PROBLEM 11137, THE AMERICAN MATHEMATICAL MONTHLY PROPOSED BY VICENȚIU RĂDULESCU, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRAIOVA, ROMANIA. E-MAIL: radulescu@inf.ucv.ro

Let φ be a continuous positive function on the open interval (A, ∞) , and assume that f is a C^2 -function on (A, ∞) satisfying the differential equation

$$f''(t) = (1 + \varphi(t)(f^2(t) - 1))f(t).$$

- (a) Given that there exists $a \in (A, \infty)$ such that $f(a) \ge 1$ and $f'(a) \ge 0$, prove that there is a positive constant K such that $f(x) \ge Ke^x$ whenever $x \ge a$.
- (b) Given instead that there exists $a \in (A, \infty)$ such that f'(a) < 0 and f(x) > 1 if x > a, prove that there exists a positive constant K such that $f(x) \ge Ke^x$ whenever $x \ge a$.
- (c) Given that f is bounded on (A, ∞) and that there exists $\alpha > 0$ such that $\varphi(x) = O(e^{-(1+\alpha)x})$ as $x \to \infty$, prove that $\lim_{x\to\infty} e^x f(x)$ exists and is finite.

SOLUTION. (a) We first claim that $f \ge 1$ and $f' \ge 0$ in $[a, \infty)$. Indeed, assuming the contrary, it follows that f has a local maximum point $x_0 \ge a$ such that $f(x_0) \ge 1$, $f'(x_0) = 0$, and $f''(x_0) \le 0$. Using now the differential equation satisfied by f we get a contradiction.

In particular, the above claim shows that $f'' \ge f$ in $[a, \infty)$. Set g := f' - f. Then $g' + g \ge 0$ in $[a, \infty)$ and the function $h(x) := g(x)e^x$ satisfies $h' \ge 0$ in $[a, \infty)$. We deduce that for all $x \ge a$ we have $g(x) = f'(x) - f(x) \ge g(a)e^{a-x}$. Setting $v(x) := f(x)e^{-x}$ we obtain $v'(x) \ge g(a)e^{a-2x}$ on $[a, \infty)$. By integration on [a, x] we find, for all $x \ge a$,

$$f(x) \geq f(a)e^{x-a} - \frac{g(a)}{2}e^{a-x} + \frac{g(a)}{2}e^{x-a} = f(a)e^{x-a} + \frac{f(a) - f'(a)}{2}e^{a-x} + \frac{f'(a) - f(a)}{2}e^{x-a} = \frac{f(a) + f'(a)}{2}e^{x-a} + \frac{f(a) - f'(a)}{2}e^{a-x}.$$
(1)

This shows that there exists a positive constant C such that $f(x) \ge Ce^x$, for any $x \ge a$.

(b) Our hypothesis implies f'' > f in $[a, \infty)$. However, since f(a) + f'(a) is not necessarily positive, estimate (1) does not conclude the proof, as above. For this purpose, using the fact that f'' > 1 in (a, ∞) , we find some $x_0 > a$ such that $f'(x_0) > 0$. Since f is positive in $[x_0, \infty)$, we can repeat the arguments provided in (a), using x_0 instead of a in relation (1). Thus, we find C > 0 such that $f(x) \ge Ce^x$, for any $x \ge x_0$. Choosing eventually a smaller positive constant C, we deduce that the same conclusion holds in $[a, \infty)$.

