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Abstract
In this paper, we consider the following non-autonomous Schrödinger–Bopp–
Podolsky system

{
−�u + V (x)u + q2φu = f (u)

−�φ + a2�2φ = 4πu2 in R
3.

By using some original analytic techniques and new estimates of the ground state
energy, we prove that this system admits a ground state solution under mild assump-
tions on V and f . In the final part of this paper, we give a min-max characterization
of the ground state energy.
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1 Introduction

Consider the following Schrödinger–Bopp–Podolsky system

{
−�u + V (x)u + q2φu = f (u)

−�φ + a2�2φ = 4πu2 in R
3, (1.1)

where u, φ : R
3 → R, ω, a > 0, q �= 0.

This nonlinear system appears when we couple a Schrödinger field ψ = ψ(t, x)

with its electromagnetic field in the Bopp–Podolsky electromagnetic theory, and, in
particular, in the electrostatic case for standing waves ψ(t, x) = eiωt u(x).

System (1.1) has a strong physicalmeaning especially in theBopp–Podolsky theory,
developed independently by Bopp [3] and Podolsky [24]. The Bopp–Podolsky theory
is a second order gauge theory for the electromagnetic field. As the Mie theory [22]
and its generalizations given by Born and Infeld [4–7], it was introduced to solve
the “infinity problem”, which appears in the classical Maxwell theory. In fact, by the
well-known Gauss law (or Poisson equation), the electrostatic potential φ for a given
charge distribution whose density is ρ satisfies the equation

− �φ = ρ in R
3. (1.2)

If ρ = 4πδx0 , with x0 ∈ R
3, the fundamental solution of (1.2) is G(x − x0), where

G(x) = 1

|x | ,

and the electrostatic energy is

EM(G) = 1

2

∫
R3

|∇G|2 = +∞.

Thus, Eq. (1.2) is replaced by

− div

(
∇φ√

1 − |∇φ|2
)

= ρ in R
3

in the Born-Infeld theory and by

−�φ + a2�2φ = ρ in R
3

in the Bopp–Podolsky theory. In both cases, if ρ = 4πδx0 , we are able to write
explicitly the solutions of the respective equations and to see that their energy is finite.
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In particular, when we consider the differential operator −� + a2�2, we have that
K(x − x0), with

K(x) := 1 − e−|x |/a

|x | ,

is the fundamental solution of the equation

−�φ + a2�2φ = 4πδx0 .

Then K has no singularity in x0 since it satisfies

lim
x→x0

K(x − x0) = 1

a
,

and its energy is

EBP(K) = 1

2

∫
R3

|∇K|2 + a2

2

∫
R3

|�K|2 < +∞.

Moreover, the Bopp–Podolsky theory may be interpreted as an effective theory for
short distances (see [20]), while for large distances it is experimentally indistinguish-
able from the Maxwell theory. Thus, the Bopp–Podolsky parameter a > 0, which has
dimension of the inverse of mass, can be interpreted as a cut-off distance or can be
linked to an effective radius for the electron. For more physical details we refer the
reader to the recent papers [1,2,9,10,16,17] and to references therein.

The differential operator −� + �2 appears in various different interesting mathe-
matical and physical situations; see [19] and the references therein.

Before stating our results, few preliminaries are in order. We introduce here the

spaceD as the completion of C∞
c (R3)with respect to the norm

√
‖∇φ‖22 + a2‖�φ‖22;

see Sect. 2 for more properties on this space.
For fixed a > 0 and q �= 0, we say that a pair (u, φ) ∈ H1(R3) × D is a solution

of problem (1.1) if

∫
R3

[∇u∇v + V (x)uv] dx + q2
∫
R3

φuvdx =
∫
R3

f (u)vdx, ∀ v ∈ H1(R3),∫
R3

∇φ∇ξdx + a2
∫
R3

�φ�ξdx = 4π
∫
R3

φu2dx, ∀ ξ ∈ D.

We say that a solution (u, φ) is nontrivial whenever u �≡ 0; a solution is called a ground
state solution if its energy is minimal among all nontrivial solutions. As described in
Sect. 2, to solve problem (1.1) is equivalent to solving

− �u + V (x)u + q2
(
1 − e−|x |/a

|x | ∗ u2
)

u = f (u) in R
3, (1.3)
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whose solutions correspond to critical points of the energy functional defined in
H1(R3) by

I(u) = 1

2

∫
R3

[
|∇u|2 + V (x)u2

]
dx + q2

4

∫
R3

(
1 − e−|x |/a

|x | ∗ u2
)

u2dx −
∫
R3

F(u)dx,

(1.4)

where F(u) = ∫ u
0 f (t)dt . A solution is called a ground state solution if its energy is

minimal among all nontrivial solutions.
In this paper, we also consider the following “limit” system with a general nonlin-

earity f

{
−�u + V∞u + q2φu = f (u)

−�φ + a2�2φ = 4πu2 in R
3. (1.5)

To the best of our knowledge, there is no result on the existence of ground state
solutions for systems (1.1) and (1.5). Inspired by [11,12,14,25], we will seek a ground
state solution of Nehari–Pohoz̆aev type for systems (1.1) and (1.5).

To state our results, we introduce the following assumptions:

(V1) V ∈ C(R3, [0,∞)) and V∞ := lim|y|→∞ V (y) = supx∈R3 V (x) > 0;
(V2) V ∈ C1(R3, R), ∇V (x) · x ∈ L∞(R3), 2V (x) + ∇V (x) · x ≥ 0 and

lim inf |x |→∞[2V (x) + ∇V (x) · x] > 0;
(F1) f ∈ C(R, R), and there exist constants C > 0 and p ∈ (2, 6) such that

| f (t)| ≤ C
(
1 + |t |p−1

)
, ∀ t ∈ R;

(F2) f (t) = o(t) as t → 0;
(F3) F(t) ≥ 0 for all t ∈ R and lim|t |→∞ F(t)

|t |3 = ∞;

(F4) the function 2 f (t)t−3F(t)
t3

is nondecreasing on (−∞, 0) and (0,+∞).

Our first result is as follows.

Theorem 1.1 Assume that (V1), (V2) and (F1)–(F4) hold. Then problem (1.1) admits
a ground state solution.

Remark 1.2 There are many functions which satisfy (V1) and (V2). An example is

given by V (x) = 1 − sin2 |x |
1+|x | .

For the constant potential case, we replace the monotonicity condition (F4) with
the super-quadratic condition which is easier to verify:

(F5) f (t)t ≥ 3F(t) for all t ∈ R, and there exist κ > 3/2 and r0, C0 > 0 such that

∣∣∣∣ f (t)

t

∣∣∣∣
κ

≤ C0[ f (t)t − 3F(t)], ∀ |t | ≥ r0.
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Our second result is as follows.

Theorem 1.3 Assume that (F1)–(F3) and (F5) hold. Then problem (1.5) admits a
ground state solution.

Finally, we give the min-max property of the ground state energy of I. To this end,
we introduce the following monotonicity condition.

(V3) V ∈ C1(R3), and the function t → t2[V (t x) − ∇V (t x) · (t x)] is increasing on
(0,+∞) for every x ∈ R

3.

We define the Nehari–Pohoz̆aev manifold as follows:

M = {u ∈ H1(R3)\{0} : J (u) := 2I ′(u)[u] − P(u) = 0}, (1.6)

where P(u) is the Pohoz̆aev functional of (1.3) defined by

P(u) := 1

2
‖∇u‖22 + 1

2

∫
R3

[3V (x) + ∇V (x) · x] u2dx − 3
∫
R3

F(u)dx

+q2

4a

∫
R3

∫
R3

[
5
1 − e− |x−y|

a

|x − y|/a
+ e− |x−y|

a

]
u2(x)u2(y)dxdy. (1.7)

If u ∈ H1(R3) is a critical point of I, then u satisfies P(u) = 0; see [18, A.14]
for more details. Then every nontrivial solution of (1.1) is contained in M. In this
direction, we have the following theorem.

Theorem 1.4 Assume that (V1), (V3), (F1)–(F4) hold. Then problem (1.1) admits a
ground state solution ū ∈ H1(R3) such that

I(ū) = inf
M

I = inf
u∈H1(R3)\{0}

max
t>0

I(t2ut ) > 0,

where ut (x) := u(t x).

Remark 1.5 We observe that the function V (x) = 1 − 1
(1+|x |)α with α > 0 satisfies

hypotheses (V1) and (V3).

