Problem 11137, The American Mathematical Monthly Proposed by Vicenţiu Rădulescu, Department of Mathematics, University of Craiova, Romania. E-mail: radulescu@inf.ucv.ro

Let φ be a continuous positive function on the open interval (A, ∞), and assume that f is a C^{2}-function on (A, ∞) satisfying the differential equation

$$
f^{\prime \prime}(t)=\left(1+\varphi(t)\left(f^{2}(t)-1\right)\right) f(t) .
$$

(a) Given that there exists $a \in(A, \infty)$ such that $f(a) \geq 1$ and $f^{\prime}(a) \geq 0$, prove that there is a positive constant K such that $f(x) \geq K e^{x}$ whenever $x \geq a$.
(b) Given instead that there exists $a \in(A, \infty)$ such that $f^{\prime}(a)<0$ and $f(x)>1$ if $x>a$, prove that there exists a positive constant K such that $f(x) \geq K e^{x}$ whenever $x \geq a$.
(c) Given that f is bounded on (A, ∞) and that there exists $\alpha>0$ such that $\varphi(x)=$ $O\left(e^{-(1+\alpha) x}\right)$ as $x \rightarrow \infty$, prove that $\lim _{x \rightarrow \infty} e^{x} f(x)$ exists and is finite.

Solution. (a) We first claim that $f \geq 1$ and $f^{\prime} \geq 0$ in $[a, \infty)$. Indeed, assuming the contrary, it follows that f has a local maximum point $x_{0} \geq a$ such that $f\left(x_{0}\right) \geq 1$, $f^{\prime}\left(x_{0}\right)=0$, and $f^{\prime \prime}\left(x_{0}\right) \leq 0$. Using now the differential equation satisfied by f we get a contradiction.

In particular, the above claim shows that $f^{\prime \prime} \geq f$ in $[a, \infty)$. Set $g:=f^{\prime}-f$. Then $g^{\prime}+g \geq 0$ in $[a, \infty)$ and the function $h(x):=g(x) e^{x}$ satisfies $h^{\prime} \geq 0$ in $[a, \infty)$. We deduce that for all $x \geq a$ we have $g(x)=f^{\prime}(x)-f(x) \geq g(a) e^{a-x}$. Setting $v(x):=f(x) e^{-x}$ we obtain $v^{\prime}(x) \geq g(a) e^{a-2 x}$ on $[a, \infty)$. By integration on $[a, x]$ we find, for all $x \geq a$,

$$
\begin{align*}
f(x) & \geq f(a) e^{x-a}-\frac{g(a)}{2} e^{a-x}+\frac{g(a)}{2} e^{x-a} \\
& =f(a) e^{x-a}+\frac{f(a)-f^{\prime}(a)}{2} e^{a-x}+\frac{f^{\prime}(a)-f(a)}{2} e^{x-a} \tag{1}\\
& =\frac{f(a)+f^{\prime}(a)}{2} e^{x-a}+\frac{f(a)-f^{\prime}(a)}{2} e^{a-x} .
\end{align*}
$$

This shows that there exists a positive constant C such that $f(x) \geq C e^{x}$, for any $x \geq a$.
(b) Our hypothesis implies $f^{\prime \prime}>f$ in $[a, \infty)$. However, since $f(a)+f^{\prime}(a)$ is not necessarily positive, estimate (1) does not conclude the proof, as above. For this purpose, using the fact that $f^{\prime \prime}>1$ in (a, ∞), we find some $x_{0}>a$ such that $f^{\prime}\left(x_{0}\right)>0$. Since f is positive in $\left[x_{0}, \infty\right)$, we can repeat the arguments provided in (a), using x_{0} instead of a in relation (1). Thus, we find $C>0$ such that $f(x) \geq C e^{x}$, for any $x \geq x_{0}$. Choosing eventually a smaller positive constant C, we deduce that the same conclusion holds in $[a, \infty)$.
(c) Make the change of variable $e^{-x}=t \in\left(0, e^{-A}\right)$ and denote $g(t)=f(x)$. Then g satisfies the differential equation

$$
\begin{equation*}
g^{\prime \prime}(t)+\frac{g^{\prime}(t)}{t}-\frac{g(t)}{t^{2}}=\frac{\varphi(-\ln t)}{t^{2}} g(t)\left(g^{2}(t)-1\right), \quad \text { for all } t \in\left(0, e^{-A}\right) . \tag{2}
\end{equation*}
$$

We observe that the above equation is equivalent to the first order differential system

$$
\begin{cases}g^{\prime}(t)+\frac{g(t)}{t}=h(t), & t \in\left(0, e^{-A}\right) \tag{3}\\ h^{\prime}(t)=\frac{\varphi(-\ln t)}{t^{2}} g(t)\left(g^{2}(t)-1\right), & t \in\left(0, e^{-A}\right)\end{cases}
$$

