Compactly supported solutions of Schrödinger equations with small perturbation

Anouar Bahrouni ${ }^{\mathrm{a}}$ ，Hichem Ounaies ${ }^{\mathrm{a}}$ ，Vicenţiu D．Rădulescu ${ }^{\mathrm{b}, \mathrm{c}, *}$
${ }^{\text {a }}$ Mathematics Department，University of Monastir，Faculty of Sciences， 5019 Monastir，Tunisia
${ }^{\mathrm{b}}$ Faculty of Applied Mathematics，AGH University of Science and Technology，al．Mickiewicza 30，30－059 Kraków，Poland
${ }^{\text {c }}$ Department of Mathematics，University of Craiova， 200585 Craiova，Romania

A R T I C L E I N F O

Article history：

Received 18 March 2018
Received in revised form 27 April 2018
Accepted 27 April 2018
Available online 7 May 2018

Keywords：

Schrödinger equation
Small perturbation
Regularity
Compactly supported solution

A B S T R A C T

We establish the existence of entire compactly supported solutions for a class of Schrödinger equations with competing terms and indefinite potentials．The analysis developed in this paper corresponds to the case of small perturbations of the reaction term．
© 2018 Elsevier Ltd．All rights reserved．

We study the existence of compactly supported solutions for the following Schrödinger equation

$$
\begin{equation*}
-\Delta u+V(x) u=a(x)|u|^{q-1} u+\lambda b(x) g(u), \quad x \in \mathbb{R}^{N}, \tag{0.1}
\end{equation*}
$$

where $N \geq 3, \lambda>0,0<q<1$ and a, b, V are indefinite potentials．
Let S denote the best Sobolev constant，namely $S\|u\|_{2^{*}}^{2} \leq\|\nabla u\|_{2}^{2}$ for all $u \in H^{1}\left(\mathbb{R}^{N}\right)$ ．
We assume that the following hypotheses are fulfilled．
（A）$a \in L^{\infty}\left(\mathbb{R}^{N}\right), \Omega^{+}=\left\{x \in R^{N}, \quad a(x)>0\right\} \neq \emptyset, \lim _{|x| \rightarrow+\infty} a(x)<0$ ，and there exist positive numbers R_{1} and α such that $a^{-}(x) \geq \alpha$ for all $|x| \geq R_{1}$ ；
$(B) b \in C_{c}\left(\mathbb{R}^{N}, \mathbb{R}_{+}\right)$and $\operatorname{supp}(b) \subset \Omega^{+}$；

[^0]$(G) g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous and $g(x) \leq g(|x|)$ for all $x \in \mathbb{R}^{N}$;
$(V) V \in L^{\infty}\left(\mathbb{R}^{N}\right), \lim _{|x| \rightarrow+\infty} V(x)>0, V(x) \geq 0$ for all $x \in{\overline{\Omega^{+}}}^{c}$ and $\left\|V^{-}\right\|_{\frac{N}{2}}<S$.
The main result in this paper establishes that problem (0.1) has solutions with compact support, provided that a suitable perturbation of the second reaction terms is sufficiently small. This perturbation is described below in terms of the real parameter λ in relationship with the small values of the first reaction term with respect to a certain topology.

Theorem 0.1. Assume that conditions $(A),(B),(G)$ and (V) hold. Moreover, suppose that $N \geq 3$ and $0<q<1$. Then there exist positive numbers λ_{0} and m such that if $|\lambda|<\lambda_{0}$ and $\left\|a^{+}+\chi_{B\left(0, R_{1}\right)}\right\|_{\frac{2^{*}}{2^{*}-q-1}}<m$, then problem (0.1) has at least one nonnegative solution with compact support.

We first study the following auxiliary equation:

$$
\begin{equation*}
-\Delta u+V(x) u=a(x)|u|^{q-1} u, \quad x \in \mathbb{R}^{N} \tag{0.2}
\end{equation*}
$$

Theorem 0.2. Let (A) and (V) be satisfied. Assume that $N \geq 3$ and $0<q<1$. Then there exists $m>0$ such that problem (0.2) has at least one nonnegative solution with compact support, provided that $\left\|a^{+}+\chi_{B\left(0, R_{1}\right)}\right\|_{\frac{2^{*}}{2^{*}-q-1}}<m$.