(c) Make the change of variable $e^{-x} = t \in (0, e^{-A})$ and denote g(t) = f(x). Then g satisfies the differential equation

$$g''(t) + \frac{g'(t)}{t} - \frac{g(t)}{t^2} = \frac{\varphi(-\ln t)}{t^2} g(t) \left(g^2(t) - 1\right), \quad \text{for all } t \in (0, e^{-A}).$$
(2)

We observe that the above equation is equivalent to the first order differential system

$$\begin{cases} g'(t) + \frac{g(t)}{t} = h(t), & t \in (0, e^{-A}) \\ h'(t) = \frac{\varphi(-\ln t)}{t^2} g(t) \left(g^2(t) - 1\right), & t \in (0, e^{-A}). \end{cases}$$
(3)

The growth assumption on φ can be written, equivalently, $\varphi(-\ln t) = O(t^{1+\alpha})$ as $t \to 0$, where α is a positive number. This implies that the right-hand side member of the second differential equation in (3) is integrable around the origin and, moreover,

$$h(t) = O(1) \qquad \text{as } t \searrow 0. \tag{4}$$

On the other hand, since g is bounded around the origin, the first differential equation in (3) implies

$$g(t) = \frac{1}{t} \int_0^t rh(r) dr, \quad \text{for all } 0 < t < e^{-A}.$$
 (5)

Relations (4) and (5) imply that g(t) = O(t) as $t \searrow 0$. Since tg'(t) + g(t) = th(t) we deduce that

$$g'(t) = O(1) \qquad \text{as } t \searrow 0. \tag{6}$$

Let g and g_1 be two arbitrary solutions of (2). Then

$$\left\{t\left[g'(t)g_1(t) - g(t)g_1'(t)\right]\right\}' = \frac{\varphi(-\ln t)}{t}g(t)g_1(t)\left(g^2(t) - g_1^2(t)\right), \qquad t \in (0, e^{-A}).$$
(7)

Relation (6) and the growth assumption on φ imply that the right-hand side member of (7) is $O(t^{4+\alpha})$ as $t \searrow 0$. So, using again (7),

$$g'(t)g_1(t) - g(t)g'_1(t) = O(t^{4+\alpha})$$
 as $t \searrow 0.$ (8)

Next, we observe that we can choose g_1 so that $g_1(t) \sim t$ as $t \searrow 0$. Indeed, this follows from the fact that the initial value problem

$$\begin{cases} g''(t) + \frac{g'(t)}{t} - \frac{g(t)}{t^2} = \frac{\varphi(-\ln t)}{t^2} g(t) \left(g^2(t) - 1\right) \\ g(0) = 0, \ g'(0) = 1 \end{cases}$$

has a solution defined on some interval $(0, \delta)$. Thus, by (8), $\lim_{t \searrow 0} (g(t)/g_1(t))' = 0$. Hence, for any sequence $\{t_n\}_{n \ge 1}$ of positive numbers converging to 0, the sequence $\left\{\frac{g(t_n)}{g_1(t_n)}\right\}_{n \ge 1}$ is a Cauchy sequence. Consequently, there exists $\lim_{t \searrow 0} g(t)/g_1(t) = \ell \in \mathbb{R}$. Since $g_1(t) \sim t$ as $t \searrow 0$, we deduce that $\lim_{t \searrow 0} g(t)/t = \ell$ or, equivalently, $\lim_{x \to \infty} e^x f(x) = \ell$.

Remarks. (i) The conclusion stated in (c) does not remain true for general potentials φ (like in (a) or (b)). Indeed, the function $f(x) = x^{-1}$ satisfies the assumption $f(x) \in (-1, 1)$ for all $x \in (1, \infty)$ and is a solution of the differential equation $f'' = [1 + \varphi(f^2 - 1)]f$, provided that $\varphi(x) = (x^2 - 2)(x^2 - 1)^{-1}$. In this case, $\lim_{x\to\infty} e^x f(x)$ exists but is not finite.

(ii) Under the growth assumption on φ imposed in (c), our result shows that an arbitrary solution f of the differential equation $f'' = [1 + \varphi(f^2 - 1)]f$ in (A, ∞) satisfies the following

alternative: either

• f is unbounded and, in this case, f(x) tends to $+\infty$ as $x \to +\infty$ (at least like e^x , for general positive potentials φ)

or

• f is bounded and, in this case, f(x) tends to 0 as $x \to +\infty$ (at least like e^{-x}).