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a b s t r a c t

We establish the existence of entire compactly supported solutions for a class of
Schrödinger equations with competing terms and indefinite potentials. The analysis
developed in this paper corresponds to the case of small perturbations of the reaction
term.
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We study the existence of compactly supported solutions for the following Schrödinger equation

− ∆u + V (x)u = a(x)|u|q−1
u + λb(x)g(u), x ∈ RN , (0.1)

where N ≥ 3, λ > 0, 0 < q < 1 and a, b, V are indefinite potentials.
Let S denote the best Sobolev constant, namely S∥u∥2

2∗ ≤ ∥∇u∥2
2 for all u ∈ H1(RN ).

We assume that the following hypotheses are fulfilled.
(A) a ∈ L∞(RN ), Ω+ = {x ∈ RN , a(x) > 0} ≠ ∅, lim|x|→+∞a(x) < 0, and there exist positive numbers
R1 and α such that a−(x) ≥ α for all |x| ≥ R1;
(B) b ∈ Cc(RN ,R+) and supp (b) ⊂ Ω+;
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(G) g : R → R is a continuous and g(x) ≤ g(|x|) for all x ∈ RN ;
(V ) V ∈ L∞(RN ), lim|x|→+∞V (x) > 0, V (x) ≥ 0 for all x ∈ Ω+c and ∥V −∥ N

2
< S.

The main result in this paper establishes that problem (0.1) has solutions with compact support, provided
that a suitable perturbation of the second reaction terms is sufficiently small. This perturbation is described
below in terms of the real parameter λ in relationship with the small values of the first reaction term with
respect to a certain topology.

Theorem 0.1. Assume that conditions (A), (B), (G) and (V ) hold. Moreover, suppose that N ≥ 3 and
0 < q < 1. Then there exist positive numbers λ0 and m such that if |λ| < λ0 and ∥a++χB(0,R1)∥ 2∗

2∗−q−1
< m,

then problem (0.1) has at least one nonnegative solution with compact support.

We first study the following auxiliary equation:

− ∆u + V (x)u = a(x)|u|q−1
u, x ∈ RN . (0.2)

Theorem 0.2. Let (A) and (V ) be satisfied. Assume that N ≥ 3 and 0 < q < 1. Then there exists
m > 0 such that problem (0.2) has at least one nonnegative solution with compact support, provided that
∥a+ + χB(0,R1)∥ 2∗

2∗−q−1
< m.

Let E := H1 (RN
)

∩ Lq+1 (RN
)

. Define the following energy functional on E:

I (u) = 1
2

∫
RN

(
|∇u|2 + V (x)u2

)
dx − 1

q + 1

∫
RN

a(x)|u|q+1
dx. (0.3)

Under assumptions (A) and (V ), the functional I is well-defined, of class C1 on E and any critical point
of I is a weak solution of problem (0.2).

1. Proof of Theorems 0.1 and 0.2

1.1. Study of problem (0.2)

In our previous paper [1] we have proved, under the same assumptions of Theorem 0.2, that problem (0.2)
has infinitely many solutions. However, we did not establish some qualitative properties of these solutions.
This is the main purpose of this paper.

Lemma 1.1. Let d ∈ R and F ⊂ E be a closed subset. Then I satisfies the (PS)F,d Palais–Smale
condition.

Proof. The proof is identical to that of Lemma 4.3 of [1] and will be omitted. □

Lemma 1.2. There exists m > 0 such that if ∥a+ + χB(0,R1)∥2∗/(2∗−q−1) < m, then problem (0.2) has at
least one positive solution.