Let $E:=H^{1}\left(\mathbb{R}^{N}\right) \cap L^{q+1}\left(\mathbb{R}^{N}\right)$. Define the following energy functional on E :

$$
\begin{equation*}
I(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+V(x) u^{2}\right) d x-\frac{1}{q+1} \int_{\mathbb{R}^{N}} a(x)|u|^{q+1} d x \tag{0.3}
\end{equation*}
$$

Under assumptions (A) and (V), the functional I is well-defined, of class C^{1} on E and any critical point of I is a weak solution of problem (0.2).

1. Proof of Theorems 0.1 and 0.2

1.1. Study of problem (0.2)

In our previous paper [1] we have proved, under the same assumptions of Theorem 0.2 , that problem (0.2) has infinitely many solutions. However, we did not establish some qualitative properties of these solutions. This is the main purpose of this paper.

Lemma 1.1. Let $d \in \mathbb{R}$ and $F \subset E$ be a closed subset. Then I satisfies the $(P S)_{F, d}$ Palais-Smale condition.

Proof. The proof is identical to that of Lemma 4.3 of [1] and will be omitted.

Lemma 1.2. There exists $m>0$ such that if $\left\|a^{+}+\chi_{B\left(0, R_{1}\right)}\right\|_{2^{*} /\left(2^{*-q-1)}\right.}<m$, then problem (0.2) has at least one positive solution.

Proof. We start by showing that there exists $\gamma>0$ such that

$$
\begin{equation*}
I(u) \geq \gamma \text { for all } u \in E \text { and }\|u\|=1 \tag{1.4}
\end{equation*}
$$

Let $u \in E$. From conditions (A) and (V), Sobolev's and Young's inequalities, we have

$$
\begin{aligned}
& I(u) \geq \frac{1}{2}\|\nabla u\|_{2}^{2}-\frac{1}{2} \int_{\mathbb{R}^{N}} V^{-}(x) u^{2} d x+\frac{\min (\alpha, 1)}{q+1}\|u\|_{q+1}^{q+1}-\frac{1}{q+1} \int_{\mathbb{R}^{N}}\left(a^{+}+\chi_{B\left(0, R_{1}\right)}\right)(x)|u|^{q+1} d x \geq \\
& \left(\frac{1}{2}-\frac{\left\|V^{-}\right\|_{\frac{N}{2}}}{2 S}\right)\|\nabla u\|_{2}^{2}+\frac{\min (\alpha, 1)}{q+1}\|u\|_{q+1}^{q+1}-C_{S}\left\|a^{+}+\chi_{B\left(0, R_{1}\right)}\right\|_{\frac{2^{*}-q-1}{}}\|\nabla u\|_{2}^{q+1} \geq \\
& \left(\frac{1}{4}-\frac{\left\|V^{-}\right\|_{\frac{N}{2}}}{4 S}\right)\|\nabla u\|_{2}^{2}+\frac{\min (\alpha, 1)}{q+1}\|u\|_{q+1}^{q+1}-\frac{1-q}{2} C_{S}^{\frac{2}{1-q}}\left[\frac{2(q+1)}{1-\frac{\left\|V^{-}\right\|_{\frac{N}{2}}}{S}}\right]^{\frac{q+1}{1-q}}\left\|a^{+}+\chi_{B\left(0, R_{1}\right)}\right\|_{\frac{2}{2^{*}-q-1}}^{\frac{2}{1-q}},
\end{aligned}
$$

where C_{S} is a positive constant. Therefore, using the inequality $(x+y)^{2} / 2 \leq x^{2}+y^{q+1}$, for all $x \geq 0$, $0 \leq y \leq 1$, we obtain, for $\|u\| \leq 1$,

$$
\begin{equation*}
I(u) \geq c_{0}\|u\|^{2}-\frac{1-q}{2} C_{S}^{\frac{2}{1-q}}\left[\frac{2(q+1)}{1-\frac{\left\|V^{-}\right\|_{\frac{N}{2}}^{2}}{S}}\right]^{\frac{q+1}{1-q}}\left\|a^{+}+\chi_{B\left(0, R_{1}\right)}\right\|_{\frac{2}{2^{*}-q-1}}^{\frac{2^{*}}{1-2}}, \tag{1.5}
\end{equation*}
$$

with $c_{0}=\min \left\{\left(\frac{1}{8}-\frac{\left\|V^{-}\right\|_{\frac{N}{2}}}{8 S}\right), \frac{\min (\alpha, 1)}{2(q+1)}\right\}$. Then, by (1.5) and for

