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Abstract
We consider a nonlinear elliptic equation driven by a nonhomogeneous differential
operator plus an indefinite potential. On the reaction term we impose conditions only
near zero. Using variational methods, together with truncation and perturbation tech-
niques and critical groups, we produce three nontrivial solutionswith sign information.
In the semilinear case we improve this result by obtaining a second nodal solution for
a total of four nontrivial solutions. Finally, under a symmetry condition on the reaction
term, we generate a whole sequence of distinct nodal solutions.
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1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper we study

the following nonlinear nonhomogeneous Robin problem

⎧
⎨

⎩

−div a(Du(z)) + ξ(z)|u(z)|p−2u(z) = f (z, u(z)) in�,

∂u
∂na

+ β(z)|u|p−2u = 0 on ∂�.

⎫
⎬

⎭
(1)

In this problem, themap a : RN → R
N involved in the differential operator is a con-

tinuous, strictly monotone (thus maximal monotone operator, too) map which satisfies
certain other regularity and growth conditions listed in hypotheses H(a) below. These
conditions are general enough to generate a broad framework that incorporates many
differential operators of interest, such as the p-Laplacian and the (p, q)-Laplacian
(that is, the sum of a p-Laplacian and a q-Laplacian, with 1 < q < p < ∞). Note
that in general, the differential operator u �→ div a(Du) is not homogeneous. The
potential function ξ(·) ∈ L∞(�) and in general, ξ(·) is nodal (that is, sign changing).
So, the left-hand side of problem (1) needs not be coercive. The reaction term f (z, x)
is a Carathéodory function (that is, for all x ∈ R, the mapping z �→ f (z, x) is mea-
surable, while for almost all z ∈ �, the mapping x �→ f (z, x) is continuous). The
special feature of our paper is that no global growth condition is imposed on f (z, ·).
The only conditions imposed on f (z, ·) concern its behavior near zero and that f (z, ·)
must be locally L∞-bounded. In the boundary condition, ∂u

∂na
denotes the generalized

normal derivative corresponding to the map a(·). It is defined by extension of the map

C1(�) � u �→ ∂u

∂na
= (a(Du), n)RN

,

with n(·) being the outward unit normal on ∂�. This kind of conormal derivative is
dictated by the nonlinear Green identity (see Gasinski and Papageorgiou [9, p. 210])
and was also used by Lieberman [15] in his nonlinear regularity theory. The boundary
coefficient is β ∈ C0,α(∂�), with 0 < α < 1 and β(z) � 0 for all z ∈ ∂�.

The aim of the present paper is to prove a multiplicity theorem for such equations,
providing sign information for all solutions produced. Wang [32] was the first to
study elliptic problems with a general reaction term of arbitrary growth. The equation
studied by Wang [32] was a nonlinear problem driven by Dirichlet p-Laplacian with
zero potential. Using cut-off techniques and imposing a symmetry condition on f (z, ·)
(that is, assuming that f (z, ·) is odd), Wang [32] produced an infinity of nontrivial
solutions.More recently, Li andWang [14], using similar tools, improved this result by
producing an infinity of nodal solutions for semilinear Schrödinger equations. Their
result was extended by Papageorgiou and Rădulescu [21] who considered nonlinear,
nonhomogeneous Robin problems with zero potential (that is, ξ ≡ 0). Assuming that
the reaction term f (z, ·) has zeros of constant sign and that it is odd, they produced an
infinity of smooth nodal solutions. We also mention the recent work of Papageorgiou
and Winkert [23], who considered a reaction term of general growth and with zeros.
Under stronger conditions on the map a(·) and with zero potential, they produced
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constant sign and nodal solutions.We refer to Pucci et al. [2,4] for eigenvalue problems
associated to p-Laplacian type operators. Related results in the framework of problems
with unbalanced growth are due to Fiscella and Pucci [8], and Papageorgiou et al. [26].
Finally, we also point out the papers of He et al. [11] on nonlinear, nonhomogeneous
Neumann problems with nonnegative potential (that is, ξ � 0, ξ 	≡ 0), Iturriaga et al.
[12] on parametric equations driven by Dirichlet p-Laplacian with zero potential and
a reaction with zeros, and Tan and Fang [30] on nonlinear, nonhomogeneous Dirichlet
problems using the formalism of Orlicz spaces.

2 Mathematical Background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X∗, X). Given ϕ ∈ C1(X ,R), we say that ϕ satisfies the “Cerami
condition” (the C-condition for short), if the following property holds:

“Every sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 ⊆ R is bounded and

(1 + ||un||)ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence”.

This compactness-type condition on the functional ϕ, leads to a deformation the-
orem from which one can derive the minimax theory for the critical values of ϕ. A
fundamental result in this theory is the so-called “mountain pass theorem”.

Theorem 1 Let X be a Banach space and assume that ϕ ∈ C1(X ,R) satisfies the
C-condition, u0, u1 ∈ X, ||u1 − u0|| > ρ > 0,

max{ϕ(u0), ϕ(u1)} < inf {ϕ(u) : ||u − u0|| = ρ} = mρ

and

c = inf
γ∈


max
0�t�1

ϕ(γ (t)) with 
 = {γ ∈ C([0, 1], X) : γ (0) = u0, γ (1) = u1}.

Then c � mρ and c is a critical value of ϕ.

Let k ∈ C1(0,∞) with k(t) > 0 for all t > 0. We assume that

0 < ĉ � k′(t)t
k(t)

� c0 and c1t
p−1 � k(t) � c2(t

s−1 + t p−1) for all t > 0 , with c1, c2 > 0.

(2)

for 1 � s < p
We introduce the following conditions on the map α(·) (see also Papageorgiou and

Rădulescu [20,22]):
H(a) : a(y) = a0(|y|)y for all y ∈ R with a0(t) > 0 for all t > 0 and
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(i) a0 ∈ C1(0,∞), t �→ a0(t)t is strictly increasing on (0,∞), a0(t)t → 0+ as
t → 0+ and

lim
t→0+

a′
0(t)t

a0(t)
> −1;

(ii) |∇a(y)| � c3
k(|y|)
|y| for all y ∈ R

N\{0}, and for some c3 > 0;

(iii) (∇a(y)ξ, ξ)RN � k(|y|)
|y| |ξ |2 for all y ∈ R

N\{0}, ξ ∈ R
N;

(iv) for G0(t) = ∫ t
0 a0(s)s ds for all t > 0, we can find τ ∈ (1, p] such that

lim sup
t→0+

τG0(t)

tτ
� c∗,

t �→ G0(t
1
τ ) is convex.

Remark 1 Hypotheses H(a)(i), (i i), (i i i) were dictated by the nonlinear regularity
theory of Lieberman [15] and the nonlinear maximum principle of Pucci and Serrin
[27, pp. 111, 120]. Hypothesis H(a)(iv) serves the needs of our problem. It is a mild
condition and it is satisfied in all cases of interest (see the examples below). Evidently,
G0(·) is strictly convex and strictly increasing.We setG(y) = G0(|y|) for all y ∈ R

N .
Then G ∈ C1(RN ,R), G(·) is convex, G(0) = 0, and we have

∇G(0) = 0 and ∇G(y) = G ′
0(|y|)

y

|y| = a0(|y|)y = a(y) for all y ∈ R
N\{0}.

Hence G(·) is the primitive of a(·) and so by a well-known property of convex
functions, we have

G(y) � (a(y), y)RN for all y ∈ R
N. (3)

The following lemma is an easy consequence of hypotheses H(a) and summarizes
the main properties of a(·) (see Papageorgiou and Rădulescu [20]).

Lemma 2 If hypotheses H(a)(i), (i i), (i i i) hold, then

(a) y �→ a(y) is continuous and strictly monotone (thus maximal monotone operator,
too);

(b) |a(y)| � c4(|y|s−1 + |y|p−1) for all y ∈ R
N, with c4 > 0;

(c) (a(y), y)RN � c1
p−1 |y|p for all y ∈ R

N (see (2)).

Then this lemma and (3) lead to the following growth restrictions for the primitive
G(·).
Corollary 3 If hypotheses H(a)(i), (i i), (i i i) hold, then c1

p(p−1) |y|p � G(y) � c5(1+
|y|p) for all y ∈ R

N and for some c5 > 0.

Next, we present some characteristic examples of differential operators which fit in
the framework provided by hypotheses H(a) (see Papageorgiou and Rădulescu [20]).
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Example 1 (a) a(y) = |y|p−2y with 1 < p < ∞.
The corresponding differential operator is the p-Laplacian defined by

�pu = div (|Du|p−2Du) for all u ∈ W 1,p(�).

(b) a(y) = |y|p−2y + |y|q−2y with 1 < q < p < ∞.
The corresponding differential operator is the (p, q)-Laplacian defined by

�pu + �qu for all u ∈ W 1,p(�).

Such operators arise in problems of mathematical physics and recently there have
been some existence and multiplicity results for equations driven by such operators,
see Cingolani and Degiovanni [3], Mugnai and Papageorgiou [17], Papageorgiou and
Rădulescu [18], Papageorgiou et al. [24], Sun [28], and Sun et al. [29].