For the limiting problem related to (1.3), that is, (1.3) with V (x) ≡ V∞, we further
weaken (F4) to the following condition:

(F4′) there exists a constant θ ∈ [0, 1) such that the function 4 f (t)t−6F(t)−θV∞t
2t3

is
nondecreasing on (−∞, 0) and (0,+∞).

To state the following result, we define the energy functional in H1(R3) by

I∞(u) = 1

2

∫
R3

[
|∇u|2 + V∞u2

]
dx + q2

4

∫
R3

(
1 − e−|x |/a

|x | ∗ u2
)

u2dx −
∫
R3

F(u)dx,

(1.8)
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and the Nehari–Pohoz̆aev manifold by

M∞ := {u ∈ H1(R3)\{0} : J∞(u) := 2(I∞)′(u)[u] − P∞(u) = 0}, (1.9)

where P∞(u) is the Pohoz̆aev functional defined by

P∞(u) := 1

2
‖∇u‖22 + 3

2

∫
R3

V∞u2dx − 3
∫
R3

F(u)dx

+q2

4a

∫
R3

∫
R3

[
5
1 − e− |x−y|

a

|x − y|/a
+ e− |x−y|

a

]
u2(x)u2(y)dxdy.

We have the following corollary.

Corollary 1.6 Assume that (F1)–(F3) and (F4′) hold. Then problem (1.5) admits a
ground state solution ū ∈ H1(R3) such that

I∞(ū) = inf
M∞ I∞ = inf

u∈H1(R3)\{0}
max
t>0

I∞(t2ut ) > 0.

Remark 1.7 Our more general conditions (F1)–(F4) or (F4′) on the function f (u)

allow many other examples different to the pure power nonlinearity considered in

[18]. For example, the function f (u) = 3|u|u ln(1+ u2) + 2|u|3u
1+u2

satisfies (F1)–(F4).

The function f (u) = a|u|3/2u + b|u|1/2u with a, b > 0 satisfies (F1)–(F3) and (F4′)
with θ = 2

3 when 15
√
10a ≥ 14b3/2 > 0 but it does not fulfill (F4).

To prove Theorem 1.4, that is, to obtain a ground solution for Eq. (1.1) with (V1)
and (V3), we first choose a minimizing sequence {un} of I onM, which satisfies

I(un) → m := inf
M

I, P(un) = 0. (1.10)

Next, we show that the sequence {un} is bounded in H1(R3).
Due to lack of global compactness and adequate information on I ′(un) and in order

to avoid relying the radial compactness, we establish a crucial inequality related to
I(u), I(ut ) and J (u) (Lemma 3.4), which plays a crucial role in our arguments,
see Lemmas 3.8, 3.9, 3.13, 3.14 and 4.5 . With the help of this inequality, we then
can recover the compactness for the minimizing sequence {un} and show that {un}
converges weakly to some ū ∈ H1(R3)\{0} and I(ū) = infM I by using Lions’
concentration-compactness, the “least energy squeeze approach” and some subtle
analysis. Finally, we take advantage of a quantitative deformation lemma and the
intermediate value theorem to show that ū is a critical point of I, as the Lagrange
multiplier theorem does not work, because M is not a C1-manifold, .

To proveTheorem1.1,we use themonotonicity technique explored by Jeanjean [21]
to parameterize the nonlinearity f . In such a way, we build a parametrization of the
energy functional associated to (1.1) and give some energy relations of problems (1.1)
and (1.5) which play a key role in getting the critical point of (1.1), see Lemma 4.5.
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Moreover, in order to show that a critical point associated to the parametrization
functional is indeed a solution to the original problem, we also need give a delicate
estimation for the parametrization problem. Finally, we study the constant potential
case by using weaker conditions.

Throughout the paper we make use of the following notations:

• Under (V1), H1(R3) denotes the Sobolev space equipped with the inner product
and norm

(u, v) =
∫
R3

[∇u∇v + V (x)uv]dx, ‖u‖ = (u, u)1/2, ∀ u, v ∈ H1(R3);

• Ls(R3)(1 ≤ s < ∞) denotes the Lebesgue space with the norm ‖u‖s =(∫
R3 |u|sdx

)1/s ;
• For any x ∈ R

3 and r > 0, Br (x) := {y ∈ R
3 : |y − x | < r};

• S = infu∈D1,2(R3)\{0} ‖∇u‖22/‖u‖26;• C1, C2, · · · denote positive constants possibly different in different places.

2 Variational setting

Westartwith some preliminary basic results. Let us consider the nonlinear Schrödinger
Lagrangian density

LSc = i�ψ̄∂tψ − �
2

2m
|∇ψ |2 + 2F(ψ),

where ψ : R × R
3 → C, �, m > 0, and let (φ,A) be the gauge potential of the

electromagnetic field (E,H), namely φ : R
3 → R and A : R

3 → R
3 satisfy

E = −∇φ − 1

c
∂tA, H = ∇ × A.

The coupling of the fieldψ with the electromagnetic field (E,H) through the minimal
coupling rule, namely the study of the interaction between ψ and its own electromag-
netic field, can be obtained by replacing in LSc the derivatives ∂t and ∇ respectively
with the covariant ones

Dt = ∂t + iq

�
φ, D = ∇ − iq

�c
A,

q being a coupling constant. This leads to consider

LCSc = i�ψ Dtψ − �
2

2m
|Dψ |2 + 2F(ψ)

= i�ψ

(
∂t + iq

�
φ

)
ψ − �

2

2m

∣∣∣∣
(

∇ − iq

�c
A
)

ψ

∣∣∣∣
2

+ 2F(ψ).
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Now, to get the total Lagrangian density, we have to add to LCSc the Lagrangian
density of the electromagnetic field.

The Bopp–Podolsky Lagrangian density (see [24, Formula (3.9)]) is

LBP = 1

8π

{
|E|2 − |H|2 + a2

[
(divE)2 −

∣∣∣∣∇ × H − 1

c
∂tE

∣∣∣∣
2
]}

= 1

8π

{
|∇φ + 1

c
∂tA|2 − |∇ × A|2

+a2

[(
�φ + 1

c
div ∂tA

)2

−
∣∣∣∣∇ × ∇ × A + 1

c
∂t (∇φ + 1

c
∂tA)

∣∣∣∣
2
]}

.

Thus, the total action is

S(ψ, φ,A) =
∫
R3

Ldxdt

where L := LCSc + LBP is the total Lagrangian density.
LetD be the completion of C∞

c (R3) with respect to the norm ‖ · ‖D induced by the
scalar product

〈ϕ,ψ〉D :=
∫
R3

∇ϕ∇ψdx + a2
∫
R3

�ϕ�ψdx .

ThenD is a Hilbert space continuously embedded into D1,2(R3) and consequently in
L6(R3).

We notice the following auxiliary properties; see Lemmas 3.1 and 3.2 in [18].

Lemma 2.1 The space D is continuously embedded in L∞(R3).

The next property gives a useful characterization of the space D.

Lemma 2.2 The space C∞
c (R3) is dense in

A :=
{
φ ∈ D1,2(R3) : �φ ∈ L2(R3)

}

normed by
√〈φ, φ〉D and, therefore, D = A.

For every fixed u ∈ H1(R3), the Riesz representation theorem implies that there is
a unique solution φu ∈ D of the second equation in (1.1). To write explicitly such a
solution (see also [24, Formula (2.6)]), we consider

K(x) = 1 − e−|x |/a

|x | .

We have the following fundamental properties.
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Lemma 2.3 [18, Lemma 3.3] For all y ∈ R
3, K(· − y) solves in the sense of distribu-

tions

−�φ + a2�2φ = 4πδy .

Moreover,

(i) if g ∈ L1
loc(R

3) and, for a.e. x ∈ R
3, the map y ∈ R

3 → g(y)/|x − y| is
summable, then K ∗ g ∈ L1

loc(R
3);

(ii) if f ∈ Ls(R3) with1 ≤ s < 3/2, thenK∗g ∈ Lq(R3) for q ∈ (3s/(3−2s),+∞].
In both cases, K ∗ g solves

− �φ + a2�2φ = 4πg (2.1)

in the sense of distributions, and we have the following distributional derivatives:

∇(K ∗ g) = (∇K) ∗ g and �(K ∗ g) = (�K) ∗ g a.e. in R
3.

Fix u ∈ H1(R3), the unique solution in D of the second equation in (1.1) is

φu := K ∗ u2. (2.2)

Actually the following useful properties hold.