$$
\| a^{+}+\chi_{B\left(0, R_{1}\right)} \frac{\frac{2}{\|^{2-q}}}{2^{*}-q-1} \leq \frac{c_{0}}{(1-q) C_{S}^{\frac{2}{1-q}}\left(\frac{2(q+1)}{1-\frac{\|V-1\|_{N / 2}}{S}}\right)^{\frac{q+1}{1-q}}},
$$

we deduce that $I(u) \geq c_{0} / 2=\gamma$. This proves our claim (1.4).
Next, we consider the minimization problem

$$
\begin{equation*}
c=\inf _{u \in \overline{\bar{B}}(0,1)} I(u) . \tag{1.6}
\end{equation*}
$$

It is clear that $-\infty<c<0$. Then, by Lemma 1.1 and [2, Lemma 4], there exists $u_{0} \in E$ such that u_{0} is a solution of problem (0.2) and $c=I\left(u_{0}\right)$. More precisely, there exists a $(P S)_{\bar{B}(0, \rho), c}$ sequence $\left(u_{n}\right)_{n} \subset E$ such that $u_{n} \rightarrow u_{0}$ and $c=\lim _{n \rightarrow+\infty} I\left(u_{n}\right)$. Since $c \leq I\left(\left|u_{n}\right|\right) \leq I\left(u_{n}\right)$, then $\left(\left|u_{n}\right|\right)_{n}$ is also a minimizing sequence of problem (1.6). Consequently, we can take $u_{0} \geq 0$ a.e. in \mathbb{R}^{N}.

Lemma 1.3. Let $c(y) \in L^{t}(B(x, 2))$ for some $t>\frac{N}{2}$ with $\|c(y)\|_{L^{t}(B(x, 2))} \leq 1$. Furthermore, assume that hypothesis (B) holds and that $u \geq 0$ satisfies

$$
\int_{B(x, 2)} \nabla u \nabla \varphi+c u \varphi \leq \int_{B(x, 2)} b \varphi \text { for all } \varphi \in H_{0}^{1}(B(x, 2)) \text { and } \varphi \geq 0 \text { in } B(x, 2)
$$

Then $\|u\|_{L^{\infty}(B(x, 1))} \leq C\left(\|u\|_{L^{2}(B(x, 2))}+\|b\|_{L^{t}(B(x, 2))}\right)$, where $C=C(N, t)$ is a positive constant.
Proof. Invoking condition (B), we deduce that $b \in L^{t}(B(x, 2))$. The rest of the proof is a simple application of Theorem 4.1 in [3, p. 67].

Lemma 1.4. Let (A) and (V) be satisfied. Then any nonnegative weak solution u of $E q$. (0.2) is a classical solution and $\lim _{|x| \rightarrow+\infty} u(x)=0$.

Proof. The regularity of u follows by boostrap arguments; see [4, Appendix B]. Let $R \geq R_{1}$ such that $V(x) \geq 0$, for all $|x| \geq R$. For $x \in B^{c}(0, R+3)$, we have $B(x, 1) \subset B(x, 2) \subset B^{c}(0, R)$ and $-\Delta u(y) \leq 0$ for all $y \in B(x, 2)$. Applying Lemma 1.3 with $c=b=0$, we obtain $\|u\|_{L^{\infty}(B(x, 1))} \leq c\|u\|_{L^{2}(B(x, 2))}$, for some positive constant c. Hence, since $u \in L^{2}\left(\mathbb{R}^{\mathbb{N}}\right)$, we have $\lim _{|x| \rightarrow+\infty} u(x)=0$.

Lemma 1.5. Every nonnegative classical solution of problem (0.2) is compactly supported.
Proof. From conditions (A) and (V) and Lemma 1.4, there exist positive numbers R and a_{0} such that for every $x \in B^{c}(0, R)$, we infer that

$$
\begin{equation*}
u(x)<A, \quad a^{-}(x)>a_{0} \text { and } V(x) \geq 0 \tag{1.7}
\end{equation*}
$$

with $A=\frac{1}{2}\left[\frac{a_{0}}{\frac{2}{1-q}\left(\frac{2}{1-q}+N-2\right)}\right]^{\frac{1}{1-q}}$. If we take, for any $y \in B^{c}(0, R+2)$,

$$
W(x)=\left[\frac{a_{0}}{\frac{2}{1-q}\left(\frac{2}{1-q}+N-2\right)}\right]^{\frac{1}{1-q}}|x-y|^{\frac{2}{1-q}},
$$

we deduce that

$$
\begin{equation*}
-\Delta W(x)=-a_{0} W^{q}(x) \text { in } B(y, 1) . \tag{1.8}
\end{equation*}
$$