Proof. We start by showing that there exists γ > 0 such that

I(u) ≥ γ for all u ∈ E and ∥u∥ = 1. (1.4)
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Let u ∈ E. From conditions (A) and (V ), Sobolev’s and Young’s inequalities, we have

I(u) ≥ 1
2∥∇u∥2

2 − 1
2

∫
RN

V −(x)u2dx + min(α, 1)
q + 1 ∥u∥q+1

q+1 − 1
q + 1

∫
RN

(a+ + χB(0,R1))(x)|u|q+1
dx ≥(

1
2 −

∥V −∥ N
2

2S

)
∥∇u∥2

2 + min(α, 1)
q + 1 ∥u∥q+1

q+1 − CS∥a+ + χB(0,R1)∥ 2∗
2∗−q−1

∥∇u∥q+1
2 ≥

(
1
4 −

∥V −∥ N
2

4S

)
∥∇u∥2

2 + min(α, 1)
q + 1 ∥u∥q+1

q+1 − 1 − q

2 C
2

1−q

S

⎡⎢⎣ 2(q + 1)

1 −
∥V −∥ N

2
S

⎤⎥⎦
q+1
1−q

∥a+ + χB(0,R1)∥
2

1−q
2∗

2∗−q−1
,

where CS is a positive constant. Therefore, using the inequality (x + y)2
/2 ≤ x2 + yq+1, for all x ≥ 0,

0 ≤ y ≤ 1, we obtain, for ∥u∥ ≤ 1,

I(u) ≥ c0∥u∥2 − 1 − q

2 C
2

1−q

S

⎡⎢⎣ 2(q + 1)

1 −
∥V −∥ N

2
S

⎤⎥⎦
q+1
1−q

∥a+ + χB(0,R1)∥
2

1−q
2∗

2∗−q−1
, (1.5)

with c0 = min
{

( 1
8 −

∥V −∥ N
2

8S ), min(α,1)
2(q+1)

}
. Then, by (1.5) and for

∥a+ + χB(0,R1)∥
2

1−q
2∗

2∗−q−1
≤ c0

(1 − q)C
2

1−q

S

(
2(q+1)

1−
∥V −∥N/2

S

) q+1
1−q

,

we deduce that I(u) ≥ c0/2 = γ. This proves our claim (1.4).

Next, we consider the minimization problem

c = inf
u∈B(0,1)

I(u). (1.6)

It is clear that −∞ < c < 0. Then, by Lemma 1.1 and [2, Lemma 4], there exists u0 ∈ E such that u0 is
a solution of problem (0.2) and c = I(u0). More precisely, there exists a (PS)B(0,ρ),c sequence (un)n ⊂ E

such that un → u0 and c = limn→+∞I(un). Since c ≤ I(|un|) ≤ I(un), then (|un|)n is also a minimizing
sequence of problem (1.6). Consequently, we can take u0 ≥ 0 a.e. in RN . □

Lemma 1.3. Let c(y) ∈ Lt(B(x, 2)) for some t > N
2 with ∥c(y)∥Lt(B(x,2)) ≤ 1. Furthermore, assume that

hypothesis (B) holds and that u ≥ 0 satisfies∫
B(x,2)

∇u∇φ + cuφ ≤
∫

B(x,2)
bφ for all φ ∈ H1

0 (B(x, 2)) and φ ≥ 0 in B(x, 2).

Then ∥u∥L∞(B(x,1)) ≤ C(∥u∥L2(B(x,2)) + ∥b∥Lt(B(x,2))), where C = C(N, t) is a positive constant.

Proof. Invoking condition (B), we deduce that b ∈ Lt(B(x, 2)). The rest of the proof is a simple application
of Theorem 4.1 in [3, p. 67]. □

Lemma 1.4. Let (A) and (V ) be satisfied. Then any nonnegative weak solution u of Eq. (0.2) is a classical
solution and lim|x|→+∞u(x) = 0.
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Proof. The regularity of u follows by boostrap arguments; see [4, Appendix B]. Let R ≥ R1 such that
V (x) ≥ 0, for all |x| ≥ R. For x ∈ Bc(0, R + 3), we have B(x, 1) ⊂ B(x, 2) ⊂ Bc(0, R) and −∆u(y) ≤ 0 for
all y ∈ B(x, 2). Applying Lemma 1.3 with c = b = 0, we obtain ∥u∥L∞(B(x,1)) ≤ c∥u∥L2(B(x,2)), for some
positive constant c. Hence, since u ∈ L2(RN), we have lim|x|→+∞u(x) = 0. □

Lemma 1.5. Every nonnegative classical solution of problem (0.2) is compactly supported.

