → +∞ as n → ∞. (35)

We have

�+(0) = 0 and �+(u+
n ) ≤ C10 for some C10 > 0, all n ∈ N

(see (18) and (21)). (36)

From (35) and (36) it follows that

tn ∈ (0, 1) for all n ≥ n2. (37)

From (31) and (37), we have

tn
d

dt
�+(tu+

n )|t=tn = 0,

⇒ 〈� ′+(tnu
+
n ), tnu

+
n 〉 = 0 for all n ≥ n2 (use the chain rule). (38)

Then for all n ≥ n2, we have

�+(tnu
+
n )

= �+(tnu
+
n ) − 1

p+
〈� ′+(tnu

+
n ), tnu

+
n 〉 (see (38))

≤
∫

�

[
1

p(z)
− 1

p+

]
|D(tnu

+
n )|p(z)dz +

∫
�

[
1

q(z)
− 1

p+

]
|D(tnu

+
n )|q(z)dz

+
∫

�

[
1

p(z)
− 1

p+

]
[ξ(z) + ϑ](tnu+

n )p(z)dz + 1

p+

∫
�

β(z, tnu
+
n )dz + C11

for some C11 > 0 (see (17))

≤
∫

�

[
1

p(z)
− 1

p+

]
|Du+

n |p(z)dz +
∫

�

[
1

q(z)
− 1

p+

]
|Du+

n |q(z)dz

+
∫

�

[
1

p(z)
− 1

p+

]
[ξ(z) + ϑ](u+

n )p(z)dz + 1

p+

∫
�

β(z, u+
n )dz + C12

for some C12 > 0 (see hypothesis H ′(i i i) and recall that tn ≤ 1)

≤ �+(u+
n ) + C13 for some C13 > 0 (see (24)),

⇒ �+(u+
n ) → +∞ (see (35))

which contradicts (36). This means that

{u+
n }n≥1 ⊆ W 1,p(z)

0 (�) is bounded

⇒ {un}n≥1 ⊆ W 1,p(z)
0 (�) is bounded (see (21)).
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We may assume that

un
w→ u in W 1,p(z)

0 (�) and un → u in Lr (�) as n → ∞. (39)

In (20) we choose h = un − u ∈ W 1,p(z)
0 (�), pass to the limit as n → ∞ and use

(39). Then

lim
n→∞

[〈Ap(z)(un), un − u〉 + 〈Aq(z)(un), un − u〉] = 0,

⇒ lim sup
n→∞

[〈Ap(z)(un), un − u〉 + 〈Aq(z)(u), un − u〉] ≤ 0

(since Aq(z)(·) is monotone),

⇒ lim sup
n→∞

〈Ap(z)(un), un − u〉 ≤ 0 (see (39)),

⇒ un → u in W 1,p(z)
0 (�) (see Proposition 3),

⇒ �+(·) satisfies the C -condition.

This proves Claim 1.
On account of hypothesis H ′(i i), for every u ∈ intC+, we have that

�+(tu) → −∞ as t → +∞. (40)

Claim 2: K�+ ⊆ [u0) ∩ intC+.
Let u ∈ K�+ . Then

〈Ap(z)(u), h〉 + 〈Aq(z)(u), h〉 +
∫

�

[ξ(z) + ϑ]|u|p(z)−2uhdz =
∫

�

g+(z, u)dz (41)

for all h ∈ W 1,p(z)
0 (�).

In (41) we choose h = (u0 − u)+ ∈ W 1,p(z)
0 (�). We have

〈Ap(z)(u), (u0 − u)+〉 + 〈Aq(z)(u), (u0 − u)+〉
+

∫
�

[ξ(z) + ϑ]|u|p−2u(u0 − u)+dz

=
∫

�

[ f (z, u0) + ϑu p−1
0 ](u0 − u)+dz (see (17))

= 〈Ap(z)(u0), (u0 − u)+〉 + 〈Aq(z)(u0), (u0 − u)+〉
+

∫
�

[ξ(z) + ϑ]u p(z)−1
0 (u0 − u)+dz,

⇒ u0 ≤ u (since ϑ > ‖ξ‖∞).