In what follows, we show that $W(x) \geq u(x)$ in $B(y, 1)$. Arguing by contradiction, we assume that there exists $x_{0} \in B(y, 1)$ such that $W\left(x_{0}\right)<u\left(x_{0}\right)$. By Lemma 1.4, we may assume that $W-u$ attains minimal value at x_{0}. Hence, using (1.7) and (1.8), we get

$$
0 \geq-\Delta(W-u)\left(x_{0}\right)=\left(a^{-} u^{q}-a_{0} W^{q}+V u^{2}\right)\left(x_{0}\right) \geq\left(a_{0} u^{q}-a_{0} W^{q}\right)\left(x_{0}\right)>0,
$$

contradiction. Thus, $0=W(y) \geq u(y) \geq 0$ for all $y \in B^{c}(0, R+2)$.
Proof of Theorem $\mathbf{0 . 2}$ concluded. By Lemma 1.2, u_{0} is a nonnegative solution of problem (0.2). Applying Lemma 1.5 with $u=u_{0}$, we conclude that u_{0} is a nonegative classical compactly supported solution of problem (0.2).

1.2. Study of problem (0.1)

We first establish uniform estimates for solutions of problem (0.2). Next, by exploiting the previous section and some ideas coming from [5], we conclude the proof of our main result.

Lemma 1.6. Let $u \in E$ be an arbitrary classical nonnegative solution of problem (0.2). Then $\|u\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}$ is attained in $\overline{\Omega^{+}}$.

Proof. By Lemma 1.4, we may assume that $\|u\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}$ is attained at x_{1}, but is not in $\overline{\Omega^{+}}$. Let Ω be the connected component of $\left(\overline{\Omega^{+}}\right)^{c}$, which contains x_{1}. By the strong maximum principle and conditions (A) and (V), we deduce that $u(x)=u\left(x_{1}\right)$ in $\bar{\Omega}$. Taking into account that $\overline{\Omega^{+}} \cap \bar{\Omega} \neq \emptyset$, we conclude the proof of Lemma 1.6.

Let O be an open bounded set in \mathbb{R}^{N} such that $\Omega^{+} \cup\left\{x \in \mathbb{R}^{\mathbb{N}}, V(x) \leq 0\right\} \subset \subset O$.
Lemma 1.7. For any positive integer $s \geq 2$, we have $\|u\|_{L^{(s+1) N /(N-2)}(O)} \leq C\|u\|_{2^{*}}$, where $u \in E$ is a nonnegative classical solution of Eq. (0.2) and $C=C(a, q, N, s, V)$.

Proof. Fix $k \geq 2$. Multiplying Eq. (0.2) by $|u|^{k-1} u$, we obtain

$$
k \int_{\mathbb{R}^{N}}|u|^{k-1}|\nabla u|^{2} d x+\int_{\mathbb{R}^{N}} V(x)|u|^{k+1} d x=\int_{\mathbb{R}^{N}} a(x)|u|^{k+q} d x,
$$

and thus

$$
k \int_{\mathbb{R}^{N}}|u|^{k-1}|\nabla u|^{2} d x \leq \int_{\mathbb{R}^{N}} V^{-}(x)|u|^{k+1} d x+\int_{\mathbb{R}^{N}} a^{+}(x)|u|^{k+q} d x .
$$

By the Sobolev inequality, it follows that

$$
\begin{equation*}
\frac{4 k C_{S}}{(k+1)^{2}}\left\|u^{\frac{k+1}{2}}\right\|_{L^{\frac{2 N}{N-2}}(O)}^{2} \leq \int_{O} V^{-}(x)|u|^{k+1} d x+\int_{O} a^{+}(x)|u|^{k+q} d x . \tag{1.9}
\end{equation*}
$$