Lemma 2.4 [18, Lemma 3.4] For every u ∈ H1(R3) we have:

(1) for every y ∈ R
3, φu(·+y) = φu(· + y);

(2) φu ≥ 0;
(3) for every s ∈ (3,+∞], φu ∈ Ls(R3) ∩ C0(R3);
(4) for every s ∈ (3/2,+∞], ∇φu = ∇K ∗ u2 ∈ Ls(R3) ∩ C0(R3);
(5) φu ∈ D;
(6) ‖φu‖6 ≤ C‖u‖2;
(7) φu is the unique minimizer of the functional

E(φ) = 1

2
‖∇φ‖22 + a2

2
‖�φ‖22 −

∫
R3

φu2dx, φ ∈ D.

Moreover, if vn⇀v in H1(R3), then φvn ⇀φv in D.

Under hypotheses (V1), (F1) and (F2), the energy functional defined in H1(R3)×D
by

S(u, φ) = 1

2

∫
R3

[
|∇u|22 + V (x)u2

]
dx + q2

2

∫
R3

φu2dx

− q2

16π
‖∇φ‖22 − a2q2

16π
‖�φ‖22 −

∫
R3

F(u)dx (2.3)
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is continuously differentiable and its critical points correspond to the weak solutions
of problem (1.1). Indeed, if (u, φ) ∈ H1(R3) × D is a critical point of S, then

0 = ∂uS(u, φ)[v] =
∫
R3

[∇u∇v + V (x)uv] dx

+q2
∫
R3

φuvdx −
∫
R3

f (u)vdx, ∀ v ∈ H1(R3)

and

0=∂φS(u, φ)[ξ ]= q2

2

∫
R3

u2ξdx− q2

8π

∫
R3

∇φ∇ξdx − a2q2

8π

∫
R3

�φ�ξdx, ∀ ξ ∈ D.

(2.4)

In order to avoid the difficulty generated by the strongly indefiniteness of the functional
S, we apply a reduction procedure. Noting that ∂φS is a C1 functional, if G� is the
graph of the map � : u ∈ H1(R3) → φu ∈ D, an application of the implicit function
theorem gives

G� =
{
(u, φ) ∈ H1(R3) × D : ∂φS(u, φ) = 0

}
and � ∈ C1(H1(R3),D).

Jointly with (2.3) and (2.4), the functional I(u) := S(u, φu) has the reduced form

I(u) = 1

2

∫
R3

[
|∇u|2 + V (x)u2

]
dx + q2

4

∫
R3

φuu2dx −
∫
R3

F(u)dx, (2.5)

which is of class C1 on H1(R3) and, for all u, v ∈ H1(R3)

I ′(u)[v] = ∂uS(u,�(u))[v] + ∂φS(u,�(u)) ◦ �′(u)[v]
= ∂uS(u,�(u))[v]
=
∫
R3

[∇u∇v + V (x)uv] dx + q2
∫
R3

φuuvdx −
∫
R3

f (u)vdx . (2.6)

Moreover, the following statements are equivalent:

(i) the pair (u, φ) ∈ H1(R3) × D is a critical point of S, that is, (u, φ) is a solution
of problem (1.1);

(ii) u is a critical point of I and φ = φu .

Hence, if u ∈ H1(R3) is a critical point of I, then the pair (u, φu) is a solution of
(1.1). For the sake of simplicity, in many cases we just say u ∈ H1(R3), instead of
(u, φu) ∈ H1(R3) × D, is a solution of (1.1).

3 Proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3.
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By a simple calculation, we have the following two lemmas.

Lemma 3.1 Let b > 0. Then

h(t) := t3
[
e− b

t − e−b
]

+ 1 − t3

3
be−b ≥ 0, ∀ t > 0 (3.1)

and

1 − e−b − 1

3
be−b ≥ 0. (3.2)

Lemma 3.2 (i) Assume that (V1) and (V3) hold. Then

3
[
V (x) − tV (t−1x)

]
− (1 − t3)[V (x) − ∇V (x) · x] > 0, ∀ t ∈ [0, 1) ∪ (1, +∞).

(3.3)

(ii) Assume that (F1) and (F4) hold. Then

2(1 − t3)

3
f (τ )τ + (t3 − 2)F(τ ) + 1

t3
F(t2τ) ≥ 0, ∀ t > 0, τ ∈ R. (3.4)

(iii) Assume that (F1) and (F4′) hold. Then

2(1 − t3)

3
f (τ )τ + (t3 − 2)F(τ ) + 1

t3
F(t2τ)

+θ0

6
(1 − t)2(2 + t)V∞τ 2 ≥ 0, ∀ t > 0, τ ∈ R. (3.5)

Note that if t → 0 in (3.4) and (3.5), then

f (τ )τ − 3F(τ ) ≥ 0, ∀ τ ∈ R (3.6)

and

f (τ )τ − 3F(τ ) + θV∞
2

τ 2 ≥ 0, ∀ τ ∈ R. (3.7)

Lemma 3.3 Assume that (V1) and (V3) hold. Then

|∇V (x) · x | → 0 as |x | → ∞. (3.8)

Proof Arguing by contradiction, we assume that there exist a sequence {xn} ⊂ R
3 and

δ > 0 such that

|xn| → ∞, and ∇V (xn) · xn ≥ δ or ∇V (xn) · xn ≤ −δ ∀ n ∈ N.
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Now, we distinguish two cases: i)∇V (xn) · xn ≥ δ for all n ∈ N and ii)∇V (xn) · xn ≤
−δ for all n ∈ N.

Case i) ∇V (xn) · xn ≥ δ for all n ∈ N. In this case, by (3.3), one has

δ ≤ ∇V (xn) · xn

< V (xn) + 3

t3 − 1
[V (xn) − tV (t−1xn)]

= V (xn) + 3(1 − t)

t3 − 1
V (xn) + 3t

t3 − 1
[V (xn) − V (t−1xn)]

= (t − 1)(t + 2)

t2 + t + 1
V (xn) + 3t

t3 − 1
[V (xn) − V (t−1xn)], ∀ t > 1. (3.9)

Since

lim|t |→1

(t − 1)(t + 2)

t2 + t + 1
= 0, (3.10)

there exists t1 > 1 such that

(t1 − 1)(t1 + 2)

t21 + t1 + 1
V∞ <

δ

2
. (3.11)

Then it follows from (V1), (3.9) and (3.11) that

δ ≤ (t1 − 1)(t1 + 2)

t21 + t1 + 1
V∞ + 3t1

t31 − 1
[V (xn) − V (t−1

1 xn)] ≤ δ

2
+ o(1), (3.12)

which is an obvious contradiction.
Case ii) ∇V (xn) · xn ≤ −δ for all n ∈ N. In this case, (3.3) gives

− δ ≥ ∇V (xn) · xn

> V (xn) + 3

1 − t3
[tV (t−1xn) − V (xn)]

= V (xn) + 3(t − 1)

1 − t3
V (xn) + 3t

1 − t3
[V (t−1xn) − V (xn)]

= (t − 1)(t + 2)

t2 + t + 1
V (xn) + 3t

1 − t3
[V (t−1xn) − V (xn)], ∀ 0 < t < 1.

(3.13)

From (3.10), there exists 0 < t2 < 1 such that

(t2 − 1)(t2 + 2)

t22 + t2 + 1
V∞ > − δ

2
. (3.14)
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Then it follows from (V1), (3.13) and (3.14) that

− δ ≥ (t2 − 1)(t2 + 2)

t22 + t2 + 1
V∞ + 3t2

1 − t32
[V (t−1

2 xn) − V (xn)] ≥ − δ

2
+ o(1),

(3.15)

which is again an obvious contradiction. This completes the proof. ��
Since J (u) = 2I ′(u)[u] − P(u) for u ∈ H1(R3), we have

J (u) = 3

2
‖∇u‖22 + 1

2

∫
R3

[V (x) − ∇V (x) · x]u2dx −
∫
R3

[2 f (u)u − 3F(u)]dx

+3q2

4

∫
R3

φuu2dx − q2

4a

∫
R3

∫
R3

e− |x−y|
a u2(x)u2(y)dxdy. (3.16)

Define the function

β(x, t) := 3
[
V (x) − tV (t−1x)

]
− (1 − t3)[V (x) − ∇V (x) · x], ∀ x ∈ R

3, t > 0.

(3.17)

Lemma 3.4 Assume that (V1), (V3), (F1) and (F4) hold. Then

I(u) ≥ I
(

t2ut

)
+ 1 − t3

3
J (u) + 1

6

∫
R3

β(x, t)u2dx, ∀ u ∈ H1(R3), t > 0,

(3.18)

where ut (x) = u(t x).