Using the anisotropic regularity theory (see Fan [11]) we deduce that u ∈ intC+.
This proves Claim 2.
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Recall that u0(z) < C0 for all z ∈ �. On account of Claim 2, we may assume that

K�+ ∩ [u0,C0] = {u0} (42)

or otherwise we already have a second positive solution bigger than u0 (see (17)) and
so we are done.

We consider the following truncation of g+(z, ·)

ĝ+(z, x) =
{
g+(z, x), if x ≤ C0
g+(z,C0), if C0 < x .

(43)

This is a Carathéodory function. We set Ĝ+(z, x) =
∫ x

0
ĝ+(z, s)ds and consider

the C1-functional �̂+ : W 1,p(z)
0 (�) → R defined by

�̂+(u) =
∫

�

1

p(z)
|Du|p(z)dz +

∫
�

1

q(z)
|Du|q(z)dz

+
∫

�

[ξ(z) + ϑ]
p(z)

|u|p(z)dz −
∫

�

Ĝ+(z, u)dz

for all u ∈ W 1,p(z)
0 (�).

From (43) and sinceϑ > ‖ξ‖∞, we see that �̂+(·) is coercive.Also it is sequentially
weakly lower semicontinuous. So, we can find ũ0 ∈ W 1,p(z)

0 (�) such that

�̂+(ũ0) = inf{�̂+(u) : u ∈ W 1,p(z)
0 (�)}. (44)

Claim 3: K
�̂+ ⊆ [u0,C0] ∩ intC+.

Let u ∈ K
�̂+ . As in the proof of Claim 2, we show that

u0 ≤ u.

Next, in (41) we choose h = (u − C0)
+ ∈ W 1,p(z)

0 (�). We have

〈Ap(z)(u), (u − C0)
+〉 + 〈Aq(z)(u), (u − C0)

+〉
+

∫
�

[ξ(z) + ϑ]u p(z)−1(u − C0)
+dz

=
∫

�

g+(z,C0)(u − C0)
+dz (see (43))

=
∫

�

[ f (x,C0) + ϑC p(z)−1
0 ](u − C0)

+dz (see (17))

≤
∫

�

[ξ(z) + ϑ]C p(z)−1
0 (u − C0)

+dz (see hypothesis H ′(v)),

⇒ u ≤ C0.
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So, we have proved that u ∈ [u0,C0]. From this and the anisotropic regularity
theory (see Fan [11]), we conclude that K

�̂+ ⊆ [u0,C0] ∩ intC+. This proves Claim
3.

Note that

�+|[0,C0] = �̂+|[0,C0] and � ′+|[0,C0] = �̂ ′+|[0,C0] (see (17), (43)). (45)

Then from (42) and (45) it follows that K
�̂+ = {u0}. Hence from (44) we have that

ũ0 = u0 and since u0 ∈ intC1
0 (�)[0,C0] (see Proposition 7), from (45) we infer that

u0 is local C
1
0(�) -minimizer of �+(·),

⇒ u0 is local W
1,p(z)
0 (�) -minimizer of �+(·)

(see Gasiński & Papageorgiou [14, Proposition 3.3]). (46)

On account of Claim 2, we may assume that

K�+ is finite. (47)

Otherwise we already have an infinity of positive smooth solutions bigger than u0
and so we are done.

From (46), (47) and Theorem 5.7.6 of Papageorgiou, Rădulescu & Repovš [25, p.
449], we see that we can find ρ ∈ (0, 1) small such that

�+(u0) < inf{�+(u) : ‖u − u0‖ = ρ} = m+. (48)

Claim 1, (40) and (48) permit the use of the mountain pass theorem. So, we can
find û ∈ W 1,p(z)

0 (�) such that

û ∈ K�+ ⊆ [u0) ∩ intC+ (see Claim 2) and m+ ≤ �+(û) (see (48)). (49)

From (48) and (49) we see that

û ∈ intC+ is the second positive solution of (1),

u0 ≤ û, u0 �= û.

To produce the second negative solution, we argue similarly starting from the
Carathéodory function

g−(z, x) =
{
f (z, x) + ϑ |x |p(z)−2x, if x ≤ −Ĉ
f (z,−Ĉ) − ϑĈ p(z)−1, if − Ĉ < x .

The proof is now complete. ��
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We introduce the following sets

S+ = set of positive solutions of problem (1),

S− = set of negative solutions of problem (1).