Proof. From conditions (A) and (V ) and Lemma 1.4, there exist positive numbers R and a0 such that for
every x ∈ Bc(0, R), we infer that

u(x) < A, a−(x) > a0 and V (x) ≥ 0, (1.7)

with A = 1
2 [ a0

2
1−q ( 2

1−q +N−2) ]
1

1−q . If we take, for any y ∈ Bc(0, R + 2),

W (x) =
[

a0
2

1−q ( 2
1−q + N − 2)

] 1
1−q

|x − y|
2

1−q ,

we deduce that

− ∆W (x) = −a0W q(x) in B(y, 1). (1.8)

In what follows, we show that W (x) ≥ u(x) in B(y, 1). Arguing by contradiction, we assume that there
exists x0 ∈ B(y, 1) such that W (x0) < u(x0). By Lemma 1.4, we may assume that W − u attains minimal
value at x0. Hence, using (1.7) and (1.8), we get

0 ≥ −∆(W − u)(x0) = (a−uq − a0W q + V u2)(x0) ≥ (a0uq − a0W q)(x0) > 0,

contradiction. Thus, 0 = W (y) ≥ u(y) ≥ 0 for all y ∈ Bc(0, R + 2). □

Proof of Theorem 0.2 concluded. By Lemma 1.2, u0 is a nonnegative solution of problem (0.2).
Applying Lemma 1.5 with u = u0, we conclude that u0 is a nonegative classical compactly supported
solution of problem (0.2). □

1.2. Study of problem (0.1)

We first establish uniform estimates for solutions of problem (0.2). Next, by exploiting the previous section
and some ideas coming from [5], we conclude the proof of our main result.

Lemma 1.6. Let u ∈ E be an arbitrary classical nonnegative solution of problem (0.2). Then ∥u∥L∞(RN )
is attained in Ω+.

Proof. By Lemma 1.4, we may assume that ∥u∥L∞(RN ) is attained at x1, but is not in Ω+. Let Ω be the
connected component of (Ω+)c, which contains x1. By the strong maximum principle and conditions (A)
and (V ), we deduce that u(x) = u(x1) in Ω . Taking into account that Ω+ ∩ Ω ̸= ∅, we conclude the proof
of Lemma 1.6. □

Let O be an open bounded set in RN such that Ω+ ∪ {x ∈ RN, V (x) ≤ 0} ⊂⊂ O.

Lemma 1.7. For any positive integer s ≥ 2, we have ∥u∥L(s+1)N/(N−2)(O) ≤ C∥u∥2∗ , where u ∈ E is a
nonnegative classical solution of Eq. (0.2) and C = C(a, q, N, s, V ).
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Proof. Fix k ≥ 2. Multiplying Eq. (0.2) by |u|k−1
u, we obtain

k

∫
RN

|u|k−1|∇u|2dx +
∫
RN

V (x)|u|k+1
dx =

∫
RN

a(x)|u|k+q
dx,

and thus

k

∫
RN

|u|k−1|∇u|2dx ≤
∫
RN

V −(x)|u|k+1
dx +

∫
RN

a+(x)|u|k+q
dx.

By the Sobolev inequality, it follows that

4kCS

(k + 1)2 ∥u
k+1

2 ∥
2

L
2N

N−2 (O) ≤
∫

O

V −(x)|u|k+1
dx +

∫
O

a+(x)|u|k+q
dx. (1.9)

Now, we estimate the integral on the second part of right-hand side of Eq. (1.9) as∫
O

a+(x)|u|q+k
dx =

∫
{x∈O, |u(x)|<1}

a+(x)|u|q+k
dx +

∫
{x∈O, |u(x)|≥1}

a+(x)|u|q+k
dx

≤
∫

O

a+(x)dx +
∫

O

a+(x)|u|k+1
dx. (1.10)