Proof For u ∈ H1(R3) and t > 0, one has

I
(

t2ut

)
= t3

2
‖∇u‖22 + t

2

∫
R3

V (t−1x)u2dx

+q2t3

4

∫
R3

∫
R3

1 − e− |x−y|
ta

|x − y| u2(x)u2(y)dxdy

− 1

t3

∫
R3

F(t2u)dx . (3.19)

Thus, (2.5), (3.1), (3.3), (3.4), (3.16), (3.17) and (3.19) imply that for all u ∈ H1(R3)

and all t > 0

I(u) − I
(

t2ut

)

= 1 − t3

2
‖∇u‖22 + 1

2

∫
R3

[
V (x) − tV (t−1x)

]
u2dx +

∫
R3

[
1

t3
F(t2u) − F(u)

]
dx
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+q2

4

∫
R3

∫
R3

1 − e− |x−y|
a − t3

(
1 − e

−|x−y|
at

)
|x − y| u2(x)u2(y)dxdy

= 1 − t3

3
J (u) + 1

6

∫
R3

{
3
[
V (x) − tV (t−1x)

]
− (1 − t3)[V (x) − ∇V (x) · x]

}
u2dx

+
∫
R3

[
2(1 − t3)

3
f (u)u + (t3 − 2)F(u) + 1

t3
F(t2u)

]
dx

+3q2

4

∫
R3

∫
R3

t3
[

e− |x−y|
at − e− |x−y|

a

]
+ (1 − t3) |x−y|

3a e− |x−y|
a

|x − y| u2(x)u2(y)dxdy

≥ 1 − t3

3
J (u) + 1

6

∫
R3

β(x, t)u2dx .

This shows (3.18). ��
Remark that (3.18) with t → 0 gives

I(u) ≥ 1

3
J (u) + 1

6

∫
R3

[2V (x) + ∇V (x) · x] u2dx, ∀ u ∈ H1(R3). (3.20)

For the limiting problem, corresponding to (2.5) and (3.16), we define the following
functionals in H1(R3):

I∞(u) = 1

2

∫
R3

(
|∇u|2 + V∞u2

)
dx + q2

4

∫
R3

φuu2dx −
∫
R3

F(u)dx (3.21)

and

J∞(u) = 3

2
‖∇u‖22 + V∞

2
‖u‖22 −

∫
R3

[2 f (u)u − 3F(u)]dx

+3q2

4

∫
R3

φuu2dx − q2

4a

∫
R3

∫
R3

e− |x−y|
a u2(x)u2(y)dxdy. (3.22)

From Lemma 3.4, we deduce the following two properties.

Corollary 3.5 Assume that (V1), (V3), (F1) and (F4) hold. Then for u ∈ M

I(u) = max
t>0

I
(

t2ut

)
.

Corollary 3.6 Assume that (F1) and (F4) hold. Then

I∞(u) ≥ I∞ (
t2ut

)
+ 1 − t3

3
J∞(u) + (1 − t)2(2 + t)

6
V∞‖u‖22, ∀ u ∈ H1(R3), t > 0.

(3.23)
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By using (3.5) instead of (3.4), as in the proof of Lemma 3.4, we have the following
lemma.

Lemma 3.7 Assume that (F1) and (F4′) hold. Then

I∞(u) ≥ I∞ (t2ut

)
+ 1 − t3

3
J∞(u)

+ (1 − θ)(1 − t)2(2 + t)

6
V∞‖u‖22, ∀ u ∈ H1(R3), t > 0. (3.24)

Lemma 3.8 Assume that (V1), (V3) and (F1)–(F4) hold. Then for any u ∈
H1(R3)\{0}, there exists a unique tu > 0 such that t2u utu ∈ M.

Proof Let u ∈ H1(R3)\{0} befixed and define the function ζ(t) := I(t2ut ) on (0,∞).
Using (3.16) and (1.6), it is easily checked that

ζ ′(t) = 0 ⇔ 1

t
J (t2ut ) = 0 ⇔ t2ut ∈ M.

By (V1) and (F1)–(F3), we have limt→0+ ζ(t) = 0, ζ(t) > 0 for t > 0 small and
ζ(t) < 0 for t large. Therefore, maxt∈(0,∞) ζ(t) is achieved at t0 = tu > 0, so that
ζ ′(t0) = 0 and t20ut0 ∈ M.

Next, we claim that tu is unique for any u ∈ H1(R3)\{0}. In fact, for any given
u ∈ H1(R3)\{0}, let t1, t2 > 0 be such that ζ ′(t1) = ζ ′(t2) = 0. Then J (t21ut1) =
J (t22ut2) = 0. Jointly with (3.18), we have

I(t21ut1) ≥ I(t22ut2) + t31 − t32
3t31

J (t21ut1) + t1
6

∫
R3

β(x, t2/t1)u
2dx

= I(t22ut2) + t1
6

∫
R3

β(x, t2/t1)u
2dx (3.25)

and

I(t22ut2) ≥ I(t21ut1) + t32 − t31
3t32

J (t22ut2) + t2
6

∫
R3

β(x, t1/t2)u
2dx

= I(t21ut1) + t2
6

∫
R3

β(x, t1/t2)u
2dx . (3.26)

Then (3.1), (3.25) and (3.25) give t1 = t2. Therefore, tu > 0 is unique for any
u ∈ H1(R3)\{0}. ��

Combining Corollary 3.5 with Lemma 3.8, w obtain the following min-max prop-
erty.

Lemma 3.9 Assume that (V1), (V3) and (F1)–(F4) hold. Then

m = inf
M

I = inf
u∈H1(R3)\{0}

max
t>0

I(t2ut ).
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Lemma 3.10 Assume that (V1), (V3) and (F1)–(F4) hold. Then

(i) there exists ρ > 0 such that ‖u‖ ≥ ρ, ∀ u ∈ M;
(ii) m = infM I > 0.

Proof (i). In view of [13, Lemma 2.5], if V satisfies (V1) and (V3), then there exist
�1, �2 > 0 such that

2V (x) + ∇V (x) · x ≥ �1, ∀ x ∈ R
3, (3.27)

V (x) − ∇V (x) · x ≥ �2, ∀ x ∈ R
3. (3.28)

Since J (u) = 0 for u ∈ M, by (3.2), (3.16), (3.28) and the Sobolev embedding
theorem, we have

min{3, �2}
2

‖u‖2 ≤ 3

2
‖∇u‖22 + 1

2

∫
R3

[V (x) − ∇V (x) · x]u2dx

+3q2

4

∫
R3

∫
R3

1 − e− |x−y|
a − |x−y|

3a e− |x−y|
a

|x − y| u2(x)u2(y)dxdy

≤
∫
R3

[2 f (u)u − 3F(u)]dx

≤ min{3, �2}
4

‖u‖2 + C1‖u‖p, ∀ u ∈ M,

which implies

‖u‖ ≥ ρ :=
(
min{3, �2}

4C1

)1/(p−2)

, ∀ u ∈ M. (3.29)

(ii). Let {un} ⊂ M be such that I(un) → m. There are two possible cases: 1)
infn∈N ‖un‖2 > 0 and 2) infn∈N ‖un‖2 = 0.
Case 1) infn∈N ‖un‖2 := ρ1 > 0. In this case, (3.20) and (3.27) yield

m + o(1) = I(un) = I(un) − 1

3
J (un) ≥ �1

6
ρ2
1 > 0. (3.30)

Case 2) infn∈N ‖un‖2 = 0. By (3.29), passing to a subsequence, we have

‖un‖2 → 0, ‖∇un‖2 ≥ 1

2
ρ. (3.31)

Let tn = ‖∇un‖−2/3
2 . Then (3.31) implies that {tn} is bounded. Using (F1), (F2)

and the Sobolev inequality, there exists C2 > 0 such that

∣∣∣∣
∫
R3

F(u)dx

∣∣∣∣ ≤ C2‖u‖22 + S3

4
‖u‖66 ≤ C2‖u‖22 + 1

4
‖∇u‖62, ∀ u ∈ H1(R3).

(3.32)

Since J (un) = 0 for all n ∈ N, then (3.18), (3.19), (3.31) and (3.32) give
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m + o(1) = I(un) ≥ I(t2n (un)tn )

= t3n
2

‖∇un‖22 + tn
2

∫
R3

V (t−1
n x)u2

ndx

+q2t3n
4

∫
R3

∫
R3

1 − e− |x−y|
atn

|x − y| u2
n(x)u2

n(y)dxdy

− 1

t3n

∫
R3

F(t2n un)dx

≥ t3n
2

‖∇un‖22 − C2tn‖un‖22 − t9n
4

‖∇un‖62
= 1

4
t3n ‖∇un‖22

[
2 −

(
t3n ‖∇un‖22

)2]+ o(1) = 1

4
+ o(1).