(c) a(y) = (1 + |y|2) p−2
p y with 1 < p < ∞.

The corresponding differential operator is the generalized p-mean curvature dif-
ferential operator defined by

div ([1 + |Du|2] p−2
p Du) for all u ∈ W 1,p(�).

(d) a(y) = |y|p−2y
[
1 + 1

1+|y|p
]
with 1 < p < ∞.

The corresponding differential operator is defined by

�pu + div

( |Du|p−2Du

1 + |Du|2
)

for all u ∈ W 1,p(�).

Such operators arise in problems of plasticity.

Now let A : W 1,p(�) → W 1,p(�)∗ be the nonlinear map defined by

〈A(u), h〉 =
∫

�

(a(Du), Dh)RNdz for all u, h ∈ W 1,p(�).

Proposition 4 If hypotheses H(a)(i), (i i), (i i i) hold, then A is continuous, monotone
(hence maximal monotone, too) and of type (S)+, that is, if un

w−→ u in W 1,p(�) and

lim sup
n→∞

〈A(un), un − u〉 � 0,

then un → u in W 1,p(�).

The following spaces will be used in the analysis of problem (1):

W 1,p(�), C1(�) and Lq(∂�) (1 � q � ∞).
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We denote by || · || the norm of W 1,p(�) given by

||u|| = [||u||pp + ||Du||pp
] 1
p for all u ∈ W 1,p(�).

The Banach space C1(�) is an ordered Banach space with positive (order) cone
given by

C+ = {u ∈ C1(�) : u(z) � 0 for all z ∈ �}.

This cone has a nonempty interior containing the set

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ �}.

On ∂� we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·).
Using this measure, we can define in the usual way the “boundary” Lebesgue spaces
Lq(∂�) (for 1 � q � ∞). From the theory of Sobolev spaces we know that there
exists a unique continuous linear map γ0 : W 1,p(�) → L p(∂�) known as the “trace
map”, such that

γ0(u) = u|∂� for all u ∈ W 1,p(�) ∩ C(�).

Hence the trace map assigns boundary values to any Sobolev function. The trace

map is compact into Lq(∂�) for all q ∈
[
1, p(N−1)

N−p

)
if p < N and for all q ∈ [1,+∞)

if p � N . Also, we have

im γ0 = W
− 1

p′ ,p (∂�)(
1

p
+ 1

p′ = 1) and ker γ0 = W 1,p
0 (�).

In what follows, for the sake of notational simplicity, we drop the use of the map
γ0. All restrictions of Sobolev functions on ∂� are understood in the sense of traces.

For x ∈ R, let x± = max{±x, 0}. Then for any function u(·) we define

u±(·) = u(·)±.

If u ∈ W 1,p(�), then u± ∈ W 1,p(�), u = u+ − u− and |u| = u+ + u−.
Our hypotheses on the potential function ξ(·) and the boundary coefficient β(·) are

the following:

• H(ξ): ξ ∈ L∞(�);
• H(β): β ∈ C0,α(∂�) with α ∈ (0, 1) and β(z) � 0 for all x ∈ ∂�.

Remark 2 If β ≡ 0, then we recover the Neumann problem.

Let γ : W 1,p(�) → R be the C1-functional defined by

γ (u) =
∫

�

G(Du)dz +
∫

�

ξ(z)|u|pdz +
∫

∂�

β(z)|u|pdσ for all u ∈ W 1,p(�).

123



Applied Mathematics & Optimization (2020) 81:823–857 829

Also, let f0 : � × R → R be a Carathéodory function such that

| f0(z, x)| � a0(z)(1 + |x |r−1) for almost all z ∈ �, and all x ∈ R,

with a0 ∈ L∞(�)+, 1 < r � p∗ where p∗ =
{

Np
N−p if p < N
+∞ if p � N

(the critical

Sobolev exponent). Let F0(z, x) = ∫ x
0 f0(z, s)ds and consider the C1-functional

ψ0 : W 1,p(�) → R defined by

ψ0(u) = 1

p
γ (u) −

∫

�

F0(z, u)dz for all u ∈ W 1,p(�).

The following result is due to Papageorgiou and Rădulescu [22] and is an outgrowth
of the nonlinear regularity theory of Lieberman [15].

Proposition 5 Assume that hypotheses H(a)(i), (i i), (i i i), H(ξ), H(β) hold and
u0 ∈ W 1,p(�) is a local C1(�)-minimizer of ψ0, that is, there exists ρ0 > 0 such
that

ψ0(u0) � ψ0(u0 + h) for all h ∈ C1(�), ||h||C1(�) � ρ0.

Then u0 ∈ C1,η(�) for some η ∈ (0, 1) and u0 is also a local W 1,p(�)-minimizer of
ψ0, that is, there exists ρ1 > 0 such that

ψ0(u0) � ψ0(u0 + h) for all h ∈ W 1,p(�), ||h|| � ρ1.

In the special case of semilinear equations (that is, when a(y) = y for all y ∈ R
N),

we will be able to improve the multiplicity theorem and produce additional nodal
solutions. In this case we can also relax the requirements on the potential function
ξ(z) and make use of the spectrum of u �→ −�u + ξ(z)u with Robin boundary
condition.

So, we consider the following linear eigenvalue problem

{−�u(z) + ξ(z)u(z) = λ̂u(z) in�,
∂u
∂n + β(z)u = 0 on ∂�.

}

(4)

Now we assume that

ξ ∈ Ls(�) with s > N and β ∈ W 1,∞(∂�) with β(z) � 0 for all x ∈ ∂�.

We consider the C1-functional γ̂ : H1(�) → R defined by

γ̂ (u) = ||Du||22 +
∫

�

ξ(z)u2dz +
∫

∂�

β(z)u2dσ for all u ∈ H1(�).
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From D’Agui et al. [5], we know that there exists μ > 0 such that

γ̂ (u) + μ||u||22 � c6||u||2 for all u ∈ H1(�), and some c6 > 0. (5)

Using (5) and the spectral theorem for compact self-adjoint operators on a Hilbert
space, we show that the spectrum σ̂ (2) of (4) consists of a sequence {λ̂k}k�1 of
distinct eigenvalues which satisfy λ̂k → +∞ as k → +∞. By E(λ̂k) we denote the
corresponding eigenspace. We can say the following about these items:

(i) λ̂1 is simple (that is, dim E(λ̂1) = 1) and

λ̂1 = inf

{
γ̂ (u)

||u||22
: u ∈ H1(�), u 	= 0

}

. (6)

(ii) For every m � 2 we have

λ̂m = inf

{
γ̂ (u)

||u||22
: u ∈ ⊕

k�m
E(λ̂k), u 	= 0

}

= sup

{
γ̂ (u)

||u||22
: u ∈ m⊕

k=1
E(λ̂k), u 	= 0

} (7)

(iii) For every k ∈ N, E(λ̂k) is finite dimensional, E(λ̂k) ⊆ C1(�), and it has the
“Unique Continuation Property” (“UCP” for short), that is, if u ∈ E(λ̂k) vanishes
on a set of positive measure, then u ≡ 0 (see de Figueiredo and Gossez [6]).

In relation (6), the infimum is realized on E(λ̂1), while in (7), both the infimum
and the supremum are realized on E(λ̂m). Moreover, from the above properties we
see that the elements of E(λ̂1) have constant sign, while the elements of E(λ̂m) (for
m � 2) are all nodal (that is, sign changing). By û1 we denote the L2-normalized
(that is, ||û1||2 = 1) positive eigenfunction corresponding to λ̂1. From the regularity
theory of Wang [31], we have that û1 ∈ C+ and using the Harnack inequality (see,
for example, Motreanu et al. [16, p. 211]), we have that û1(z) > 0 for all z ∈ �.
Furthermore, if we assume that ξ+ ∈ L∞(�), then û1 ∈ D+ (by the strong maximum
principle).

Finally, let us recall some basic definitions and facts from Morse theory (critical
groups), which we will need in the sequel.

With X being a Banach space, let (Y1,Y2) be a topological pair such that Y2 ⊆ Y1 ⊆
X . For every k ∈ N0, let Hk(Y1,Y2) denote the kth relative singular homology group
with integer coefficients for the pair (Y1,Y2). For k < 0, we have Hk(Y1,Y2) = 0.

For ϕ ∈ C1(X ,R) and c ∈ R we introduce the following sets:

ϕc = {u ∈ X : ϕ(u) � c},
Kϕ = {u ∈ X : ϕ′(u) = 0},
Kc

ϕ = {u ∈ Kϕ : ϕ(u) = c}.
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Suppose that u ∈ Kc
ϕ is isolated. Then the critical groups of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕ
c ∩U , ϕc ∩U\{u}) for all k ∈ N0.

Here,U is a neighborhood of u such that Kϕ ∩ϕc∩U = {u}. The excision property
of singular homology theory implies that the above definition of critical groups is
independent of the choice of the isolating neighborhood U .

Suppose that ϕ ∈ C1(X ,R) satisfies the C-condition and that inf ϕ(Kϕ) > −∞.
Then the critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X , ϕc) for all k ∈ N0, with c < inf ϕ(Kϕ).