We already know that

∅ �= S+ ⊆ intC+ and ∅ �= S− ⊆ −intC+.

Moreover, S+ is downward directed and S− is upward directed (see Papageorgiou,
Rădulescu & Repovš [23]). We will show that there exist extremal constant sign
solutions, that is, a smallest positive solution and a biggest negative solution. In the
next section, we will use these extremal constant sign solutions in order to produce a
nodal (sign-changing) solution.

Proposition 9 If hypotheses H0, H hold, then there exist u∗ ∈ S+ and v∗ ∈ S− such
that

u∗ ≤ u for all u ∈ S+ and v ≤ v∗ for all v ∈ S−.

Proof Invoking Lemma 3.10 ofHu&Papageorgiou [17, p. 178], we can find a decreas-
ing sequence {un}n≥1 ⊆ S+ such that

inf
n≥1

un = inf S+.

We have

〈Ap(z)(un), h〉 + 〈Aq(z)(un), h〉 =
∫

�

f (z, un)hdz (50)

for all h ∈ W 1,p(z)
0 (�), all n ∈ N,

0 ≤ un ≤ u1 for all n ∈ N. (51)

If in (50) we choose h = un ∈ W 1,p(z)
0 (�) and use (51) and hypothesis H(i), we

see that
{un}n≥1 ⊆ W 1,p(z)

0 (�) is bounded. (52)

So, we may assume that

un
w→ u∗ in W 1,p(z)

0 (�) and un → u∗ in Lr (�). (53)

In (50) we choose h = un − u∗ ∈ W 1,p(z)
0 (�), pass to the limit as n → ∞ and use

(53). Then, as before (see the proof of Proposition 8, Claim 1), we obtain

lim sup
n→∞

〈Ap(z)(un), un − u∗〉 ≤ 0,
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⇒ un → u∗ in W 1,p(z)
0 (�),

⇒ u∗ ∈ S+ ∪ {0}. (54)

We need to show that u∗ �= 0.
On account of hypotheses H(i), (iv), given anyη > 0,we canfindC14 = C14(η) >

0 such that

f (z, x)x ≥ η|x |q− − C14|x |r for a.a. z ∈ �, all x ∈ R. (55)

We consider the following auxiliary anisotropic Dirichlet problem:

{−�p(z)u − �q(z)u + |ξ(z)||u(z)|p−2u = η|u|q−−2u − C14|u|r−2u in �,

u|∂� = 0.
(56)

Claim 1: Problem (56) admits a unique positive solution u ∈ intC+ and since the
problem is odd, then v = −u ∈ −intC+ is the unique negative solution of (56).

First we show the existence of a positive solution. So, we consider theC1-functional
τ+ : W 1,p(z)

0 (�) → R defined by

τ+(u) =
∫

�

1

p(z)
|Du|p(z)dz +

∫
�

1

q(z)
|Du|q(z)dz +

∫
�

|ξ(z)|
p(z)

|u|p(z)dz

+ C14

r
‖u+‖rr − η

q−
‖u+‖q−

q− for all u ∈ W 1,p(z)
0 (�).

Since q− ≤ q(z) < p(z) < r for all z ∈ �, we see that τ+(·) is coercive. Also it is
sequentially weakly lower semicontinuous. So, we can find u ∈ W 1,p(z)

0 (�) such that

τ+(u) = inf{τ+(u) : u ∈ W 1,p(z)
0 (�)}. (57)

Fix u ∈ intC+. For t ∈ (0, 1), we have

τ+(tu) ≤ t p−

p−
ρp(Du) + tq−

q−
[
ρq(Du) − ηρq−(u)

] + tr

r
‖u‖rr .

Recall that η > 0 is arbitrary. So, choosing η >
ρq (Du)

ρq− (u)
and t ∈ (0, 1) even smaller

if necessary, we have that

τ+(tu) < 0,

⇒ τ+(u) < 0 = τ+(0) (see (57)),

⇒ u �= 0.
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From (57) we have

τ ′+(u) = 0,

⇒ 〈Ap(z)(u), h〉 + 〈Aq(z)(u), h〉 +
∫

�

|ξ(z)||u|p(z)−2uhdz

= η

∫
�

(u+)p−−1hdz − C14

∫
�

(u+)r−1hdz for all h ∈ W 1,p(z)
0 (�).