Cases 1) and 2) show that m = infM I > 0. This completes the proof. ��

Lemma 3.11 Assume that (V1), (V3) and (F1)–(F4) hold. Then m∞ := infM∞ I∞ ≥
m.

Proof Arguing by contradiction, suppose that m > m∞. Let ε := m − m∞. Then
there exists u∞

ε such that

u∞
ε ∈ M∞ and m∞ + ε

2
> I∞(u∞

ε ). (3.33)

In view of Lemma 3.8, there exists tε > 0 such that t2ε (u∞
ε )tε ∈ M. Thus, it follows

from (V1), (2.5), (3.3), (3.21), (3.24) and (3.33) that

m∞ + ε

2
> I∞(u∞

ε ) ≥ I∞(t2ε (u∞
ε )tε ) ≥ I(t2ε (u∞

ε )tε ) ≥ m.

This contradiction shows that m∞ ≥ m. ��

By combining [18, Lemma B.2] and [23,26], we obtain the following Brezis-Lieb
type lemma, see [8].

Lemma 3.12 Assume that (V1), (V2), (F1) and (F2) hold. If un⇀ū in H1(R3), then
up to a subsequence

I(un) = I(ū) + I(un − ū) + o(1),

J (un) = J (ū) + J (un − ū) + o(1) (3.34)

I ′(un) = I ′(ū) + I ′(un − ū) + o(1), (3.35)

I ′(un)[un] = I ′(ū)[ū] + I ′(un − ū)[un − ū] + o(1). (3.36)

Lemma 3.13 Assume that (V1), (V3) and (F1)–(F4) hold. Then m is achieved.
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Proof Let {un} ⊂ M be such that I(un) → m. Since J (un) = 0, then (3.20) and
(3.27) yield

m + o(1) = I(un) = I(un) − 1

3
J (un)

≥ 1

6

∫
R3

[2V (x) + ∇V (x) · x]u2
ndx ≥ �1

6
‖un‖22. (3.37)

This shows that {‖un‖2} is bounded. Now we assert that {‖∇un‖2} is also bounded.
Arguing by contradiction, suppose that ‖∇un‖2 → ∞. From (F1), (F2) and the
Sobolev inequality, there exists C2 > 0 such that

∣∣∣∣
∫
R3

F(u)dx

∣∣∣∣ ≤ C2‖u‖22 + 1

2(8m)2
S3‖u‖66 ≤ C2‖u‖22

+ 1

2(8m)2
‖∇u‖62, ∀ u ∈ H1(R3). (3.38)

Let tn = (8m/‖∇un‖22
)1/3

. SinceJ (un) = 0, it follows from (3.18), (3.19) and (3.38)
that

m + o(1) = I(un) ≥ I(t2n (un)tn )

= t3n
2

‖∇un‖22 + tn
2

∫
R3

V (t−1
n x)u2

ndx

+q2t3n
4

∫
R3

∫
R3

1 − e− |x−y|
atn

|x − y| u2
n(x)u2

n(y)dxdy

− 1

t3n

∫
R3

F(t2n un)dx

≥ t3n
2

‖∇un‖22 − C2tn‖un‖22 − 1

4(8m)2

(
t3n ‖∇un‖22

)3

= 1

2
t3n ‖∇un‖22

⎡
⎣1 − 1

2

(
t3n ‖∇un‖22

8m

)2
⎤
⎦+ o(1)

= 2m + o(1). (3.39)

This contradiction shows that {‖∇un‖2} is also bounded and the assertion holds. Hence
{un} is bounded in H1(R3). Thus, there exists ū ∈ H1(R3) such that, passing to a
subsequence, un⇀ū in H1(R3), un → ū in Ls

loc(R
3) for all 1 ≤ s < 6 and un → ū

a.e. in R
3. There are two possible cases: i) ū = 0 and ii) ū �= 0.

Case i) ū = 0, i.e. un⇀0 in H1(R3), un → 0 in Ls
loc(R

3) for all 1 ≤ s < 6 and
un → 0 a.e. in R

3. Using (V1) and (3.8), it is easily checked that

lim
n→∞

∫
R3

[V∞ − V (x)]u2
ndx = lim

n→∞

∫
R3

∇V (x) · xu2
ndx = 0. (3.40)
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From (2.5), (3.16), (3.21), (3.22) and (3.40), we derive

I∞(un) → m and J∞(un) → 0. (3.41)

From [26, Lemma 1.21], we deduce that there exist δ > 0 and a sequence {yn} ⊂ R
3

such that
∫

B1(yn)
|un|2dx > δ. Let ûn(x) = un(x + yn). Then we have ‖ûn‖ = ‖un‖

and

J∞(ûn) = o(1), I∞(ûn) → m,

∫
B1(0)

|ûn|2dx > δ. (3.42)

Therefore, there exists û ∈ H1(R3)\{0} such that, passing to a subsequence,

⎧⎨
⎩

ûn⇀û, in H1(R3);
ûn → û, in Ls

loc(R
3), ∀ s ∈ [1, 6);

ûn → û, a.e. in R
3.

(3.43)

Let wn = ûn − û. Then (3.43) and Lemma 3.12 yield

I∞(ûn) = I∞(û) + I∞(wn) + o(1), J∞(ûn) = J∞(û) + J∞(wn) + o(1).

(3.44)

We define the functional �∞ : H1(R3) → R by

�∞(u) = I∞(u) − 1

3
J∞(u)

= V∞
3

‖u‖22 + 2

3

∫
R3

[ f (u)u − 3F(u)]dx

+ q2

12a

∫
R3

∫
R3

e− |x−y|
a u2(x)u2(y)dxdy.

(3.45)

By (3.21), (3.22), (3.42), (3.44) and (3.45), we have

�∞(wn) = m − �∞(û) + o(1), and J∞(wn) = −J∞(û) + o(1). (3.46)

If there exists a subsequence {wni } of {wn} such that wni = 0, then

I∞(û) = m and J∞(û) = 0. (3.47)

Thus, we assume that wn �= 0 for all n ∈ N. We claim that J∞(û) ≤ 0. Otherwise,
if J∞(û) > 0, then (3.46) implies J∞(wn) < 0 for large n. In view of Lemma 3.8,
there exists tn > 0 such that t2n (wn)tn ∈ M∞ for large n. From (3.21), (3.22), (3.23),
(3.46) and Lemma 3.11, we obtain
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m − �∞(û) + o(1) = �∞(wn) = I∞(wn) − 1

3
J∞(wn)

≥ I∞ (t2n (wn)tn

)
− t3n

3
J∞(wn) + (1 − tn)2(2 + tn)V∞

6
‖wn‖22

≥ m∞ − t3n
3
J∞(wn) + (1 − tn)2(2 + tn)V∞

6
‖wn‖22

> m,

which contradicts the fact that �∞(û) > 0. Hence, J∞(û) ≤ 0 and the claim holds.
In view of Lemma 3.8, there exists t∞ > 0 such that t2∞ût∞ ∈ M∞. Now (3.23),
(3.41), (3.42), (3.45), Fatou’s lemma and Lemma 3.11 yield

m = lim
n→∞

[
I∞(ûn) − 1

3
J∞(ûn)

]

= lim
n→∞ �∞(ûn) ≥ �∞(û) = I∞(û) − 1

3
J∞(û)

≥ I∞ (t2∞ût∞
)

− t3∞
3
J∞(û) + (1 − t∞)2(2 + t∞)V∞

6
‖û‖22

≥ m∞ − t3∞
3
J∞(û) + (1 − t∞)2(2 + t∞)V∞

6
‖û‖22 ≥ m,

which implies again the validity of (3.47) also in this case. In view of Lemma 3.8,
there exists t̂ > 0 such that t̂2ût̂ ∈ M. Moreover, it follows from (V1), (2.5), (3.21),
(3.47) and Corollary 3.5 that

m ≤ I(t̂2ût̂ ) ≤ I∞(t̂2ût̂ ) ≤ I∞(û) = m.

This shows that m is achieved at t̂2ût̂ ∈ M.
Case ii) ū �= 0. We define the functional � : H1(R3) → R by

�(u) = I(u) − 1

3
J (u)

= 1

6

∫
R3

[2V (x) + ∇V (x) · x]u2
ndx + 2

3

∫
R3

[ f (u)u − 3F(u)]dx

+ q2

12a

∫
R3

∫
R3

e− |x−y|
a u2(x)u2(y)dxdy.