This definition is independent of the choice of c < inf ϕ(Kϕ). To see this, let
c′ < inf ϕ(Kϕ) and without any loss of generality assume that c′ < c. Then from
Motreanu et al. [16, Theorem 5.34, p. 110], we have that

ϕc′
is a strong deformation retract of ϕc,

⇒ Hk(X , ϕc) = Hk(X , ϕc′
) for all k ∈ N0

(see Motreanu et al. [16, Corollary 6.15, p. 145]).

Assume that Kϕ is finite. We introduce the following quantities

M(t, u) =
∑

k∈N0

rankCk(ϕ, u)tk for all t ∈ R, u ∈ Kϕ,

P(t,∞) =
∑

k∈N0

rankCk(ϕ,∞)tk for all t ∈ R.

The Morse relation says that

∑

u∈Kϕ

M(t, u) = P(t,∞) + (1 + t)Q(t), (8)

where Q(t) = ∑

k∈N0

βk tk is a formal series in t ∈ R with nonnegative integer coeffi-

cients.
Let H be a Hilbert space, u ∈ H , and U a neighborhood of u. Suppose that

ϕ ∈ C2(U ). If u ∈ Kϕ , then the “Morse index” m of u is defined to be the supremum
of the dimensions of the vector subspaces of H onwhichϕ′′(u) is negative definite. The
“nullity” ν of u is the dimension of ker ϕ′′(u). We say that u ∈ Kϕ is “nondegenerate”
if ϕ′′(u) is invertible (that is, ν = 0). Suppose that ϕ ∈ C2(U ) and u ∈ Kϕ is isolated
and nondegenerate with Morse index m. Then

Ck(ϕ, u) = δk,mZ for all k ∈ N0.
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Here δk,m denotes the Kronecker symbol, that is,

δk,m =
{
1 if k = m

0 if k 	= m.

3 Solutions of Constant Sign

In this section, we produce solutions of constant sign for problem (1). We assume the
following conditions on the reaction term f (z, x).

H( f )1: f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for
almost all z ∈ � and

(i) there exist η > 0 and aη ∈ L∞(�)+ such that

| f (z, x)| � aη(z) for almost all z ∈ �, and all x ∈ [−η, η];

(ii) if F(z, x) = ∫ x
0 f (z, s)ds, then there exist η0 > 0, q ∈ (1, τ ) (τ > 1 as in

hypothesis H(a)(iv)) and δ0 > 0 such that

η0|x |q � f (z, x)x � qF(z, x) for almost all z ∈ �, and all |x | � δ0;

(iii) with η > 0 as in (i) we have

f (z, η) − ξ(z)ηp−1 � 0 � f (z,−η) + ξ(z)ηp−1 for almost all z ∈ �.

Remark 3 We see that no global growth condition is imposed on f (z, ·). All our
hypotheses on f (z, ·) concern its behaviour near zero. Note that H( f )1, (i i), (i i i)
imply a kind of oscillatory behaviour near zero for x �→ f (z, x) − ξ(z)|x |p−2x .

Evidently, we can find ϑ0 > 0 such that

f (z, x)x � η0|x |q − ϑ0|x |p for almost all z ∈ �, and all |x | � η. (9)

Then we define

μ(z, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−η0η
q−1 + ϑ0η

p−1 if x < −η

η0|x |q−2x − ϑ0|x |p−2x if − η � x � η

η0η
q−1 − ϑ0η

p−1 if η < x .

(10)

Note that μ(z, x) is a Carathéodory function and for all z ∈ �, μ(z, ·) is odd. We
consider the following auxiliary Robin problem

⎧
⎨

⎩

−div a(Du(z)) + ||ξ+||∞|u(z)|p−2u(z) = μ(z, u(z)) in�,

∂u
∂na

+ β(z)|u|p−2u = 0 on ∂�.

⎫
⎬

⎭
(11)
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In what follows, given h1, h2 ∈ W 1,p(�), we set

[h1, h2] = {u ∈ W 1,p(�) : h1(z) � u(z) � h2(z) for almost all z ∈ �}.

Proposition 6 If hypotheses H(a), H(ξ), H(β) hold, then problem (10) admits a
unique positive solution

ũ ∈ [0, η] ∩ D+

and since (10) is odd, then ṽ = −ũ ∈ [−η, 0] ∩ D+ is the unique negative solution of
(10).

Proof We first show the existence of a positive solution. So, let ϑ > 0 be such that

η0 � [||ξ+||∞ + ϑ]ηp−1.

We introduce the following Carathéodory function

μ̂+(z, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if x < 0

μ(z, x) + ϑx p−1 if 0 � x � η

μ(z, η) + ϑηp−1 if η < x .

(12)

We set M̂+(z, x) = ∫ x
0 μ̂+(z, s)ds and consider the C1-functional ψ+ :

W 1,p(�) → R defined by

ψ+(u)=
∫

�

G(Du)dz+ ||ξ+||∞ + ϑ

p
||u||pp+ 1

p

∫

∂�

β(z)|u|pdσ −
∫

�

M̂+(z, u)dz

for all u ∈ W 1,p(�).

Corollary 3, hypothesis H(β) and (12) imply that

ψ+ is coercive.

Also, using the Sobolev embedding theorem and the compactness of the trace map,
we see thatψ+ is sequentiallyweakly lower semicontinuous. Invoking theWeierstrass-
Tonelli theorem, we can find ũ ∈ W 1,p(�) such that

ψ+(ũ) = inf{ψ+(u) : u ∈ W 1,p(�)}. (13)

Hypothesis H(a)(iv) implies that we can find c7 > 0 and δ ∈ (0, δ0] such that

G(y) � c7|y|τ for all y ∈ R
N with |y| � δ. (14)
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Let u ∈ D+ and choose small t ∈ (0, 1) such that tu � δ0. Then we have

ψ+(tu) � tτ ||Du||ττ + c8t
p||u||pp − c9t

q ||u||qq
for some c8, c9 > 0 (see(12), (14) and hypothesis H(β)).

Recall that 1 < q < τ � p. So, by choosing t ∈ (0, 1) even smaller if necessary,
we have

ψ+(tu) < 0,
⇒ ψ+(ũ) < 0 = ψ+(0) (see (13)),
⇒ ũ 	= 0.

From (13) we have

ψ ′+(ũ) = 0

⇒ 〈A(ũ), h〉 + (||ξ+||∞ + ϑ)

∫

�

|ũ|p−2ũhdz +
∫

∂�

β(z)|ũ|p−2ũhdσ (15)

=
∫

�

μ̂+(z, ũ)hdz for all h ∈ W 1,p(�).

In (15) we choose h = −ũ− ∈ W 1,p(�). Using Lemma 2, we have

c1
p − 1

||Dũ−||pp + [||ξ+||∞ + ϑ]||ũ−||pp � 0

⇒ ũ � 0, ũ 	= 0.

Also in (15) we choose h = (ũ − η)+ ∈ W 1,p(�). Then

〈A(ũ), (ũ − η)+〉 + [||ξ+||∞ + ϑ]
∫

�

ũ p−1(ũ − η)+dz +
∫

∂β

β(z)ũ p−1(ũ − η)+dσ

=
∫

�

[η0ηq−1 − (ϑ0 − ϑ)ηp−1](ũ − η)+dz (see (12), (10))

� 〈A(η), (ũ − η)+〉 + [||ξ+||∞ + ϑ]
∫

�

ηp−1(ũ − η)+dz +
∫

∂�

β(z)ũ p−1(ũ − η)+dσ

(recall that η0 � ||ξ+||∞ηp−q and see hypothesis H(β)),

⇒ 〈A(ũ) − A(η), (ũ − η)+〉 + [||ξ+||∞ + ϑ]
∫

�

(ũ p−1 − ηp−1)(ũ − η)+dz � 0,

⇒ ũ � η.

So, we have proved that
ũ ∈ [0, η], ũ 	= 0. (16)

Using (10), (12) and (16) in (15), we obtain
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〈A(ũ), h〉+||ξ+||∞
∫

�

ũ p−1hdz+
∫

∂�

β(z)ũ p−1hdσ =
∫

�

[η0ũq−1 − ϑ0ũ
p−1]hdz

for all h ∈ W 1,p(�),

⇒ −div a(Dũ(z)) + ||ξ+||∞ũ(z)p−1 = η0ũ(z)q−1 − ϑ0ũ(z)p−1 for almost all z ∈ �,

∂ ũ

∂na
+ β(z)ũ p−1 = 0 on ∂� (see Papageorgiou and Rădulescu [19]). (17)

From (17) and Papageorgiou and Rădulescu [22], we have

ũ ∈ L∞(�).

Then from the regularity theory of Lieberman [15] we have

ũ ∈ C+\{0}.

From (17) we have

div a(Dũ(z)) � [||ξ+||∞ + ϑ0]ũ(z)p−1 for almost all z ∈ �.

Hence by the nonlinear strong maximum principle of Pucci and Serrin [27, pp. 111,
120], we have

ũ ∈ D+.