Choose h = −u− ∈ W 1,p(z)
0 (�). We obtain

ρp(Du−) + ρq(Du−) +
∫

�

|ξ(z)|(u−)p(z)dz = 0,

⇒ u ≥ 0, u �= 0.

So, u is a positive solution of (56) and from the anisotropic regularity theory and
Proposition 4, we have

u ∈ intC+. (58)

Suppose that ũ ∈ W 1,p(z)
0 (�) is another positive solution of (56). Again we have

ũ ∈ intC+. (59)

We consider the integral functional j : L1(�) → R = R ∪ {+∞} defined by

j(u) =

⎧⎪⎨
⎪⎩

∫
�

1
p(z) |Du

1
q− |p(z) + ∫

�
1

q(z) |Du
1
q− |q(z)dz + ∫

�
|ξ(z)|
p(z) u

p(z)
q− dz,

if u ≥ 0, u1/q− ∈ W 1,p(z)
0 (�)

+∞, otherwise.

On account of Theorem 2.2 of Takač &Giacomoni [32], we have that j(·) is convex.
Let dom j = {u ∈ L1(�) : j(u) < ∞} (the effective domain of j(·)).

From (58), (59) and Proposition 4.1.22 of Papageorgiou, Rădulescu & Repovš [25,
p. 274], we have

u

ũ
,
ũ

u
∈ L∞(�).

Let h = uq− − ũq− . Then for |t | ≤ 1 small we have

uq− + th ∈ dom j and ũq− + th ∈ dom j .

Hence the functional j(·) is Gâteaux differentiable at uq and at ũq in the direction
h. Moreover, on account of the convexity of j(·) we obtain that j ′(·) is monotone.
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We have

j ′(uq−)(h) =
∫

�

[
|Du|p(z)−2 + |Du|q(z)−2

](
Du, D

(
u − ũq−

uq−

))
RN

dz

+
∫

�

|ξ(z)|u (
uq− − ũq−)

dz (60)

j ′(ũq−)(h) =
∫

�

[
|Dũ|p(z)−2 + |Dũ|q(z)−2

](
Dũ, D

(
ũ − uq−

ũq−

))
RN

dz

+
∫

�

|ξ(z)|ũ(ũq− − uq−)dz (61)

From (60), (61), the monotonicity of j ′(·) and using the distributional interpolation
of the inequality (see also Takač & Giacomoni [32, Remark 2.6]), we have

0 ≤ C14

∫
�

[
ũr−q− − ur−q−] (

uq− − ũq−)
dz ≤ 0,

⇒ u = ũ.

This proves Claim 1.
Claim 2: u ≤ u for all u ∈ S+ and v ≤ v for all v ∈ S−.
Let u ∈ S+ and consider the Carathéodory function γ+(z, x) defined by

γ+(z, x) =
{

η(x+)q−−1 − C14(x+)r−1, if x ≤ u(z)
ηu(z)q−−1 − C14u(z)r−1, if u(z) < x .

(62)

We set �+(z, x) =
∫ x

0
γ+(z, s)ds and consider the C1-functional τ̂+ :

W 1,p(z)
0 (�) → R defined by

τ̂+(u) =
∫

�

1

p(z)
|Du|p(z)dz +

∫
�

1

q(z)
|Du|q(z)dz +

∫
�

|ξ(z)|
p(z)

|u|p(z)dz

−
∫

�

�+(z, u)dz for all u ∈ W 1,p(z)
0 (�).

From (62) it is clear that τ̂+(·) is coercive. Also, it is sequentially weakly lower
semicontinuous. Therefore we can find ũ ∈ W 1,p(z)

0 (�) such that

τ̂+(ũ) = inf{τ̂+(u) u ∈ W 1,p(z)
0 (�)} < 0 = τ̂+(0)

(see proof of Claim 1).

We have

τ̂ ′+(ũ) = 0, ũ �= 0,

⇒ ũ ∈ [0, u] (as before using (62) and (55)),
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⇒ ũ = u ∈ intC+ (see (62) and Claim 1),

⇒ u ≤ u for all u ∈ S+.

Similarly we show that v ≤ v for all v ∈ S−.
This proves Claim 2.
From (54) and Claim 2, we have

u ≤ u∗, hence u∗ �= 0,

⇒ u∗ ∈ S+ and u∗ = inf S+.