(3.48)

In this case, similarly to the proof of (3.47), by using I,J and � instead of I∞,J∞
and �∞, we deduce that I(ū) = m and J (ū) = 0. ��
Lemma 3.14 Assume that (V1), (V3) and (F1)–(F4) hold. If ū ∈ M and I(ū) = m,
then ū is a critical point of I.

Proof Assume that I ′(ū) �= 0. Then there exist δ > 0 and ρ > 0 such that

‖u − ū‖ ≤ 3δ ⇒ ‖I ′(u)‖ ≥ ρ.
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It is easy to check that

lim
t→1

∥∥∥t2ūt − ū
∥∥∥ = 0.

Then there exists δ1 > 0 such that

|t − 1| < δ1 ⇒ ‖t2ūt − ū‖ < δ. (3.49)

Using (V1), (V3) and (F1)–(F3), it is easy to prove that there exist T1 ∈ (0, 1) and
T2 ∈ (1,∞) such that

J
(

T 2
1 ūT1

)
> 0, J

(
T 2
2 ūT2

)
< 0. (3.50)

In view of Lemma 3.4, we have

I
(

t2ūt

)
≤ I(ū) − 1

6

∫
R3

β(x, t)ū2dx, ∀ t > 0. (3.51)

The rest of the proof is similar to that of [11, Lemma 2.14]. For the sake of com-
pleteness, we give the details. Let

β0 := min

{∫
R3

β(T1, x)ū2dx,

∫
R3

β(T2, x)ū2dx

}
,

and ε := min{β0/24, 1, ρδ/8}. From [26, Lemma 2.3], there exists a deformation
η ∈ C([0, 1] × H1(R3), H1(R3)) such that

(i) η(1, u) = u if I(u) < m − 2ε or I(u) > m + 2ε;
(ii) η

(
1, Im+ε ∩ B(ū, δ)

) ⊂ Im−ε;
(iii) I(η(1, u)) ≤ I(u), ∀ u ∈ H1(R3);
(iv) η(1, u) is a homeomorphism of H1(R3).

Note that Corollary 3.5 implies that I (t2ūt
) ≤ I(ū) = m for all t > 0. Then (3.49)

and ii) give

I
(
η
(
1, t2ūt

))
≤ m − ε, ∀ t > 0, |t − 1| < δ1. (3.52)

On the other hand, (3.51) and iii) yield

I
(
η
(
1, t2ūt

))
≤ I

(
t2ūt

)
≤ m − 1

6

∫
R3

β(t, x)ū2dx

≤ m − δ2

6
, ∀ t > 0, |t − 1| ≥ δ1, (3.53)

where

δ2 := min

{∫
R3

β(1 − δ1, x)ū2dx,

∫
R3

β(1 + δ1, x)ū2dx

}
> 0.
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Combining (3.52) with (3.53), we have

max
t∈[T1,T2]

I
(
η
(
1, t2ūt

))
< m. (3.54)

Define the function �0(t) := J (η (1, t2ūt
))

for all t > 0. It follows from (3.51) and
i) that η(1, t2ūt ) = t2ūt for t = T1 and t = T2, which, together with (3.50), implies

�0(T1) = J
(

T 2
1 ūT1

)
> 0, �0(T2) = J

(
T 2
2 ūT2

)
< 0.

Since�0(t) is continuous on (0,∞), then we have that η
(
1, t2ūt

)∩M �= ∅ for some
t0 ∈ [T1, T2], contradicting the definition of m. ��
Proof of Theorem 1.4 In view of Lemmas 3.13 and 3.14, there exists ū ∈ M such that

I(ū) = m = inf
u∈H1(R3)\{0}

max
t>0

I(t2ut ), I ′(ū) = 0.

This shows that ū is a ground state solution of (1.1) such that I(ū) = m = infM I. ��
Remark 3.15 As in the proof of Theorem 1.4, by replacing Lemma 3.4 with
Lemma 3.7, we then obtain Corollary 1.6.

4 Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. Without loss of generality, we
consider that V (x) �≡ V∞.

Proposition 4.1 [21] Let X be a Banach space and let J ⊂ R
+ be an interval, and

�λ(u) = A(u) − λB(u), ∀ λ ∈ J ,

be a family of C1-functionals on X such that

(i) either A(u) → +∞ or B(u) → +∞, as ‖u‖ → ∞;
(ii) B maps every bounded set of X into a set of R bounded below;
(iii) there are two points v1, v2 in X such that

c̃λ := inf
γ∈�̃

max
t∈[0,1] �λ(γ (t)) > max{�λ(v1),�λ(v2)}, (4.1)

where

�̃ = {γ ∈ C([0, 1], X) : γ (0) = v1, γ (1) = v2} .

Then, for almost every λ ∈ J , there exists a sequence {un(λ)} such that

(i) {un(λ)} is bounded in X;
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(ii) �λ(un(λ)) → c̃λ;
(iii) �′

λ(un(λ)) → 0 in X∗, where X∗ is the dual of X.

For λ ∈ [1/2, 1] we introduce two families of C1-functionals on H1(R3) defined
by

Iλ(u) := 1

2

∫
R3

(
|∇u|2 + V (x)u2

)
dx + q2

4

∫
R3

φu(x)u2dx − λ

∫
R3

F(u)dx,

(4.2)

I∞
λ (u) := 1

2

∫
R3

(
|∇u|2 + V∞u2

)
dx + q2

4

∫
R3

φu(x)u2dx − λ

∫
R3

F(u)dx . (4.3)

In view of [18, A.14], we obtain the following useful identity.

Lemma 4.2 Assume that (V1), (V2) and (F1)–(F3) hold. Let u be a critical point of
Iλ in H1(R3), then the following Pohoz̆aev-type identity holds

Pλ(u) := 1

2
‖∇u‖22 + 1

2

∫
R3

[3V (x) + ∇V (x) · x] u2dx − 3λ
∫
R3

F(u)dx

+5q2

4

∫
R3

φuu2dx + q2

4a

∫
R3

∫
R3

e− |x−y|
a u2(x)u2(y)dxdy = 0.

(4.4)

Let us set Jλ(u) := 2I ′
λ(u)[u] − Pλ(u) for all λ ∈ [1/2, 1]. Then

Jλ(u) = 3

2
‖∇u‖22 + 1

2

∫
R3

[V (x) − ∇V (x) · x] u2dx − λ

∫
R3

[2 f (u)u − 3F(u)]dx

+3q2

4

∫
R3

φuu2dx − q2

4a

∫
R3

∫
R3

e− |x−y|
a u2(x)u2(y)dxdy. (4.5)

Similarly, for all λ ∈ [1/2, 1], if u is a critical point of I∞
λ , then u satisfies the

following Pohoz̆aev-type identity:

P∞
λ (u) := 1

2
‖∇u‖22 + 3V∞

2

∫
R3

‖u‖22 − 3λ
∫
R3

F(u)dx

+ 5q2

4

∫
R3

φuu2dx + q2

4a

∫
R3

∫
R3

e− |x−y|
a u2(x)u2(y)dxdy. = 0, (4.6)

We also let

J∞
λ (u) = 3

2
‖∇u‖22 + V∞

2
‖u‖22 − λ

∫
R3

[2 f (u)u − 3F(u)]dx

+ 3q2

4a

∫
R3

φuu2dx − q2

4a

∫
R3

∫
R3

e− |x−y|
a u2(x)u2(y)dxdy. (4.7)
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Define

M∞
λ := {u ∈ H1(R3)\{0} : J∞

λ (u) = 0}, m∞
λ := inf

M∞
λ

I∞
λ . (4.8)

By Lemma 3.7, we have the following lemma.

Lemma 4.3 Assume that (F1), (F3) and (F4) hold. Then

I∞
λ (u) ≥ I∞

λ (t2ut ) + 1 − t3

3
J∞

λ (u)

+ (1 − t)2(2 + t)

6
V∞‖u‖22, ∀ u ∈ H1(R3), t > 0. (4.9)

In view of Corollary 1.6, I∞
1 = I∞ has a minimizer u∞

1 �= 0 on M∞
1 = M∞,

i.e.

u∞
1 ∈ M∞

1 , (I∞
1 )′(u∞

1 ) = 0 and m∞
1 = I∞

1 (u∞
1 ). (4.10)

Noting that (1.5) is autonomous, V ∈ C(R3, R) and V (x) ≤ V∞ but V (x) �≡ V∞, we
can find x̄ ∈ R

3 and r̄ > 0 such that

V∞ − V (x) > 0, |u∞
1 (x)| > 0 a.e. |x − x̄ | ≤ r̄ (4.11)

after suitable translations to u∞
1 .