Next, we show that this positive solution is unique. To this end, we introduce the
integral functional j : L1(�) → R = R ∪ {+∞} defined by

j(u) =
{∫

�
G(Du

1
τ )dz + ||ξ+||∞

p ||u||
p
τ
p
τ

+ 1
p

∫

∂�
β(z)u

p
τ dσ if u � 0, u

1
τ ∈ W 1,p(�)

+∞ otherwise.

Suppose that u1, u2 ∈ dom j = {u ∈ L1(�) : j(u) < ∞} (the effective domain of
j(·)).
Let y1 = u

1
τ

1 , y2 = u
1
τ

2 . Then y1, y2 ∈ W 1,p(�). We set

y = [tu1 + (1 − t)u2] 1
τ for every t ∈ [0, 1].

We have y ∈ W 1,p(�). Using Lemma 1 of Diaz and Saa [7], we have

|Dy(z)| � [t |Dy1(z)|τ + (1 − t)|Dy2(z)|τ ] 1
τ ,

⇒ G0(|Dy(z)|) � G0([t |Dy1(z)|τ ] + (1 − t)|Dy2(z)|τ ) 1
τ (since G0(·) is increasing)

� tG0(|Dy1(z)|) + (1 − t)G0(|Dy2(z)|) for almost all z ∈ �

(see hypothesis H(a)(iv))
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⇒ G(Dy(z)) � tG(Du1(z)
1
τ ) + (1 − t)G(Du2(z)

1
τ ) for almost all z ∈ �,

⇒ u �→
∫

�

G(Du
1
τ )dz is convex.

Also since τ � p and β � 0 (see hypothesis H(β)), it follows that

dom j � u �→ ||ξ+||∞
p

||u||
p
τ
p
τ

+ 1

p

∫

∂�

β(z)u
p
τ dz is convex.

It follows that the integral functional j(·) is convex and, by Fatou’s lemma, it is
lower semicontinuous.

Suppose that ũ, û ∈ W 1,p(�) are two positive solutions of the auxiliary problem
(11). From the first part of the proof we have

ũ, û ∈ [0, η] ∩ D+. (18)

Therefore for every h ∈ C1(�) and for |t | small, we have

ũ + th ∈ dom j and û + th ∈ dom j .

Because of the convexity of j(·), we see that j(·) is Gâteaux differentiable at ũτ

and at ûτ in the direction h. Using the chain rule and the nonlinear Green’s identity
(see Gasinski and Papageorgiou [9, p. 210]), we get

j ′(ũτ )(h) = 1

τ

∫

�

−div a(Dũ) + ||ξ+||∞ũ p−1

ũτ−1 hdz

j ′(ûτ )(h) = 1

τ

∫

�

−div a(Dû) + ||ξ+||∞ũ p−1

ûτ−1 hdz for all h ∈ W 1,p(�).

Recall that j(·) is convex, hence j ′(·) is monotone. Hence we have

0 �
∫

�

[−div a(Dũ) + ||ξ+||∞ũ p−1

ũτ−1 − −div a(Dû) + ||ξ+||∞û p−1

ûτ−1

]

(ũτ − ûτ )dz

=
∫

�

[
μ(z, ũ)

ũτ−1 − μ(z, û)

ûτ−1

]

(ũτ − ûτ )dz (see (11)) (19)

=
∫

�

(

η0

[
1

ũτ−q
− 1

ûτ−q

]

− ϑ0
[
ũ p−τ − û p−τ

]
)

(ũτ − ûτ )dz (see (10) and (18)).

By hypothesis q < τ � p. So, from (19) we infer that

ũ = û.

This proves the uniqueness of the positive solution

ũ ∈ [0, η] ∩ D+.
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Equation (11) is odd. So, it follows that

ṽ = −ũ ∈ [−η, 0] ∩ (−D+)

is the unique negative solution of (11). ��
Next, we produce constant sign solutions for (1). For this purpose we introduce the

sets

S+ = the set of positive solutions for problem (11)in the order interval [0, η],
S− = the set of negative solutions for problem (11)in the order interval [−η, 0].

Proposition 7 If hypotheses H(a), H(ξ), H(β), H( f )1 hold, then ∅ 	= S+ ⊆ D+
and ∅ 	= S− ⊆ −D+.

Proof Let η > 0 be as in hypothesis H( f )1(i i i) and fix ϑ > ||ξ ||∞ (see hypothesis
H(ξ)). We introduce the following Carathéodory function

f̂+(z, x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < 0

f (z, x) + ϑx p−1 if 0 � x � η

f (z, η) + ϑηp−1 if η < x .

(20)

We set F̂+(z, x) = ∫ x
0 f̂+(z, s)ds and consider theC1-functional ϕ̂+ : W 1,p(�) →

R defined by

ϕ̂+(u) =
∫

�

G(Du)dz + 1

p

∫

�

(ξ(z) + ϑ)|u|pdz + 1

p

∫

∂�

β(z)|u|pdσ −
∫

�

F̂+(z, u)dz

for all u ∈ W 1,p(�).

Using Lemma 2, the fact that ϑ > ||ξ ||∞, hypothesis H(β) and (20), we see that

ϕ̂+ is coercive.

Also, ϕ̂+ is sequentially weak lower semicontinuous. So, by theWeierstrass-Tonelli
theorem, we can find u0 ∈ W 1,p(�) such that

ϕ̂+(u0) = inf
{
ϕ̂+(u) : u ∈ W 1,p(�)

}
. (21)

Hypothesis H( f )1(i i) implies that

ϕ̂+(u0) < 0 = ϕ̂+(0) (see the proof of Proposition 6)
⇒ u0 	= 0.
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From (21) we have

ϕ̂′+(u0) = 0, (22)

⇒ 〈A(u0), h〉 +
∫

�

(ξ(z) + ϑ)|u0|p−2u0hdz

+
∫

∂�

β(z)|u0|p−2u0hdσ =
∫

�

f̂+(z, u0)hdz

for all h ∈ W 1,p(�).

In (22) we choose h = −u−
0 ∈ W 1,p(�). Then

c1
p−1 ||Du−

0 ||pp + c10||u−
0 ||pp � 0 for some c10 > 0

(see Lemma 2, (20), hypothesis H(β) and recall thatϑ > ||ξ ||∞)

⇒ u0 � 0, u0 	= 0.

Next, in (22) we choose h = (u0 − η)+ ∈ W 1,p(�). Then

〈A(u0), (u0 − η)+〉 +
∫

�

(ξ(z) + ϑ)u p−1
0 (u0 − η)+dz

+
∫

∂�

β(z)u p−1
0 (u0 − η)+dσ

=
∫

�

[ f (z, η) + ϑηp−1](u0 − η)+dz (see(20))

� 〈A(η), (u0 − η)+〉 +
∫

�

(ξ(z) + ϑ)ηp−1(u0 − η)+dz

+
∫

∂�

β(z)u p−1
0 (u0 − η)+dσ

(note that A(η) = 0 and see hypotheses H( f )1(i i i), H(β)),

⇒ 〈A(u0) − A(η), (u0 − η)+〉 +
∫

�

(ξ(z) + ϑ)(u p−1
0 − ηp−1)(u0 − η)+dz � 0,

⇒ u0 � η (recall thatϑ > ||ξ ||∞).

So, we have proved that
u0 ∈ [0, η], u0 	= 0. (23)

On account of (20) and (23), Eq. (22) becomes

〈A(u0), h〉 +
∫

�

ξ(z)u p−1
0 hdz +

∫

∂�

β(z)u p−1
0 hdzσ =

∫

�

f (z, u0)hdz

for all h ∈ W 1,p(�),

⇒ −div a(Du0(z)) + ξ(z)u0(z)
p−1 = f (z, u0(z)) for almost all x ∈ �,

∂u0
∂na

+ β(z)u p−1
0 = 0 on ∂� (see Papageorgiou and Rădulescu [19]). (24)
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From (23), (24), hypothesis H( f )1(i) and Papageorgiou and Rădulescu [22], we
have

u0 ∈ L∞(�).

Next, applying the nonlinear regularity theory of Lieberman [15], we have

u0 ∈ C+\{0}.

Hypotheses H( f )1(i), (i i) imply that we can find c11 > 0 such that

f (z, x) + c11x
p−1 � 0 for almost all x ∈ �, and all 0 � x � η.

Then (23) and (24) imply that

div a(Du0(z)) � [||ξ ||∞ + c11]u0(z)p−1 for almost all z ∈ �,

⇒ u0 ∈ D+ (see Pucci and Serrin [27, pp. 111, 120]).

Therefore we have proved that ∅ 	= S+ ⊆ D+.
For negative solutions we consider the Carathéodory function

f̂−(z, x) =

⎧
⎪⎪⎨

⎪⎪⎩

f (z,−η) − ϑηp−1 if x < 0

f (z, x) + ϑ |x |p−2x if − η � x � 0

0 if 0 < x

(25)

(recall thatϑ > ||ξ ||∞). Let F̂−(z, x) = ∫ x
0 f̂−(z, s)ds and consider theC1-functional

ϕ̂− : W 1,p(�) → R defined by

ϕ̂−(u) =
∫

�

G(Du)dz + 1

p

∫

�

(ξ(z) + ϑ)|u|pdz + 1

p

∫

∂�

β(z)|u|pdσ −
∫

�

F̂−(z, u)dz

for all u ∈ W 1,p(�).