For the biggest negative solution the reasoning is similar. In this case, since S− is
upward directed, we can find {vn}n≥1 ⊆ S− increasing such that

sup
n≥1

vn = sup S−.

Then working as above, we obtain v∗ ∈ W 1,p(z)
0 (�) such that

v∗ ∈ S− ⊆ −intC+ and v ≤ v∗ for all v ∈ S−.

The proof is now complete. ��

4 Nodal solutions

In this section, using the extremal constant sign solutions from Proposition 9, we will
obtain a nodal (sign changing) solution.

In what follows ϕ : W 1,p(z)
0 (�) → R is the energy functional for problem (1)

defined by

ϕ(u) =
∫

�

1

p(z)
|Du|p(z)dz +

∫
�

1

q(z)
|Du|q(z)dz

+
∫

�

ξ(z)

p(z)
|u|p(z)dz −

∫
�

F(z, u)dz

for all u ∈ W 1,p(z)
0 (�).

We have that ϕ ∈ C1(W 1,p(z)
0 (�)).

Proposition 10 If hypotheses H0, H ′ hold, then problem (1) admits a nodal solution

y0 ∈ [v∗, u∗] ∩ C1
0(�)

with u∗ and v∗ being the two extremal constant sign solutions from Proposition 9.
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Proof As before let ϑ > ‖ξ‖∞ and introduce the Carathéodory function τ̂ (z, x)
defined by

τ̂ (z, x) =
⎧⎨
⎩

f (z, v∗(z)) + ϑ |v∗(z)|p(z)−2v∗(z), if x < v∗(z)
f (z, x) + ϑ |x |p(z)−2x, if v∗ ≤ x ≤ u∗(z)
f (z, u∗(z)) + ϑu∗(z)p(z)−1, if u∗(z) < x .

(63)

Also, we consider the positive and negative truncations of τ̂ (z, ·), namely the
Carathéodory functions

τ̂±(z, x) = τ̂ (z,±x±). (64)

We set T̂ (z, x) =
∫ x

0
τ̂ (z, x)ds, T̂±(z, x) = ∫ x

0 τ̂±(z, s)ds and consider the C1-

functionals ϕ̃, ϕ̃± : W 1,p(z)
0 (�) → R defined by

ϕ̃(u) =
∫

�

1

p(z)
|Du|p(z)dz +

∫
�

1

q(z)
|Du|q(z)dz +

∫
�

[ξ(z) + ϑ]
p(z)

|u|p(z)dz

−
∫

�

T̂ (z, u)dz for all u ∈ W 1,p(z)
0 (�)

ϕ̃±(u) =
∫

�

1

p(z)
|Du|p(z)dz +

∫
�

1

q(z)
|Du|q(z)dz +

∫
�

[ξ(z) + ϑ]
p(z)

|u|p(z)dz

−
∫

�

T̂±(z, u)dz for all u ∈ W 1,p(z)
0 (�).

Using (63) and (64), as before (see the proof of Proposition 8, Claim 3) we can
check that

Kϕ̃ ⊆ [v∗, u∗] ∩ C1
0(�), Kϕ̃+ ⊆ [0, u∗] ∩ C+, Kϕ̃− ⊆ [v∗, 0] ∩ (−C+).

The extremality of u∗ and v∗ implies that

Kϕ̃ ⊆ [v∗, u∗] ∩ C1
0(�), Kϕ̃+ = {0, u∗}, Kϕ̃− = {0, v∗}. (65)

Claim 1: u∗ ∈ intC+ and v∗ ∈ −intC+ are local minimizers of ϕ̃(·).
From (63) and (64) and since ϑ > ‖ξ‖∞ it is clear that ϕ̃+(·) is coercive. Also it

is sequentially weakly lower semicontinuous. So, we can find ũ∗ ∈ W 1,p(z)
0 (�) such

that

ϕ̃+(ũ∗) =
∫

inf
[
ϕ̃+(u) : u ∈ W 1,p(z)

0 (�)
]
. (66)

On account of hypothesis H ′(iv), we have

ϕ̃+(ũ∗) < 0 = ϕ̃+(0),

⇒ ũ∗ �= 0,

⇒ ũ∗ = u∗ ∈ intC+ (see (66) and (65)).
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Clearly ϕ̃|C+ = ϕ̃+|C+ . Hence it follows that

u∗ is a local C1
0(�) -minimizer of ϕ̃(·),

⇒ u∗ is a local W 1,p(z)
0 (�) -minimizer of ϕ̃(·) (see [14]).