By (V1), we have Vmax := maxx∈R3 V (x) ∈ (0,∞). Let

I∗
λ(u) = 1

2

∫
R3

(
|∇u|2 + Vmaxu2

)
dx + q2

4

∫
R3

φu(x)u2dx

−λ

∫
R3

F(u)dx . (4.12)

Then it follows from (3.19) and (4.10) that there exists T > 0 such that

I∗
1/2

(
t2(u∞

1 )t

)
< 0, ∀ t ≥ T . (4.13)

Lemma 4.4 Assume that (V1), (V2) and (F1)–(F3) hold. Then

(i) there exists T > 0, independent of λ, such that Iλ(T 2(u∞
1 )T ) < 0 for all

λ ∈ [1/2, 1];
(ii) there exists a positive constant κ0, independent of λ, such that for all λ ∈ [1/2, 1],

cλ := inf
γ∈�

max
t∈[0,1] Iλ(γ (t)) ≥ κ0 > max{Iλ(0), Iλ(T

2(u∞
1 )T )},

where

� =
{
γ ∈ C([0, 1], H1(R3)) : γ (0) = 0, γ (1) = T 2(u∞

1 )T

}
;
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(iii) cλ is bounded for λ ∈ [1/2, 1] and lim supλ→λ0
cλ ≤ cλ0 for all λ0 ∈ (1/2, 1];

(iv) if f further satisfies (F4), then m∞
λ are non-increasing on λ ∈ [1/2, 1].

The proof of Lemma 4.4 is standard, so we omit it. Moreover, similarly to proof of
[15, Lemma 4.5], we have the following lemma.

Lemma 4.5 Assume that (V1), (V2) and (F1)–(F4) hold. Then there exists λ̄ ∈ [1/2, 1)
such that cλ < m∞

λ for all λ ∈ (λ̄, 1].
Lemma 4.6 Assume that (V1), (V2) and (F1)–(F4) hold. Then for almost every λ ∈
(λ̄, 1], there exists uλ ∈ H1(R3)\{0} such that

I ′
λ(uλ) = 0, Iλ(uλ) = cλ. (4.14)

Proof By Proposition 4.1, for almost every λ ∈ [1/2, 1], there exists a bounded
sequence {un(λ)} ⊂ H1(R3), which we denote it by {un} for simplicity, such that

Iλ(un) → cλ > 0, I ′
λ(un) → 0. (4.15)

Similarly to the proof of [18, Lemma4.5], usingLemma3.12,we then deduce that there
exist uλ ∈ H1(R3), an integer l ∈ N ∪ {0}, a sequence {yk

n } ⊂ R
3 and wk ∈ H1(R3)

for 1 ≤ k ≤ l such that un⇀uλ in H1(R3), I ′
λ(uλ) = 0, (I∞

λ )′(wk) = 0 and
I∞

λ (wk) ≥ m∞
λ for 1 ≤ k ≤ l,

∥∥∥∥∥un − uλ −
l∑

k=1

wk(· + yk
n )

∥∥∥∥∥→ 0 and Iλ(un) → Iλ(uλ) +
l∑

i=1

I∞
λ (wi ).

(4.16)

Since I ′
λ(uλ) = 0, then Jλ(uλ) = 0. It follows from (V2), (3.6), (4.2) and (4.5) that

Iλ(uλ) = Iλ(uλ) − 1

3
Jλ(uλ)

= 1

6

∫
R3

[2V (x) + ∇V (x) · x]u2
λdx + q2

12a

∫
R3

∫
R3

e− |x−y|
a u2(x)u2(y)dxdy

+2λ

3

∫
R3

[ f (uλ)uλ − 3F(uλ)]dx ≥ 0. (4.17)

If l �= 0, then

cλ = lim
n→∞ Iλ(un) = Iλ(uλ) +

l∑
i=1

I∞
λ (wi ) ≥ m∞

λ , ∀ λ ∈ (λ̄, 1],

which contradicts Lemma 4.5. Thus, l = 0, and (4.16) implies that un → uλ in
H1(R3) and Iλ(uλ) = cλ for almost every λ ∈ (λ̄, 1]. ��
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Lemma 4.7 Assume that (V1), (V2) and (F1)–(F4) hold. Then there exists ū ∈
H1(R3)\{0} such that

I ′(ū) = 0, 0 < I(ū) ≤ c1. (4.18)

Proof In view of Lemma 4.4 (ii) and (iii) and Lemma 4.6, there exist two sequences
{λn} ⊂ (λ̄, 1] and {uλn } ⊂ H1(R3), which we denoted it by {un} for brevity, such
that

λn → 1, cλn → c∗ > 0, I ′
λn

(un) = 0, Iλn (un) = cλn . (4.19)

Now we assert that {un} is bounded in H1(R3).
By (4.2), (4.5), (4.19) and Lemma 4.4 (iii), one has

C1 ≥ cλn = Iλn (un) − 1

3
Jλn (un)

= 1

6

∫
R3

[2V (x) + ∇V (x) · x]u2
ndx + q2

12a

∫
R3

∫
R3

e− |x−y|
a u2

n(x)u2
n(y)dxdy

+2λn

3

∫
R3

[ f (un)un − 3F(un)]dx . (4.20)

By (V2), there exist constants �0, R0 > 0 such that

2V (x) + ∇V (x) · x ≥ �0, ∀ |x | ≥ R0. (4.21)

Then it follows from (3.6), (4.20) and (4.21) that

C1 ≥ �0

6

∫
|x |≥R0

u2
ndx + q2e− 2R0

a

12a

(∫
|x |<R0

u2
ndx

)2

, (4.22)

which implies that {‖un‖2} is bounded.
Next, we prove that {‖∇un‖2} is also bounded. Arguing by contradiction, suppose

that ‖∇un‖2 → ∞. By (V1), (V2), (4.22) and Lemma 4.4 (iii), one has

cλn +
∫
R3

[V∞ − V (x) + |∇V (x) · x |]u2
ndx ≤ M0 (4.23)

for some constant M0 > 0. Let tn = min
{
1, 2(M0/‖∇un‖22)1/3

}
. Then tn → 0. Thus,

it follows from (4.2), (4.3), (4.5), (4.7), (4.9) and (4.23) that

I∞
λn

(t2n (un)tn ) ≤ I∞
λn

(un) − 1 − t3n
3

J∞
λn

(un)

= Iλn (un) + 1

2

∫
R3

[V∞ − V (x)]u2
ndx
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−1 − t3n
3

[
Jλn (un) + 1

2

∫
R3

[V∞ − V (x) + ∇V (x) · x]u2
ndx

]

≤ cλn +
∫
R3

[V∞ − V (x) + |∇V (x) · x |]u2
ndx ≤ M0. (4.24)

As in the proof of (3.39), we then deduce a contradiction by using (4.24). Hence, {un}
is bounded in H1(R3), and the assertion holds.

Similarly to the proof of Lemma 4.6, there exists ū ∈ H1(R3)\{0} such that (4.18)
holds. ��
Proof of Theorems 1.1 Define

K :=
{

u ∈ H1(R3)\{0} : I ′(u) = 0
}

, m̂ := inf
u∈K

I(u).