Reasoning as above, using this time ϕ̂− and (25), we produce a negative solution

v0 ∈ [−η, 0] ∩ (−D+).

Therefore ∅ 	= S− ⊆ −D+. ��
The next result provides a lower bound for the elements of S+ and an upper bound

for the elements of S−. These bounds will lead to the existence of extremal constant
sign solutions.

Proposition 8 If hypotheses H(a), H(ξ), H(β), H( f )1 hold, then ũ � u for all u ∈
S+ and v � ṽ for all v ∈ S−.
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Proof Let u ∈ S+ and consider the following Carathéodory function

γ+(z, x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < 0

η0xq−1 − (ϑ0 − ϑ̂)x p−1 if 0 � x � u(z),

η0u(z)q−1 − (ϑ0 − ϑ̂)u(z)p−1 if u(z) < x

ϑ̂ > 0. (26)

We set
+(z, x) = ∫ x
0 γ+(z, s)ds and consider theC1-functional k̂+ : W 1,p(�) →

R defined by

k̂+(u)=
∫

�

G(Du)dz + 1

p
[||ξ+||∞ + ϑ̂]||u||pp +

∫

∂�

β(z)|u|pdσ −
∫

�


+(z, u)dz

for all u ∈ W 1,p(�).

Evidently, k̂+ is coercive (see Lemma 2, (26) and recall that ϑ̂ > 0). Also, it is
sequentially weakly lower semicontinuous. So, we can find û ∈ W 1,p(�) such that

k̂+(û) = inf{k̂+(u) : u ∈ W 1,p(�)}. (27)

By (26) and since q < τ � p, we have

k̂+(û) < 0 = k̂+(0) (see the proof of Proposition 6),

⇒ û 	= 0.

From (27) we have

k̂′+(û) 	= 0,

⇒ 〈
A(û), h

〉 + [||ξ+||∞ + ϑ̂]
∫

�

|û|p−2ûhdz +
∫

∂�

β(z)|û|p−2ûhdz =
∫

�

γ+(z, û)hdz

for all h ∈ W 1,p(�). (28)

In (28) we choose h = −û− ∈ W 1,p(�). We obtain

û � 0, û 	= 0.

Also, in (28) we choose h = (û − u)+ ∈ W 1,p(�). Then

〈
A(û), (û − u)+

〉 + [||ξ+||∞ + ϑ̂]
∫

�
û p−1(û − u)+dz +

∫

∂�
β(z)û p−1(û − u)+dσ

=
∫

�
[η0uq−1 − ϑ0u

p−1](û − u)+dz + ϑ̂

∫

�
u p−1(û − u)+dz (see (26))

�
∫

�
[ f (z, u) + ϑ̂u p−1](û − u)+dz (see (9))
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= 〈
A(u), (û − u)+

〉 +
∫

�
(ξ(z) + ϑ̂)u p−1(û − u)+dz +

∫

∂�
β(z)u p−1(û − u)+dσ

(since u ∈ S+)

�
〈
A(u), (û − u)+

〉 + [||ξ+||∞ + ϑ̂]
∫

�
u p−1(û − u)+dz +

∫

∂�
β(z)u p−1(û − u)+dσ,

⇒ 〈
A(û) − A(u), (û − u)+

〉 + [||ξ+||∞ + ϑ̂]
∫

�
(û p−1 − u p−1)(û − u)+dz � 0

(see hypothesis H(β)),

⇒ û � u.

From (26) we see that û is a positive solution of (11) and so

û = ũ ∈ D+ (see Proposition 6)

⇒ ũ � u for all u ∈ S+.

Similarly we show that

v � ṽ for all v ∈ S−.

The proof is now complete. ��
We are now ready to produce extremal constant sign solutions for problem (1),

that is, a smallest positive solution ū+ and a biggest negative solution v̄−. In the next
section, using ū+ and v̄− we will produce a nodal (sign-changing) solution.

Proposition 9 If hypotheses H(a), H(ξ), H(β), H( f )1 hold, then problem (1) admits
a smallest positive solution ū+ ∈ D+ and a biggest negative solution v̄− ∈ −D+.

Proof From Papageorgiou et al. [25] we know that

• S+ is downward directed (that is, if u1, u2 ∈ S+, then we can find u ∈ S+ such
that u � u1, u � u2).

• S− is upward directed (that is, if v1, v2 ∈ S−, then we can find v ∈ S− such that
v1 � v, v2 � v).

Then as in the proof of Proposition 6 of Papageorgiou and Rădulescu [22], we can
find {un}n�1 ⊆ S+ such that

inf S+ = inf
n�1

un, ũ � un for all n ∈ N (see Proposition 8). (29)

Evidently, {un}n�1 ⊆ W 1,p(�) is bounded. So, we may assume that

un
w→ ū+ inW 1,p(�) and un → ū+ in L p(�) and L p(∂�). (30)

We have

〈A(un), h〉 +
∫

�

ξ(z)u p−1
n hdz +

∫

∂�

β(z)u p−1
n hdσ =

∫

�

f (z, un)hdz (31)
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for all h ∈ W 1,p(�), n ∈ N.

In (31) we choose h = un − ū+ ∈ W 1,p(�), pass to the limit as n → ∞ and use
(30). Then we have

lim
n→∞ 〈A(un), un − ū+〉 = 0,

⇒ un → ū+ inW 1,p(�) (see Proposition 4). (32)

So, if in (31) we pass to the limit as n → ∞ and use (32), then

〈A(ū+), h)〉 +
∫

�

ξ(z)ū p−1
+ hdz +

∫

∂�

β(z)ū p−1
+ hdσ =

∫

�

f (z, ū+)hdz

for all h ∈ W 1,p(�),

⇒ −div a(Dū+(z)) + ξ(z)ū+(z)p−1 = f (z, ū+(z)) for almost all z ∈ �,

∂ ū+
∂na

+ β(z)ū p−1
+ = 0 on ∂�

(see Papageorgiou and Rădulescu [19]),

⇒ ū+ ∈ C+ (as before, by the nonlinear regularity theory).

From (29) and (32), we have

ũ � ū+, hence ū+ 	= 0.

As before, via the nonlinear maximum principle, we have

ū+ ∈ D+,

⇒ ū+ ∈ S+ and ū+ = inf S+.

Similarly we produce

v̄− ∈ S− and v̄− = sup S−.

The proof is now complete. ��

4 Nodal Solutions

In this section, using the extremal constant sign solutions v̄− ∈ −D+ and ū+ ∈ D+,
we produce a nodal (sign changing) solution. The idea is to use truncation techniques
to focus on the order interval [v̄−, ū+]. Using variational tools we obtain a solution
y0 in this order interval, which is distinct from 0, v̄−, ū+. The extremality of v̄− and
ū+ means that this solution y0 is necessarily nodal.

Proposition 10 If hypotheses H(a), H(ξ), H(β), H( f )1 hold, then problem (1)
admits a nodal solutions y0 ∈ [v̄−, ū+] ∩ C1(�).
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Proof Let v̄− ∈ −D+ and ū+ ∈ D+ be the two extremal constant sign solutions pro-
duced in Proposition 9 and let ϑ > ||ξ ||∞. We introduce the following Carathéodory
function

�(z, x) =

⎧
⎪⎪⎨

⎪⎪⎩

f (z, v̄−(z)) + ϑ |v̄−(z)|p−2v̄−(z) if x < v̄−(z)

f (z, x) + ϑ |x |p−2x if v̄−(z) � x � ū+(z)

f (z, ū+(z)) + ϑ ū+(z)p−1 if ū+(z) < x .

(33)

We also consider the positive and negative truncations of �(z, ·), that is, the
Carathéodory functions

�±(z, x) = �(z,±x±) for all (z, x) ∈ � × R.

We set

L(z, x) =
∫ x

0
�(z, s)ds and L±(z, x) =

∫ x

0
�±(z, s)ds.

Consider the C1-functionals ϕ̃, ϕ̃± : W 1,p(�) → R defined by

ϕ̃(u) =
∫

�

G(Du)dz+ 1

p

∫

�

(ξ(z) + ϑ)|u|pdz+ 1

p

∫

∂�

β(z)|u|pdσ −
∫

�

L(z, u)dz

ϕ̃±(u) =
∫

�

G(Du)dz + 1

p

∫

�

(ξ(z) + ϑ)|u|pdz

+ 1

p

∫

∂�

β(z)|u|pdσ −
∫

�

L±(z, u)dz for all u ∈ W 1,p(�).