Similarly for v∗ ∈ −intC+ using this time the functional ϕ̃−(·).
This proves Claim 1.
On account of Claim 1 we have

Ck(ϕ̃, u∗) = Ck(ϕ̃, v∗) = δk,0Z for all k ∈ N0 (67)

with δk,0 being the Kronecker symbol defined by δk,0 =
{
1, if k = 0
0, if k �= 0

for all k ∈ N0

(see Proposition 6.2.5 of Papageorgiou, Rădulescu & Repovš [25, p. 479]).
Claim 2: Ck(ϕ̃, 0) = 0 for all k ∈ N0.
On account of hypotheses H ′(i)(iv), given η > 0, we can find C15 > 0 such that

F(z, x) ≥ η|x |q− − C15|x |r for a.a. z ∈ �, all x ∈ R.

Then for u ∈ W 1,p(z)
0 (�) and 0 < t < 1 we have

ϕ(tu) ≤ t p+ [
ρp(Du) + ‖ξ‖∞ρp(u) + C15‖u‖rr

] + tq− [
ρp(Du) − η‖u‖q−

q−
]

(recall that q− < p− ≤ p+ < r).

Since η > 0 is arbitrary, we choose η > 0 big so that

ϕ(tu) < 0 for all 0 < t < t∗ < 1. (68)

Let u ∈ W 1,p(z)
0 (�), 0 < ‖u‖ < 1, ϕ(u) = 0. We have

d

dt
ϕ(tu)|t=1

= 〈ϕ′(u), u〉 (by the chain rule)

= 〈Ap(z)(u), u〉 + 〈Aq(z)(u), u〉 +
∫

�

ξ(z)|u|p(z)dz −
∫

�

f (z, u)udz

≥
[
1 − q−

p+

]
ρp(Du) +

[
1 − q−

p+

] ∫
�

ξ(z)|u|p(z)dz

+(q− − τ)

∫
�

F(z, u)dz +
∫

�

[τ F(z, u) − f (z, u)u]dz (since ϕ(u) = 0).

(69)

On account of hypothesis H ′(iv), given η > 0, we can find δ = δ(η) ∈ (0, 1) small
such that
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F(z, x) ≥ η

q−
|x |q− ≥ η

q−δ p+−q− |x |p+

for a.a. z ∈ �, all |x | ≤ δ.

If we combine this with hypothesis H ′(i), we obtain

F(z, x) ≥ η

q−δ p+−q− |x |p+ − C16|x |r

for a.a. z ∈ �, all x ∈ R, some C16 > 0. (70)

Also, from the second part of hypothesis H ′(iv) and from H ′(i), we see that given
ε > 0, we can find C17 > 0 such that

τ F(z, x) − f (z, x)x ≥ −ε|x |p+ − C17|x |r
for a.a. z ∈ �, all x ∈ R. (71)

We return to (69) and use (70) and (71). Then

d

dt
ϕ(tu)|t=1

≥
[
1 − q−

p+
− εC18

]
‖u‖p+ +

[
η

q−δ p+−q− −
(
1 − q−

p+

)
‖ξ‖∞

]
‖u‖p+

p(z) − C19‖u‖r

for some C18,C19 > 0.

Recall that η, ε > 0 are arbitrary. So, we choose ε > 0 small and η > 0 big (recall
that η → δ(η) is decreasing) such that

d

dt
ϕ(tu)|k=1 ≥ C20‖u‖p+ − C19‖u‖r for some C20 > 0.