The growth assumption on φ can be written, equivalently, $\varphi(-\ln t)=O\left(t^{1+\alpha}\right)$ as $t \rightarrow 0$, where α is a positive number. This implies that the right-hand side member of the second differential equation in (3) is integrable around the origin and, moreover,

$$
\begin{equation*}
h(t)=O(1) \quad \text { as } t \searrow 0 . \tag{4}
\end{equation*}
$$

On the other hand, since g is bounded around the origin, the first differential equation in (3) implies

$$
\begin{equation*}
g(t)=\frac{1}{t} \int_{0}^{t} r h(r) d r, \quad \text { for all } 0<t<e^{-A} . \tag{5}
\end{equation*}
$$

Relations (4) and (5) imply that $g(t)=O(t)$ as $t \searrow 0$. Since $t g^{\prime}(t)+g(t)=t h(t)$ we deduce that

$$
\begin{equation*}
g^{\prime}(t)=O(1) \quad \text { as } t \searrow 0 . \tag{6}
\end{equation*}
$$

Let g and g_{1} be two arbitrary solutions of (2). Then

$$
\begin{equation*}
\left\{t\left[g^{\prime}(t) g_{1}(t)-g(t) g_{1}^{\prime}(t)\right]\right\}^{\prime}=\frac{\varphi(-\ln t)}{t} g(t) g_{1}(t)\left(g^{2}(t)-g_{1}^{2}(t)\right), \quad t \in\left(0, e^{-A}\right) \tag{7}
\end{equation*}
$$

Relation (6) and the growth assumption on φ imply that the right-hand side member of (7) is $O\left(t^{4+\alpha}\right)$ as $t \searrow 0$. So, using again (7),

$$
\begin{equation*}
g^{\prime}(t) g_{1}(t)-g(t) g_{1}^{\prime}(t)=O\left(t^{4+\alpha}\right) \quad \text { as } t \searrow 0 . \tag{8}
\end{equation*}
$$

Next, we observe that we can choose g_{1} so that $g_{1}(t) \sim t$ as $t \searrow 0$. Indeed, this follows from the fact that the initial value problem

$$
\left\{\begin{array}{l}
g^{\prime \prime}(t)+\frac{g^{\prime}(t)}{t}-\frac{g(t)}{t^{2}}=\frac{\varphi(-\ln t)}{t^{2}} g(t)\left(g^{2}(t)-1\right) \\
g(0)=0, g^{\prime}(0)=1
\end{array}\right.
$$

has a solution defined on some interval $(0, \delta)$. Thus, by $(8), \lim _{t \backslash 0}\left(g(t) / g_{1}(t)\right)^{\prime}=0$. Hence, for any sequence $\left\{t_{n}\right\}_{n \geq 1}$ of positive numbers converging to 0 , the sequence $\left\{\frac{g\left(t_{n}\right)}{g_{1}\left(t_{n}\right)}\right\}_{n \geq 1}$ is a Cauchy sequence. Consequently, there exists $\lim _{t \backslash 0} g(t) / g_{1}(t)=\ell \in \mathbb{R}$. Since $g_{1}(t) \sim t$ as $t \searrow 0$, we deduce that $\lim _{t \backslash 0} g(t) / t=\ell$ or, equivalently, $\lim _{x \rightarrow \infty} e^{x} f(x)=\ell$.

Remarks. (i) The conclusion stated in (c) does not remain true for general potentials φ (like in (a) or (b)). Indeed, the function $f(x)=x^{-1}$ satisfies the assumption $f(x) \in(-1,1)$ for all $x \in(1, \infty)$ and is a solution of the differential equation $f^{\prime \prime}=\left[1+\varphi\left(f^{2}-1\right)\right] f$, provided that $\varphi(x)=\left(x^{2}-2\right)\left(x^{2}-1\right)^{-1}$. In this case, $\lim _{x \rightarrow \infty} e^{x} f(x)$ exists but is not finite.
(ii) Under the growth assumption on φ imposed in (c), our result shows that an arbitrary solution f of the differential equation $f^{\prime \prime}=\left[1+\varphi\left(f^{2}-1\right)\right] f$ in (A, ∞) satisfies the following
alternative: either

- f is unbounded and, in this case, $f(x)$ tends to $+\infty$ as $x \rightarrow+\infty$ (at least like e^{x}, for general positive potentials φ)
or
- f is bounded and, in this case, $f(x)$ tends to 0 as $x \rightarrow+\infty$ (at least like e^{-x}).