Claim 1 Kϕ̃ ⊆ [v̄−, ũ+] ∩ C1(�), Kϕ̃+ = {0, ū+}, Kϕ̃− = {0, v̄−}.
Let u ∈ Kϕ̃ . We have

〈A(ũ), h〉 +
∫

�

(ξ(z) + ϑ)|ũ|p−2ũhdz +
∫

∂�

β(z)|ũ|p−2ũhdσ =
∫

�

f (z, ũ)hdz

for all h ∈ W 1,p(�). (34)

In (34) let h = (u − ū+)+ ∈ W 1,p(�). Then

〈
A(u), (u − ū+)+

〉 +
∫

�

(ξ(z) + ϑ)u p−1(u − ū+)+dz

+
∫

∂�

β(z)u p−1(u − ū+)+dσ

=
∫

�

[ f (z, ū+) + ϑ ū p−1
+ ](u − ū+)+dz (see (33))
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= 〈
A(ū+), (u − ū+)+

〉 +
∫

�

(ξ(z) + ϑ)ū p−1
+ (u − ū+)+dz

+
∫

∂�

β(z)ū p−1
+ (u − ū+)+dσ

(since ū+ ∈ S+),

⇒ 〈
A(u) − A(ū+), (u − ū+)+

〉 +
∫

�

(ξ(z) + ϑ)(u p−1 − ū p−1
+ )(u − ū+)+dz

+
∫

∂�

β(z)(u p−1 − ū p−1
+ )(u − ū+)+dσ = 0,

⇒ u � ū+.

Similarly, if in (34) we choose h = (v̄− − u)+ ∈ W 1,p(�), then we obtain that

v̄− � u,

⇒ u ∈ [v̄−, ū+] ∩ C1(�) (nonlinear regularity theory),

⇒ Kϕ̃ ⊆ [v̄−, ū+] ∩ C1(�).

In a similar fashion we show that

Kϕ̃+ ⊆ [0, ū+] ∩ C1(�) and Kϕ̃− ⊆ [v̄−, 0] ∩ C1(�).

The extremality of solutions ū+ ∈ D+ and v̄− ∈ −D+ implies that

Kϕ̃+ = {0, ū+} and Kϕ̃− = {0, v̄−}.

This proves Claim 1.

Claim 2 ū+ ∈ D+ and v̄− ∈ −D+ are local minimizers of ϕ̃.

From (33) and since ϑ > ||ξ ||∞ it is clear that ϕ̃+ is coercive and sequentially
weakly lower semicontinuous. So, we can find ũ+ ∈ W 1,p(�) such that

ϕ̃+(ũ+) = inf{ϕ̃+(u) : u ∈ W 1,p(�)}. (35)

As before, hypothesis H( f )1(i i) implies that

ϕ̃+(ũ+) < 0 = ϕ̃+(0),

⇒ ũ+ 	= 0 and ũ+ ∈ Kϕ̃+ (see (35)),

⇒ ũ+ = ū+ (see Claim 1).

Clearly, ϕ̃|C+ = ϕ̃+|C+ (see (33)). Since ū+ ∈ D+, it follows that

ū+ is a local C1(�) − minimizer of ϕ̃,

⇒ ū+ is a local W 1,p(�) − minimizer of ϕ̃ (see Proposition 5),
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Similarly for v̄− ∈ D+, using this time the functional ϕ̃−. This proves Claim 2.
We may assume that Kϕ̃ is finite. Otherwise, on account of Claim 1 and due to the

extremality of ū+ and v̄−, we already have an infinity of nodal solutions. In addition,
without any loss of generality, we may assume that ϕ̃(v̄−) � ϕ̃(ū+) (the reasoning is
similar if the opposite inequality holds). Claim 2 implies that we can find ρ ∈ (0, 1)
small such that

ϕ̃(v̄−) � ϕ̃(ū+) < inf{ϕ̃(u) : ||u − ū+|| = ρ} = m̃ρ, ||v̄− − ū+|| > ρ (36)

(see Aizicovici et al. [1], proof of Proposition 29).
Evidently, ϕ̃ is coercive (see (33)). Therefore

ϕ̃ satisfies the C-condition. (37)

Then (36) and (37) permit the use of the mountain pass theorem (see Theorem 1).
So, we can find

y0 ∈ Kϕ̃ and m̃ρ � ϕ̃(y0). (38)

From (38), (36) and Claim 1 we have that

y0 ∈ [v̄−, ū+] ∩ C1(�) solves (1) and y0 	= ū+, y0 	= v̄−.

Since y0 ∈ C1(�) is a critical point of mountain pass type for ϕ̃, we have

C1(ϕ̃, y0) 	= 0 (39)

(see Motreanu et al. [16, Corollary 6.81, p.168]).
On the other hand, hypothesis H( f )1(i i) implies that

Ck(ϕ̃, 0) = 0 for all k ∈ N0 (40)

(see Papageorgiou and Rădulescu [20, Proposition 6]). Comparing (39) and (40) we
infer that y0 	= 0. Thereforewe conclude that y0 ∈ [v̄−, ū+]∩C1(�) is a local solution
for problem (1). ��

So, we can formulate the following multiplicity theorem for problem (1).

Theorem 11 If hypotheses H(a), H(ξ), H(β), H( f )1 hold, then problem (1) has at
least three nontrivial smooth solutions

u0 ∈ D+, v0 ∈ −D+, and y0 ∈ [v0, u0] ∩ C1(�) nodal.

5 Semilinear Equations

In this section, we introduce a special case of problem (1) in which a(y) = y for all
y ∈ R

N (that is, the differential operator is the Laplacian, which corresponds to a
semilinear equation). So, the problem under consideration is the following
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{−�u(z) + ξ(z)u(z) = f (z, u(z)) in �,

∂u
∂n + β(z)u = 0 on ∂�.

}

(41)

In this case we can also relax the conditions on the potential function ξ(·) and
allow it to be unbounded. For problem (41) we were able to improve Theorem 11 and
produce a second nodal solution for a local of four nontrivial smooth solutions.

Now the hypotheses on the data of (41) are the following:

• H(ξ)′ : ξ ∈ Ls(�) with s > N , ξ+ ∈ L∞(�);
• H(β)′ : β ∈ W 1,∞(�), β(z) � 0 for all z ∈ ∂�.

Remark 4 Again we can have β ≡ 0, which corresponds to the Neumann problem.

H( f )2 : the function f : � × R → R is measurable and for almost all z ∈ �,
f (z, 0) = 0, f (z, ·) ∈ C1(R) and

(i) there exist η > 0 and aη ∈ L∞(�)+ such that

| f (z, x)| � aη(z) for almost all z ∈ �, and all x ∈ [−η, η];

(ii) there exist m ∈ N, m � 2 and δ0 > 0 such

λ̂mx
2 � f (z, x)x � λ̂m+1x

2 for almost all z ∈ �, and all |x | � δ0;

(iii) with η > 0 as in (i) we have

f (z, η) − ξ(z)η � 0 � f (z,−η) + ξ(z)η for almost all z ∈ �

and there exists ξ̂η > 0 such that for almost all z ∈ �

x �→ f (z, x) + ξ̂ηx

is nondecreasing on the interval [−η, η].
We have the following multiplicity theorem for problem (41).

Theorem 12 If hypotheses H(ξ)′, H(β)′, H( f )2 hold, then problem (41) has at least
four nontrivial smooth solutions

u0 ∈ D+, v0 ∈ −D+, and y0, ŷ ∈ intC1(�)[v0, u0] nodal.

Proof Since we have relaxed the conditions on the potential function ξ(·) and on the
boundary coefficient β(·), we need to show how the solutions of problem (1) exhibit
the global (that is, up to the boundary) regularity properties claimed by the theorem.

So, let u ∈ [−η, η] be a nontrivial solution of (41). Then
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〈A(u), h〉 +
∫

�

ξ(z)uhdz +
∫

∂�

β(z)uhdσ =
∫

�

f (z, u)hdz for all h ∈ H1(�)

⇒ −�u(z) + ξ(z)u(z) = f (z, u(z)) for almost all z ∈ �,
∂u

∂n
+ β(z)u = 0 on ∂�

(see Papageorgiou and Rădulescu [19]) (42)

Let

g1(z) =
{
0 if |u(z)| � 1
f (z,u(z))
u(z) if |u(z)| > 1

and g2(z) =
{
f (z, u(z)) if |u(z)| � 1
0 if |u(z)| > 1.

Note that hypotheses H( f )2(i), (i i) imply that

| f (z, x)| � c12|x | for almost all z ∈ �, all x ∈ [−η, η], some c12 > 0.

Then it follows that g1, g2 ∈ L∞(�). We rewrite (42) as follows:

{−�u(z) = (g1(z) − ξ(z))u(z) + g2(z) for almost all z ∈ �,
∂u
∂n + β(z)u = 0 on ∂�.

}

Note that g1 − ξ ∈ Ls(�) s > N (see hypothesis H(ξ)′). Invoking Lemma 5.1 of
Wang [31], we have u ∈ L∞(�). Then the Calderon–Zygmund estimates (see Wang
[31, Lemma 5.2]), imply that

u ∈ W 2,s(�),

⇒ u ∈ C1,α(�) with α = 1 − N

s
> 0

(by the Sobolev embedding theorem).

Now the condition near zero (hypothesis H( f )2(i i)) is different. Here, f (z, ·)
is linear near zero, while hypothesis H( f )1(i i) implies the presence of a concave
nonlinearity near zero. So, we need to verify that Theorem 11 remains valid also in
the present setting. Note that now, given r > 2, we can find ϑ0 = ϑ0(r) > 0 such that

f (z, x)x � λ̂mx
2 − ϑ0|x |r for almost all z ∈ �, and all |x | � η.