Since p+ < r , we can find ρ ∈ (0, 1) small such that

d

dt
ϕ(tu)|t=1 > 0

for all u ∈ W 1,p(z)
0 (�), with 0 < ‖u‖ ≤ ρ, ϕ(u) = 0. (72)

Let u ∈ W 1,p(z)
0 (�) with 0 < ‖u‖ ≤ ρ, ϕ(u) = 0. We will show that

ϕ(tu) ≤ 0 for all t ∈ [0, 1]. (73)

Arguing by contradiction, suppose we can find t0 ∈ (0, 1) such that

ϕ(t0u) > 0.
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Recall that ϕ(u) = 0 and ϕ(·) is continuous. So, we can find t1 ∈ (t0, 1] such that
ϕ(t1u) = 0. We consider the first time instant after t0 for which this is true. So, we
define

t∗ = min {t ∈ [t0, 1] : ϕ(tu) = 0} > t0 > 0,

⇒ ϕ(tu) > 0 for all t ∈ [t0, t∗). (74)

Let y = t∗u. We have 0 < ‖y‖ ≤ ‖u‖ ≤ ρ and ϕ(y) = 0. So, from (72) it follows
that

d

dt
ϕ(t y)|t=1 > 0. (75)

From (74) we have

ϕ(y) = ϕ(t∗u) = 0 < ϕ(tu) for all t0 ≤ t < t∗,

⇒ d

dt
ϕ(t y)|t=1 = t∗

d

dt
ϕ(tu)|t=t∗ = t∗ lim

t→t∗

ϕ(tu)

t − t∗
≤ 0. (76)

Comparing (75) and (76), we obtain a contradiction. Therefore relation (73) is true.
From (65) we see that we may assume that Kϕ̃ is finite. Otherwise we already have

an infinity of nodal solutions (due to the extremality of u∗ and v∗). So, 0 ∈ Kϕ is
isolated (recall that Kϕ |[v∗,u∗] = Kϕ̃ |[v∗,u∗]) and so we can have ρ ∈ (0, 1) small

such that Kϕ ∩ Bρ = {0} where Bρ = {u ∈ W 1,p(z)
0 (�) : ‖u‖ ≤ ρ}. Let h :

[0, 1] × (ϕ0 ∩ Bρ) → ϕ0 ∩ Bρ be the deformation defined by

h(t, u) = (1 − t)u for all (t, u) ∈ [0, 1] × (ϕ0 ∩ Bρ).

On account of (73), this deformation is well defined and shows that

ϕ0 ∩ Bρ is contractible. (77)

Fix u ∈ Bρ with ϕ(u) > 0. We show that there exists unique t(u) ∈ (0, 1) such
that

ϕ(t(u)u) = 0. (78)

Note that

ϕ(u) > 0 and t �→ ϕ(tu) is continuous.

So, from (68) and Bolzano’s theorem, we see that such a t(u) ∈ (0, 1) exist. We
show the uniqueness of this t(u). Suppose we could find 0 < t1 < t2 < 1 such that

ϕ(t1u) = ϕ(t2u) = 0,

⇒ ϕ(t t2u) ≤ 0 for all t ∈ [0, 1] (see (73)).
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Then for μ(t) = ϕ(t t2u), t ∈ [0, 1], t1
t2

∈ (0, 1) is a maximizer of μ(·) and so

t1
t2

d

dt
μ(t)|t= t1

t2
= t1

t2

d

dt
ϕ(t t2u)|t= t1

t2
= d

dt
ϕ(t t1u)|t=1 = 0,

which contradicts (72). Therefore the time instant t(u) ∈ (0, 1) is unique.
We have {

ϕ(tu) < 0, for t ∈ (0, t(u))

ϕ(tu) > 0, for t ∈ (t(u), 1]. (79)

Let k : Bρ \ {0} → [0, 1] be defined by

k(u) =
{
1, if u ∈ Bρ \ {0}, ϕ(u) ≤ 0
t(u), if u ∈ Bρ \ {0}, ϕ(u) > 0.

(80)

We can easily check that k(·) is continuous. Then we introduce the map k̂ : Bρ \
{0} → (Bρ ∩ ϕ0) \ {0} defined by

k̂(u) =
{
u, if u ∈ Bρ \ {0}, ϕ(u) ≤ 0
k(u)u, if u ∈ Bρ \ {0}, ϕ(u) > 0.

This map is continuous and

k̂|(Bρ∩ϕ0)\{0} = id|(Bρ∩ϕ0)\{0}
⇒ (Bρ ∩ ϕ0) \ {0} is a retract of Bρ \ {0}.