Then Lemma 4.7 shows that K �= ∅ and m̂ ≤ c1. For any u ∈ K, (3.16), (4.5) and
Lemma 4.2 imply J (u) = J1(u) = 2I ′(u)[u] − P(u) = 0. By (2.5), (3.16) and
(4.21), one has

I(u) = I(u) − 1

3
J (u) ≥ �0

6

∫
|x |≥R0

u2dx + q2e− 2R0
a

12a

(∫
|x |<R0

u2dx

)2

> 0, ∀ u ∈ K,

which implies m̂ ≥ 0. Since I ′(u)[u] = 0 for u ∈ K, we then deduce from (F1), (F2)
and the Sobolev embedding theorem that there exists α0 > 0 such that

‖u‖ ≥ α0, ∀ u ∈ K. (4.25)

Let {un} ⊂ K be such that I ′(un) = 0 and I(un) → m̂. In view of Lemma 4.5, we
have m̂ ≤ c1 < m∞

1 . Similarly to the proof of Lemma 4.6, we deduce that there exists
û ∈ H1(R3) such that un → û in H1(R3), I ′(û) = 0 and I(û) = m̂. Moreover,
(4.25) leads to û �= 0. Hence, û ∈ H1(R3) is a ground state solution of (1.1). ��
Proof of Theorems 1.3 As in the proof of Lemma 4.6, for almost every λ ∈ [1/2, 1],
there exists a bounded sequence {un(λ)} ⊂ H1(R3), which we denote it by {un} for
simplicity, and a positive constant κ∞

0 , independent of λ, such that

I∞
λ (un) → c∞

λ ≥ κ∞
0 , (I∞

λ )′(un) → 0. (4.26)

Using (F1), (F2), (4.26) and [26, Lemma 1.21], we can prove that there exists a
sequence yn ∈ R

3 such that
∫

B1(yn)
|un|2dx > 0. Let ūn(x) = un(x + yn). Then

‖ūn‖ = ‖un‖ and there exists ū ∈ H1(R3)\{0} such that ūn⇀ũ in H1(R3). Note that

I∞
λ (ūn) → c∞

λ ≥ κ∞
0 , (I∞

λ )′(ūn) → 0. (4.27)

By a standard argument, for almost every λ ∈ [1/2, 1], there exists uλ ∈ H1(R3)\{0}
such that

(I∞
λ )′(uλ) = 0, I∞

λ (uλ) = c∞
λ ≥ κ∞

0 . (4.28)
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From (4.28), there exist two sequences {λn} ⊂ [1/2, 1] and {uλn } ⊂ H1(R3), which
we denote the latter by {un}, such that

λn → 1, κ∞
0 ≤ c∞

λn
→ c∞, (I∞

λn
)′(un) = 0, I∞

λn
(un) = c∞

λn
. (4.29)

Similarly to (4.20), we have

C2 ≥ c∞
λn

= I∞
λn

(un) − 1

3
J∞

λn
(un)

= V∞
3

‖un‖22 + q2

12a

∫
R3

∫
R3

e− |x−y|
a u2

n(x)u2
n(y)dxdy

+2λn

3

∫
R3

[ f (un)un − 3F(un)]dx, (4.30)

which implies

‖un‖22 ≤ C3,

∫
R3

[ f (un)un − 3F(un)]dx ≤ C4, (4.31)

and

∫
R3

∫
R3

e− |x−y|
a u2

n(x)u2
n(y)dxdy ≤ C5, (4.32)

Next, we claim that {‖∇un‖2} is also bounded. Arguing by contradiction, suppose
that ‖∇un‖2 → ∞. Set vn = un/‖un‖, then ‖vn‖ = 1, and (4.31) implies ‖vn‖2 → 0.
If δ0 := lim supn→∞ supy∈R3

∫
B1(y)

|vn|2dx = 0, then by [26, Lemma 1.21], vn → 0

in Ls(R3) for 2 < s < 6.
Since ‖vn‖2 → 0, we have

∫
0<|un |≤r0

f (un)

un
v2ndx ≤ C6‖vn‖22 = o(1). (4.33)

Set κ ′ = κ/(κ − 1). Then (F5), (4.31) and the Hölder inequality yield

∫
|un |>r0

f (un)

un
v2ndx ≤

[∫
|un |>r0

∣∣∣∣ f (un)

un

∣∣∣∣
κ

dx

]1/κ
‖vn‖22κ ′

≤ C7

(∫
|un |>r0

[ f (un)un − 3F(un)]dx

)1/κ

‖vn‖22κ ′

≤ C8‖vn‖22κ ′ = o(1). (4.34)

Since (I∞
λn

)′(un)[un] = 0 by (4.29), then (4.33) and (4.34) yield
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1 ≤ 1

‖un‖2
[∫

R3

(
|∇un|2 + V∞u2

n

)
dx + q2

∫
R3

φun (x)u2
ndx

]

= λn

∫
R3

f (un)

un
v2ndx = o(1).

This contradiction shows that δ0 = lim supn→∞ supy∈R3

∫
B1(y)

|vn|2dx > 0. Going if

necessary to a subsequence, we may assume that there exists a sequence {yn} ⊂ R
3

such that
∫

B1(yn)
|vn|2dx > δ0

2 for all n ∈ N. Let wn(x) = vn(x + yn). Then ‖wn‖ =
‖vn‖ = 1, and for all n ∈ N ∫

B1(0)
|wn|2dx >

δ0

2
. (4.35)

Then there exists w ∈ H1(R3)\{0} such that, passing to a subsequence, wn⇀w in
H1(R3), wn → w in Ls

loc(R
3) for all 1 ≤ s < 6, wn → w a.e. in R

3. Let us
define ũn(x) = un(x + yn). Then ũn/‖un‖ = wn → w a.e. in R

3 and w �= 0. For
x ∈ {y ∈ R

3 : w(y) �= 0}, we have limn→∞ |ũn(x)| = ∞. By (F1) and (F2), there
exists M1 > 0 such that

F(t) + M1t2 ≥ 0, ∀ t ∈ R. (4.36)

Note that (4.29) and (4.32) lead to

λn → 1, κ∞
0 ≤ c∞

λn
→ c∞, (I∞

λn
)′(ũn) = 0, I∞

λn
(ũn) = c∞

λn
(4.37)

and ∫
R3

∫
R3

e− |x−y|
a ũ2

n(x)ũ2
n(y)dxdy ≤ C5. (4.38)

From (F3), (4.3), (4.6), (4.37), (4.38), Lemma 4.2 and Fatou’s lemma, we derive

0 = lim
n→∞

I∞
λ (ũn) − 1

5P∞
λ (ũn)

‖ũn(x)‖3

= lim
n→∞

{
1

5‖ũn(x)‖3
[
2‖∇ũn‖22 + V∞‖ũn‖22 − q2

4a

∫
R3

∫
R3

e− |x−y|
a ũ2(x)ũ2(y)dxdy

]

− 2λn

5‖un‖3
∫
R3

F(ũn)dx

}

≤ −1

5
lim inf
n→∞

∫
R3

F(ũn) + M1ũ2
n

|ũn |3 w3
ndx = −∞.

This contradiction shows that {un} is bounded in H1(R3) and the claim holds.
As in the proof of Lemma 4.6, there exists ū ∈ H1(R3)\{0} such that

(I∞)′(ū) = 0, 0 < I∞(ū) ≤ c∞
1 .
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Set

K∞ :=
{

u ∈ H1(R3)\{0} : (I∞)′(u) = 0
}

, m̂∞ := inf
u∈K∞ I∞(u).

The above argument shows that K∞ �= ∅.
For any u ∈ K∞, Lemma 4.2 implies J∞(u) = 2(I∞)′(u)[u] − P∞(u) = 0. By

(F5) and (3.45), we have

I∞(u) = I∞(u) − 1

3
J∞(u) ≥ V∞

3
‖u‖22 > 0, ∀ u ∈ K∞,

which implies m̂∞ ≥ 0. Since (I∞)′(u)[u] = 0 for u ∈ K∞, we easily deduce from
(F1), (F2) and the Sobolev embedding theorem that there exists α∞ > 0 such that

‖u‖ ≥ α∞, ∀ u ∈ K∞. (4.39)

Let {un} ⊂ K∞ be such that (I∞)′(un) = 0 and I∞(un) → m̂∞. Since
(I∞)′(un)[un] = 0, we can deduce from (4.39) and [26, Lemma 1.21] that {un}
is non-vanishing, and so up to a subsequence, there exists a sequence {yn} ⊂ R

3 such
that

∫
B1(yn)

|un|2dx > 0. Let ûn(x) = vn(x + yn). Then there exists û ∈ H1(R3)\{0}
such that un⇀û in H1(R3), (I∞)′(û) = 0 and I∞(û) ≥ m̂∞. Moreover, it follows
from (F5), (3.21), (3.22) and Fatou’s lemma that

m̂∞ = lim
n→∞

[
I∞(ûn) − 1

3
J∞(ûn)

]

= lim
n→∞

[
V∞
3

‖ûn‖22 + q2

12a

∫
R3

∫
R3

e− |x−y|
a û2

n(x)û2
n(y)dxdy

+ 2

3

∫
R3

[ f (ûn)ûn − 3F(ûn)]dx

]

≥ V∞
3

‖û‖22 + q2

12a

∫
R3

∫
R3

e− |x−y|
a û2(x)û2(y)dxdy

+2

3

∫
R3

[ f (û)û − 3F(û)]dx

= I∞(û) − 1

3
J∞(û) = I∞(û) ≥ m̂∞,

which implies I∞(û) = m̂∞. Hence, û ∈ H1(R3) is a ground state solution of
problem (1.5). The proof is now complete. ��
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