Now, we estimate the integral on the second part of right-hand side of Eq. (1.9) as

$$
\begin{align*}
\int_{O} a^{+}(x)|u|^{q+k} d x & =\int_{\{x \in O, \quad|u(x)|<1\}} a^{+}(x)|u|^{q+k} d x+\int_{\{x \in O, \quad|u(x)| \geq 1\}} a^{+}(x)|u|^{q+k} d x \\
& \leq \int_{O} a^{+}(x) d x+\int_{O} a^{+}(x)|u|^{k+1} d x . \tag{1.10}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\frac{4 k C_{S}}{(k+1)^{2}}\|u\|_{L^{\frac{(k+1) N}{N-2}}(O)}^{k+1} \leq\left\|V^{-}+a^{+}\right\|_{\infty}\|u\|_{L^{k+1}(O)}^{k+1}+\left\|a^{+}\right\|_{1} . \tag{1.11}
\end{equation*}
$$

Fix $s \geq 2$. In (1.11), we start with $k+1=2^{*}=\frac{2 N}{N-2}$ and then we follow the sequence $(k+1) \frac{N}{N-2}$, $(k+1)\left(\frac{N}{N-2}\right)^{2}, \ldots$, until we pass $s+1$. Since O is bounded, the proof is completed.

Lemma 1.8. There exists $M>0$ so that, for every classical nonnegative solution $u \in E$ of problem (0.2), we have $\|u\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \leq M$, with $M=M\left(N, q, \Omega^{+},\left\|a^{+}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}\right)$.

Proof. Invoking conditions (A) and (V), we infer that

$$
\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}-\frac{1}{2} \int_{\mathbb{R}^{N}} V^{-}(x) u^{2} d x \leq \int_{\mathbb{R}^{N}} a^{+}(x)|u|^{q+1} d x \leq\left\|a^{+}\right\|_{\frac{2^{*}}{}}\|u\|_{2^{*}-q-1}^{q+1} .
$$

By (V), it follows that $\left(S-\left\|V^{-}\right\|_{N / 2}\right)\|\nabla u\|_{2}^{2} \leq 2\left\|a^{+}\right\|_{2^{2^{*}-q-1}}\|u\|_{2^{*}}^{q+1}$. Thus, by Sobolev's inequality and (V), there exists $C>0$ such that $\|u\|_{2^{*}} \leq C\left\|a^{+}\right\|_{2^{*} /\left(2^{*}-q-1\right)}^{1 /(1-q)}$. Choosing $s \geq 2$ so that $(s+1) \frac{N}{N-2} \geq \frac{N+1}{2}$, in view of Lemma 1.7, we know that $\|u\|_{L^{N(s+1) /(N-2)}(O)}$ is uniformly bounded. By elliptic estimates (see [6]), we obtain $\|u\|_{W^{2}, \frac{N+1}{2}\left(\Omega^{+}\right)} \leq C\left(\|\Delta u\|_{L^{\frac{N+1}{2}(O)}}+\|u\|_{L^{\frac{N+1}{2}}(O)}\right)$. Therefore, in light of Lemma 1.6, we have
shown our desired result.

1.2.1. Proof of Theorem 0.1

Choose a smooth function $h: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that $0 \leq h \leq 1$ in $\mathbb{R}^{N}, h(x)=1$ for $|x| \leq 2 M$ and $h(x)=0$ for $|x| \geq 4 M$ (M is given in Lemma 1.8). Then the function

$$
\bar{G}(t, u):=h(u(t)) G(t, u(t))=h(u(t)) \int_{0}^{u(t)} b(s) g(s) d s
$$

is of class C^{1}. Hence, by (B) and $(G), \bar{G}(t, u)$ and $\bar{G}_{u}(t, u)$ are bounded on $\mathbb{R} \times \mathbb{R}^{N}$.

Next, we define $J_{\lambda}: E \rightarrow \mathbb{R}$ by

$$
J_{\lambda}(u)=\int_{\mathbb{R}^{N}} \frac{1}{2}\left(|\nabla u|^{2}+V(x) u^{2}\right) d x-\frac{1}{q+1} \int_{\mathbb{R}^{N}} a(x)|u|^{q+1} d x-\lambda \int_{\mathbb{R}^{N}} h(u(x)) G(x, u(x)) d x
$$

A critical point of J_{λ} is a solution of the problem

$$
\begin{equation*}
-\Delta u+V(x) u=a(x)|u|^{q-1} u+\lambda h(u) G_{u}(x, u)+\lambda h^{\prime}(u) G(x, u) \tag{1.12}
\end{equation*}
$$

We say that u is an Ekeland solution of J_{λ} if $J_{\lambda}^{\prime}(u)=0$ and $J_{\lambda}(u)=c$, where c given in (1.6). We say that J_{λ} has an Ekeland geometry if there exist $R>0$ and v with $\|v\|<R$ such that $J_{\lambda}(v)<\inf \|u\|=R J_{\lambda}(u)$. We also observe that with the same arguments as in the proof of Lemma 1.1, we deduce that J_{λ} satisfies the Palais-Smale condition.