But since the space is infinite dimensional, Bρ \ {0} is contractible (see Gasiński &
Papageorgiou [15, pp. 677-678]). A retract of a contractible space is itself contractible.
So

(Bρ ∩ ϕ0) \ {0} is contractible. (81)

From (77) and (81) it follows that

Hk(Bρ ∩ ϕ0, (Bρ ∩ ϕ0) \ {0}) = 0 for all k ∈ N0

(see Papageorgiou,Rădulescu &Repovš [25, p. 469])

⇒ Ck(ϕ, 0) = 0 for all k ∈ N0. (82)

We consider the homotopy

h(t, u) = (1 − t)ϕ(u) + t ϕ̃(u), for all t ∈ [0, 1], all u ∈ W 1,p(z)
0 (�).

Suppose we could find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ W 1,p(z)
0 (�) such that

tn → t, un → 0 in W 1,p(z)
0 (�) and h′

u(tn, un) = 0 for all n ∈ N. (83)
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From the equation in (83) and Theorem 4.1 of Fan & Zhao [12], we know that

un ∈ L∞(�) and ‖un‖∞ ≤ C21 for some C21 > 0, all n ∈ N.

Then from Fan [11, Theorem 1.3] (see also Fukagai & Narukawa [13, Lemma 3.3]
and Lieberman [18]), we can find α ∈ (0, 1) and C22 > 0 such that

un ∈ C1,α
0 (�), ‖un‖C1,α

0 (�)
≤ C22 for all n ∈ N.

The compact embedding of C1,α
0 (�) into C1

0(�) and (83) imply that

un → 0 in C1
0(�) as n → ∞,

⇒ un ∈ [v∗, u∗] for all n ≥ n0.

But recall that we have assumed that Kϕ̃ is finite (see (65)). So, (83) can not happen
and the homotopy invariance property of critical groups (see Papageorgiou, Rădulescu
& Repovš [25, p. 505]) implies that

Ck(ϕ̃, 0) = Ck(ϕ, 0) for all k ∈ N0,

⇒ Ck(ϕ̃, 0) = 0 for all k ∈ N0 (see (82)).

This proves Claim 2.
We may assume that

ϕ̃(v∗) ≤ ϕ̃(u∗).

The reasoning is similar if the opposite inequality holds.
Recall that Kϕ̃ is finite. Then Claim 1 implies that we can find ρ ∈ (0, 1) small

such that

ϕ̃(v∗) ≤ ϕ̃(u∗) < inf
[
ϕ̃(u) : ‖u − u∗‖ = ρ

] = m̃, ‖v∗ − u∗‖ > ρ

(see Proposition 5.7.6 of Papageorgiou, Rădulescu &Repovš [25, p. 449]). (84)

Evidently ϕ̃ is coercive (see (63)) and so it satisfies theC-condition (see Proposition
5.1.15 of Papageorgiou, Rădulescu & Repovš [25, p. 369]). This fact and (84) permit
the use of the mountain pass theorem. Therefore we can find y0 ∈ W 1,p(z)

0 (�) such
that

y0 ∈ Kϕ̃ ⊆ [v∗, u∗] ∩ C1
0(�) (see (65)), m̃ ≤ ϕ̃(y0) (see (84)). (85)

Also, from Theorem 6.5.8 of Papageorgiou, Rădulescu & Repovš [25, p. 527], we
have
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C1(ϕ̃, y0) �= ∅
⇒ y0 /∈ {0, u∗, v∗} (see Claim 2 and (84)),

⇒ y0 ∈ C1
0(�) is a nodal solution of (1).

The proof is now complete. ��
So, summarizing we can state the following multiplicity theorem for problem (1).

Theorem 11 If hypotheses H0, H ′ hold, then problem (1) has at least five nontrivial
smooth solutions

u0, û ∈ intC+, u0 ≤ û, u0 �= û, u0(z) < C0 for all z ∈ �,

v0, v̂ ∈ −intC+, v̂ ≤ v0, v0 �= v̂,−Ĉ < v0(z) for all z ∈ �,

y0 ∈ [v0, u0] ∩ C1
0(�) nodal.

Remark 2 We emphasize that in the above multiplicity theorem we provide sign infor-
mation for the solutions and moreover, the solutions are linearly ordered that is, we
have v̂ ≤ v0 ≤ y0 ≤ u0 ≤ û.
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