We introduce the following Carathéodory function

μ(z, x) =
⎧
⎨

⎩

−λ̂mη + ϑ0η
r−1 if x < −η

λ̂mx − ϑ0|x |r−2x if − η � x � η

λ̂mη − ϑ0η
r−1 if η < x

(43)

and then consider the following auxiliary Robin problem

{−�u(z) + ξ(z)u(z) = μ(z, u(z)) in�,
∂u
∂n + β(z)u = 0 on ∂�

}

(44)
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(see (10) and (11) for the corresponding items in the previous setting). Reasoning as
in the proof of Proposition 6, we obtain a unique positive solution

ũ ∈ [0, η] ∩ D+

for problem (44). Then ṽ = −ũ ∈ [−η, 0] ∩ (−D+) is the unique negative solution
of (44).

In fact in this case, due to the semilinearity of the problem,we can have an alternative
more direct proof of the uniqueness of the positive solution of problem (44). So,
suppose that ũ, û are two positive solutions of (44). We have

ũ, û ∈ [0, η] ∩ D+. (45)

Let t∗ > 0 be the biggest real number such that

t∗û � ũ. (46)

Assume that 0 < t∗ < 1. Evidently, we can find ξ̃η > 0 such that the function

x �→ (λ̂m + ξ̃η)x − ϑ0|x |r−2x

is nondecreasing on [−η, η]. We have

−�ũ(z) + (ξ(z) + ξ̃η)ũ(z)

= μ(z, ũ(z)) + ξ̃ηũ(z)

= (λ̂m + ξ̃η)ũ(z) − ϑ0ũ(z)r−1 (see (45) and (43))

� (λ̂m + ξ̃η)(t
∗û(z)) − ϑ0(t

∗û(z))r−1 (see (46))

� t∗[λ̂mû(z) − ϑ0û(z)r−1 + ξ̃ηû(z)] (since 0 < t∗ < 1, r > 2)

= −�(t∗û(z)) + (ξ(z) + ξ̃η)(t
∗û(z)) for almost all z ∈ �,

⇒ �(ũ − t∗û)(z) � [||ξ+||∞ + ξ̃η](ũ − t∗û)(z) for almost all z ∈ �

(see hypothesis H(ξ))

⇒ ũ − t∗û ∈ D+ (by the strong maximum principle).

This contradicts the maximality of t∗. Hence t∗ � 1 and so

û � ũ (see (46)).

Interchanging the roles of ũ and û in the above argument, we also have

ũ � û,

⇒ ũ = û.
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This is an alternative, more direct proof of the uniqueness of positive and negative
solutions of problem (44).

As in the proof of Proposition 7, we introduce the Carathéodory function

f̂+(z, x) =
⎧
⎨

⎩

0 if x < 0
f (z, x) + μ0x if 0 � x � η

f (z, η) + μ0η if η < x

with μ0 > ||ξ+||∞ (see hypothesis H(ξ)′).
We set F̂+(z, x) = ∫ x

0 f̂+(z, s)ds and consider the C1-functional ϕ̃+ : H1(�) →
R defined by

ϕ̂+(u) = 1

2
τ0(u) + μ0

2
||u||22 −

∫

�

F̂+(z, u)dz for all u ∈ H1(�),

with τ0(u) = ||Du||22 + ∫

�
ξ(z)u2dz + ∫

∂�
β(z)u2dσ for all u ∈ H1(�). Using the

direct method of the calculus of variations, we obtain u0 ∈ H1(�) such that

ϕ̂+(u0) = inf{ϕ̂+(u) : u ∈ H1(�)}.

Since m � 2 (see hypothesis H( f )2(i i)), we have

ϕ̂+(u0) < 0 = ϕ̂+(0),

⇒ u0 	= 0.

As in the proof of Proposition 7, we show that

u0 ∈ [0, η] ∩ D+.

Similarly, using the Carathéodory function

f̂−(z, x) =
⎧
⎨

⎩

f (z,−η) − μ0η if x < −η

f (z, x) + μ0x if − η � x � 0
0 if 0 < x,

we produce a negative solution

v0 ∈ [−η, 0] ∩ (−D+).

Therefore we have

∅ 	= S+ ⊆ D+ and ∅ 	= S− ⊆ −D+.

In addition, as in the proof of Proposition 8, we show that

ũ � u for all u ∈ S+ and v � ṽ for all v ∈ S−.
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Moreover, reasoning as in the proof of Proposition 9, we produce extremal constant
sign solution for problem (41)

ū+ ∈ D+ and v̄− ∈ −D+.

As in the proof of Proposition 10, using these two extremal constant sign solutions,
we introduce the functional ϕ̃ and using it we produce a nodal solution. Note that in
(33) we replace ϑ > 0 by μ0 > 0 and we set p = 2. Claims 1 and 2 in the proof of
Proposition 10 remain valid (as before, since m � 2, we have ϕ̃+(ũ+) < 0 = ϕ̃+(0)
and so ũ+ 	= 0). Finally, we apply the mountain pass theorem (see Theorem 1) and
obtain

y0 ∈ Kϕ̃ ⊆ [v̄−, ū+] ∩ C1(�), y0 /∈ {v̄−, ū+}. (47)

Therefore we have
C1(ϕ̃, y0) 	= 0 (48)

(see Motreanu et al. [16, Corollary 6.81, p.168]). In this case, since the condition near
zero is different (see H( f )1(i i) and compare it with H( f )1(i i)), relation (40) is no
longer true. We need to compute the critical groups of ϕ̃ at u = 0.

Claim 3 We have Ck(ϕ̃, 0) = δk,dmZ for all k ∈ N0, with dm = dim
m⊕

k=1
E(λ̂k) � 2.

Let λ ∈ (λ̂m, λ̂m+1) and consider the C2-functional ψ : H1(�) → R defined by

ψ(u) = 1

2
τ0(u) − λ

2
||u||22 for all u ∈ H1(�).

We consider the homotopy

h(t, u) = (1 − t)ϕ̃(u) + tψ(u) for all t ∈ [0, 1], all u ∈ H1(�).

Suppose that we can find {tn}n�1 ⊆ [0, 1] and {un}n�1 ⊆ H1(�) such that

tn �→ t, un → 0 in H1(�) and h′
u(tn, un) = 0 for all n ∈ N. (49)

From the equation in (49), we have

⎧
⎨

⎩

−�un(z) + ξ(z)un(z) − (1 − tn)u−
n (z) = (1 − tn) f (z, un(z)) + λtnun(z) in�,

∂un
∂n + β(z)un = 0 on ∂�.

⎫
⎬

⎭

(50)
From (50) and the regularity theory of Wang [31], we know that we can find α ∈

(0, 1) and c13 > 0 such that

un ∈ C1,α(�) and ||un||C1,α(�) � c13 for all n ∈ N. (51)
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Exploiting the compact embedding of C1,α(�) into C1(�), we infer from (51) and
(49) that

un → 0 inC1(�),

⇒ un ∈ [v̄−, ū+] ∩ C1(�) for all n � n0,

⇒ {un}n�n0 ⊆ Kϕ̃ (see Claim 1 in the proof of Proposition 10).

But we have assumed that Kϕ̃ is finite (otherwise, on account of the definition of ϕ̃

and (33) with μ0 > 0 replacing ϑ > 0 and p = 2 and using Claim 1 in the proof of
Proposition 10, we see that we have an infinity of nodal solutions of (41) and so we
are done). Therefore we have a contradiction and this means that (49) cannot happen.
Then using the homotopy invariance property of critical groups (see Gasinski and
Papageorgiou [10, Theorem 5.125, p. 836]), we have

Ck(ϕ̃, 0) = Ck(ψ, 0) for all k ∈ N0. (52)

Note that ψ ∈ C2(H1(�)). Since λ ∈ (λ̂m, λ̂m+1), u = 0 is a nondegenerate
critical point of ψ . So, from Gasinski and Papageorgiou [10, Theorem 5.106, p. 832],
we have

Ck(ψ, 0) = δk,dmZ for all k ∈ N0,

⇒ Ck(ϕ̃, 0) = δk,dmZ for all k ∈ N0 (see (52)).

This proves Claim 3.
From (48), (47) and Claim 3, we infer that

y0 /∈ {0, ū+, v̄−}
⇒ y0 is a nodal solution of (41) and y0 ∈ [v̄−, ū+] ∩ C1(�).

Let ξ̂η > 0 be as postulated by hypothesis H( f )2(i i i). Then

−�y0(z) + (ξ(z) + ξ̂η)y0(z)

= f (z, y0(z)) + ξ̂ηy0(z)

� f (z, ū+(z)) + ξ̂ηū+(z) (see(47) and hypothesis H( f )2(i i i))

= −�ū+(z) + (ξ(z) + ξ̂η)ū+(z) for almost all z ∈ �,

⇒ �(ū+ − y0)(z) � [||ξ+||∞ + ξ̂η](ū+ − y0)(z) for almost all z ∈ �

(see hypothesis H(ξ)′)
⇒ ū+ − y0 ∈ D+ (by the strong maximum principle).