Lemma 1.9. There exists $\lambda_{0}>0$ such that J_{λ} has an Ekeland geometry when $|\lambda| \leq\left|\lambda_{0}\right|$.

Proof. By the boundedness of $\bar{G}(x, u)$, we have $I(u)-C \lambda \leq J_{\lambda}(u) \leq I(u)+C \lambda$ for all $u \in E$, where $C>0$ is independent of λ and u. Thus, for $|\lambda|$ small enough, it follows that $-\infty<c_{\lambda}=\inf _{u \in \bar{B}(0,1)} J_{\lambda}(u)<0$ and $0<\inf _{u \in \partial B(0,1)} I(u)+C \lambda<\inf _{u \in \partial B(0,1)} J_{\lambda}(u)$.

Lemma 1.10. Let $\left(\lambda_{n}\right)_{n} \subset \mathbb{R}$ be a sequence converging to zero and u_{n} be an Ekeland solution of $J_{\lambda_{n}}$. Then, up to a subsequence, $\left(u_{n}\right)$ converges to an Ekeland solution $v \in E$ of I.

Proof. We recall that $I(u)-C \lambda_{n} \leq J_{\lambda_{n}}(u) \leq I(u)+C \lambda_{n}$ for all $u \in E$, hence $\inf _{u \in \bar{B}(0,1)} I(u)-C \lambda_{n} \leq$ $\inf _{u \in \bar{B}(0,1)} J_{\lambda_{n}}(u) \leq \inf _{u \in \bar{B}(0,1)} I(u)+C \lambda_{n}$ for all $u \in E$. Therefore $c_{\lambda_{n}} \rightarrow c$ as $n \rightarrow+\infty$. By (G) and since $\bar{G}(x, u)$ and $(\bar{G})_{u}(x, u)$ are bounded and $\lambda_{n} \rightarrow 0$, we deduce that $\left(u_{n}\right)$ is a (PS) sequence of I. So, by Lemma 1.1, $u_{n} \rightarrow v$ in E. We conclude that $I(v)=c$ and $I^{\prime}(v)=0$.

Lemma 1.11. Let $\left(\lambda_{n}\right)_{n} \subset \mathbb{R}$ be a sequence converging to zero and u_{n} be a nonnegative Ekeland solution of $J_{\lambda_{n}}$. Then $\left\|u_{n}\right\|_{\infty}=\left\|u_{n}\right\|_{L^{\infty}\left(\overline{\left.\Omega^{+}\right)}\right.}$for all $n \in \mathbb{N}$. Moreover, up to a subsequence, u_{n} converges to a limit w in $L^{\infty}\left(\bar{\Omega}^{+}\right)$, where w is an Ekeland solution of I.

Proof. For the first part, the proof is identical to that of Lemma 1.6.
For the second part, we apply Lemma 1.10. Thus, $u_{n} \rightarrow w$ in E, where w is an Ekeland solution of I. So, it is sufficient to prove that u_{n} is bounded in $W^{2, \frac{N+1}{2}}(O)$. We claim that for all $s \geq 2$, there exists $C_{1}=C_{1}(O, s, q, N, b, g, a, V)$ such that $\left\|u_{n}\right\|_{L^{\frac{(s+1) N}{N-2}(O)}} \leq C\left\|u_{n}\right\|_{2^{*}}$ for all $n \in \mathbb{N}$. Fix $k \geq 2$. Multiplying Eq. (1.12) by $\left|u_{n}\right|^{k-1} u_{n}$, we obtain

$$
\begin{aligned}
& k \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{k-1}\left|\nabla u_{n}\right|^{2} d x+\int_{\mathbb{R}^{N}} V(x)\left|u_{n}\right|^{k+1} d x=\int_{\mathbb{R}^{N}} a(x)\left|u_{n}\right|^{k+q} d x \\
&+\lambda_{n}\left(\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{k-1} u_{n} h\left(u_{n}\right) G_{u}\left(x, u_{n}\right) d x+\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{k-1} u_{n} h^{\prime}\left(u_{n}\right) G\left(x, u_{n}\right) d x\right)
\end{aligned}
$$