Similarly we show that

y0 − v̄− ∈ D+.
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Therefore we conclude that

y0 ∈ intC1(�)[v̄−, ū+]. (53)

From (48), (53) and Proposition 5.124 of Gasinski and Papageorgiou [10, p. 836],
we have

Ck(ϕ̃, y0) = δk,1Z for all k ∈ N0. (54)

Recall that ū+ ∈ D+ and v̄− ∈ −D+ are local minimizers of ϕ̃ (see Claim 2) in
the proof of Proposition 10. Therefore we have

Ck(ϕ̃, ū+) = Ck(ϕ̃, v̄−) = δk,0Z for all k ∈ N0. (55)

From the proof of Claim 3, we have

Ck(ϕ̃, 0) = δk,dmZ for all k ∈ N0. (56)

Finally, since ϕ̃ is coercive, we have

Ck(ϕ̃,∞) = δk,0Z for all k ∈ N0. (57)

Suppose that Kϕ̃ = {0, ū+, v̄−, y0}. Then from (54), (55), (56), (57), and theMorse
relation with t = −1 (see (8)), we have

(−1)dm + 2(−1)0 + (−1)1 = (−1)0,

⇒ (−1)dm = 0, a contradiction.

So, there exists ŷ ∈ H1(�) such that

ŷ ∈ Kϕ̃ , ŷ /∈ {0, ū+, v̄−, y0},
⇒ ŷ ∈ [v̄−, ū+] ∩ C1(�), ŷ /∈ {0, ū+, v̄−, y0},
⇒ ŷ is a second solution of (41) distinct from y0.

Moreover, as we did for y0, using hypothesis H( f )2(i i i), we show that

ŷ ∈ intC1(�)[v̄−, ū+].

The proof is now complete. ��

6 Infinitely Many Nodal Solutions

In this section we return to problem (1) and by introducing a symmetry condition on
f (z, ·), we produce a whole sequence of distinct nodal solutions for problem (1).
The hypotheses on the reaction term are the following:
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H( f )3 : f : �×R → R is a Carathéodory function such that for almost all z ∈ �,
f (z, 0) = 0 and

(i) there exist η > 0 and aη ∈ L∞(�)+ such that for almost all z ∈ �, f (z, ·)|[−η,η]
is odd and

| f (z, x)| � aη(z) for almost all z ∈ �, and all |x | � η;

(ii) with τ ∈ (1, p) as in hypothesis H(a)(iv) we have

lim
x→0

f (z, x)

|x |τ−2x
= +∞ uniformly for almost all z ∈ �.

Remark 5 The symmetric condition on f (z, ·), permits the relaxation of the condition
near zero (compare H( f )3(i i) with H( f )1(i i)). We have also dropped hypothesis
H( f )3(i i i).

Fix λ(·) an even continuous function such that

• λ|[−c,c] ≡ 1 for some c ∈ (0, η);
• supp λ ⊆ (−η, η);
• 0 � λ � 1.

Let f̂ (z, x) = λ(x) f (z, x) + (1 − λ(x))ξ(z)|x |p−2x . Evidently, f̂ (z, x) is a
Carathéodory function with the following properties:

• for all z ∈ �, f̂ (z, ·) is odd;
• f̂ (z, x) = f (z, x) for all z ∈ �, |x | � c;
• f̂ (z, x) = ξ(z)|x |p−2x for all z ∈ �, |x | � η.

It follows that f̂ (z, η) − ξ(z)ηp−1 = 0 = f̂ (z,−η) + ξ(z)ηp−1 (that is, f̂ (z, x)
satisfies hypothesis H( f )1(i i i)).

We consider problem (1) with f replaced by f̂ .
Note that given any η̂ > 0 and r > p, we can find c14 = c14(η̂, r) > 0 such that

f̂ (z, x)x � η̂|x |τ − c14|x |r for almost all z ∈ �, and all x ∈ R.

Then we introduce the following Carathéodory function

μ(z, x) =

⎧
⎪⎪⎨

⎪⎪⎩

−η̂ητ−1 + c14ηr−1 if x < −η

η̂|x |τ−2x − c14|x |r−2x if − η � x � η

η̂ητ−1 − c14ηr−1 if η < x .

Using this μ(·, ·), we consider the auxiliary Robin problem (11). As in Proposition
6 we show that the auxiliary problem has a unique positive solution ũ ∈ [0, η] ∩ D+
and due to the oddness of the equation, ṽ = −ũ ∈ [−η, 0] ∩ (−D+) is the unique
negative solution of the auxiliary problem.
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Recalling that we consider problem (1) with f (z, x) replaced by f̂ (z, x), as before
we introduce the following sets:

S+ = the set of positive solutions of (1) in [0, η],
S− = the set of negative solutions of (1) in [−η, 0].

If S+ 	= ∅ and S− 	= ∅, then we have

ũ � u for all u ∈ S+and v � ṽ for all v ∈ S−(see Proposition 8).

This leads to the existence of extremal constant sign solutions

ū+ ∈ D+ and v̄− ∈ −D+.

Using these extremal constant sign solutions, we consider the Carathéodory func-
tion �(z, x) as in (33) with f (z, x) replaced by f̂ (z, x) (see the proof of Proposition
10) and then introduce the C1-functional ϕ̃ : W 1,p(�) → R defined by

ϕ̃(u)=
∫

�

G(Du)dz + 1

p

∫

�

(ξ(z) + ϑ)|u|pdz + 1

p

∫

∂�

β(z)|u|pdσ −
∫

�

L(z, u)dz

for all u ∈ W 1,p(�).

Here, as before, ϑ > ||ξ ||∞ and L(z, x) = ∫ x
0 �(z, s)ds.

We know that
Kϕ̃ ⊆ [v−, ū+] ∩ C1(�) (58)

(see Claim 1 in the proof of Proposition 10).

Proposition 13 If hypotheses H(a), H(ξ), H(β), H( f )3 hold, n ∈ N and Yn ⊆
W 1,p(�) is an n-dimensional subspace, then we can find ρn > 0 such that

sup{ϕ̃(u) : u ∈ Yn, ||u|| = ρn} < 0.

Proof Hypothesis H(a)(iv) implies that we can find ρ1 > 0 and c13 > 0 such that

G0(t) � c15t
τ for all t ∈ [0, ρ1],

⇒ G(y) � c15|y|τ for all |y| � ρ1. (59)

Also, hypothesis H( f )3(i i) implies that given η̂ > 0 we can find 0 < ρ2 � ρ1
such that

F̂(z, x) � η̂|x |τ for almost all z ∈ �, and all |x | � ρ2 (60)

(here F̂(z, x) =
∫ x

0
f̂ (z, s)ds).
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Let ρ3 = min{min� ū+,min
�

(−v̄−)} > 0 (recall that ū+ ∈ D+, v̄− ∈ −D+). We

can always assume that 0 < ρ2 � ρ3. Since Yn is finite dimensional, all norms are
equivalent and so we can find ρn > 0 such that

u ∈ Yn, ||u|| � ρn ⇒ |u(z)| � ρn for almost all z ∈ �. (61)

Then from (59), (60), (61) we have

ϕ̃(u) � c15||Du||ττ − η̂||u||ττ � [c16 − η̂c17]||u||τ
for some c16, c17 > 0 see (33).

Since η̂ > 0 is arbitrary, we choose η̂ > c16
c17

and have that

sup{ϕ̃(u) : u ∈ Yn, ||u|| = ρn} < 0.

This completes the proof. ��
Nowwe are ready for the multiplicity result producing a whole sequence of distinct

nodal solutions.

Theorem 14 If hypotheses H(a), H(ξ), H(β), H( f )3 hold, then problem (1) admits
a sequence {un}n�1 ⊆ C1(�) of distinct nodal solutions such that un → 0 in C1(�)

as n → ∞.

Proof We know that ϕ̃ is coercive (see (33)). So, ϕ̃ is bounded below and satisfies the
C-condition. Also, ϕ̃ is even. These facts, together with Proposition 13, permit the use
of Theorem 1 of Kajikiya [13]. Hence we can find a sequence {un}n�1 ⊆ W 1,p(�)

such that

{un}n�1 ⊆ Kϕ̃ ⊆ [v̄−, ū+] ∩ C1(�) and un → 0 inW 1,p(�) (see (58)). (62)

From (62) and (33) we see that {un}n�1 are nodal solutions of (1). Moreover,
the nonlinear regularity theory (see Lieberman [15]) and the compact embedding of
C1,α(�) (0 < α < 1) into C1(�) imply that un → 0 in C1(�) as n → ∞. Since
f̂ (z, ·) and f (z, ·) coincide near zero, we have thus produced a sequence of distinct
nodal solutions for problem (1). ��
Remark 6 Recently, Papageorgiou andRădulescu [21] have proved an analogous result
for problemswith no potential term (that is, ξ ≡ 0) andwith a reaction termwith zeros.
Theorem 14 generalizes the result of Papageorgiou and Rădulescu [21]. It also extends
Theorem 2.10 of Wang [32] where the equation is driven by the p-Laplacian with no
potential term (that is, ξ ≡ 0). Wang produced a sequence of nontrivial solutions
{un}n�1, not necessarily nodal, such that ||un||∞ → 0.
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