So, for n large enough, we infer that

$$
k \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{k-1}\left|\nabla u_{n}\right|^{2} d x \leq \int_{\mathbb{R}^{N}} V^{-}(x)\left|u_{n}\right|^{k+1} d x+\int_{\mathbb{R}^{N}} a^{+}(x)\left|u_{n}\right|^{k+q} d x+C \int_{\mathbb{R}^{N}} b(x)\left|u_{n}\right|^{k-1} u_{n} d x
$$

Using the arguments as in Lemma 1.7 and the above estimation, we deduce our claim. By this claim and $\left\|u_{n}\right\|_{\infty}=\left\|u_{n}\right\|_{L^{\infty}\left(\overline{\Omega^{+}}\right)}$, the rest of the proof is the same as for Lemma 1.8.

Lemma 1.12. There exists $\lambda_{0}>0$ such that any nonnegative Ekeland solution $v \in E$ of J_{λ} with $|\lambda| \leq \lambda_{0}$ satisfies $\|v\|_{\infty} \leq 2 M$.

Proof. By contradiction, there exist $\lambda_{n} \in \mathbb{R}$ and $u_{n} \in E$ such that $\lambda_{n} \rightarrow 0, u_{n}$ is a nonnegative Ekeland solution of $J_{\lambda_{n}}$ and $\left\|u_{n}\right\|_{\infty}>2 M$. By Lemmas 1.10 and 1.8, $\left(u_{n}\right)$ converges to an Ekeland solution $w \in E$ of I with $\|w\|_{\infty}<M$. By Lemma 1.11, $\left\|u_{n}\right\|_{\infty}<2 M$ for n large, contradiction.

Choose $\lambda_{0}>0$ that satisfies Lemmas 1.9 and 1.12. By Lemma 1.9, [2, Lemma 4] and since J_{λ} satisfies the Palais-Smale condition, there exists $u_{\lambda} \in E$ such that u_{λ} is a critical point of J_{λ} and $c_{\lambda}=J_{\lambda}\left(u_{\lambda}\right)$ with $|\lambda|<\left|\lambda_{0}\right|$. By Lemma 1.12, $\left\|u_{\lambda}\right\|_{\infty}<2 M$. Thus, $h^{\prime}\left(u_{\lambda}\right)=0$ and $h\left(u_{\lambda}\right)=1$. By a standard bootstrap argument, u_{λ} is a classical nonnegative solution of (0.1). It remains to prove that u_{λ} is compactly supported. Indeed, by $(B),(G)$ and (V), for every $0<\lambda<\lambda_{0}$, we have $V(x) \geq 0$ and $b(x)=0$ for all $|x| \geq R$, with R large enough. From now on the proof is identical to that of Lemma 1.5 and it will be omitted. The proof of Theorem 0.1 is now completed.

Acknowledgments

The research of V.D. Rădulescu was supported by the Slovenian Research Agency Grants P1-0292, J18131, J1-7025, N1-0064, and N1-0083. The same author acknowledges the support through a grant of the Romanian Ministry of Research and Innovation, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2016-0130, within PNCDI III.

References

[1] A. Bahrouni, H. Ounaies, V. Rădulescu, Infinitely many solutions for a class of sublinear Schrödinger equations with sign-changing potentials, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015) 445-465.
[2] J.V.A. Goncalves, O.H. Miyagaki, Three solutions for strongly resonant elliptic problem, Nonlinear Anal. 24 (1995) $265-272$.
[3] Q. Han, F. Lin, Elliptic Partial Differential Equations, in: Courant Lect. Notes Math., Courant Inst. Math. Sci., New York, 1997.
[4] M. Struwe, Variational Methods, Springer-Verlag, Berlin, 1990.
[5] R. Kajikiya, Positive solutions of semilinear elliptic equations with small perturbations, Proc. Amer. Math. Soc. 4 (2013) 1335-1342.
[6] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977.

[^0]: ＊Corresponding author at：Department of Mathematics，University of Craiova， 200585 Craiova，Romania．
 E－mail addresses：anouar．bahrouni＠fsm．rnu．tn（A．Bahrouni），hichem．ounaies＠fsm．rnu．tn（H．Ounaies）， vicentiu．radulescu＠imar．ro（V．D．Rădulescu）．