Therefore
4kCS

(k + 1)2 ∥u∥k+1

L
(k+1)N

N−2 (O)
≤ ∥V − + a+∥∞∥u∥k+1

Lk+1(O) + ∥a+∥1. (1.11)

Fix s ≥ 2. In (1.11), we start with k + 1 = 2∗ = 2N
N−2 and then we follow the sequence (k + 1) N

N−2 ,
(k + 1)( N

N−2 )2, . . . , until we pass s + 1. Since O is bounded, the proof is completed. □

Lemma 1.8. There exists M > 0 so that, for every classical nonnegative solution u ∈ E of problem (0.2),
we have ∥u∥L∞(RN ) ≤ M, with M = M(N, q,Ω+, ∥a+∥L∞(RN )).

Proof. Invoking conditions (A) and (V ), we infer that

1
2

∫
RN

|∇u|2 − 1
2

∫
RN

V −(x)u2dx ≤
∫
RN

a+(x)|u|q+1
dx ≤ ∥a+∥ 2∗

2∗−q−1
∥u∥q+1

2∗ .

By (V ), it follows that (S − ∥V −∥N/2)∥∇u∥2
2 ≤ 2∥a+∥ 2∗

2∗−q−1
∥u∥q+1

2∗ . Thus, by Sobolev’s inequality and (V ),

there exists C > 0 such that ∥u∥2∗ ≤ C∥a+∥1/(1−q)
2∗/(2∗−q−1). Choosing s ≥ 2 so that (s + 1) N

N−2 ≥ N+1
2 , in

view of Lemma 1.7, we know that ∥u∥LN(s+1)/(N−2)(O) is uniformly bounded. By elliptic estimates (see [6]),

we obtain ∥u∥
W

2, N+1
2 (Ω+)

≤ C

(
∥∆u∥

L
N+1

2 (O)
+ ∥u∥

L
N+1

2 (O)

)
. Therefore, in light of Lemma 1.6, we have

shown our desired result. □

1.2.1. Proof of Theorem 0.1
Choose a smooth function h : RN → R such that 0 ≤ h ≤ 1 in RN , h(x) = 1 for |x| ≤ 2M and h(x) = 0

for |x| ≥ 4M (M is given in Lemma 1.8). Then the function

G(t, u) := h(u(t))G(t, u(t)) = h(u(t))
∫ u(t)

0
b(s)g(s)ds

is of class C1. Hence, by (B) and (G), G(t, u) and Gu(t, u) are bounded on R × RN .
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Next, we define Jλ : E → R by

Jλ(u) =
∫
RN

1
2(|∇u|2 + V (x)u2)dx − 1

q + 1

∫
RN

a(x)|u|q+1
dx − λ

∫
RN

h(u(x))G(x, u(x))dx.

A critical point of Jλ is a solution of the problem

− ∆u + V (x)u = a(x)|u|q−1
u + λh(u)Gu(x, u) + λh′(u)G(x, u). (1.12)

We say that u is an Ekeland solution of Jλ if J ′
λ(u) = 0 and Jλ(u) = c, where c given in (1.6). We say that

Jλ has an Ekeland geometry if there exist R > 0 and v with ∥v∥ < R such that Jλ(v) < inf ∥u∥ = RJλ(u).
We also observe that with the same arguments as in the proof of Lemma 1.1, we deduce that Jλ satisfies
the Palais–Smale condition.

Lemma 1.9. There exists λ0 > 0 such that Jλ has an Ekeland geometry when |λ| ≤ |λ0|.

Proof. By the boundedness of G(x, u), we have I(u)−Cλ ≤ Jλ(u) ≤ I(u)+Cλ for all u ∈ E, where C > 0
is independent of λ and u. Thus, for |λ| small enough, it follows that −∞ < cλ = infu∈B(0,1)Jλ(u) < 0 and
0 < infu∈∂B(0,1)I(u) + Cλ < infu∈∂B(0,1)Jλ(u). □

Lemma 1.10. Let (λn)n ⊂ R be a sequence converging to zero and un be an Ekeland solution of Jλn .
Then, up to a subsequence, (un) converges to an Ekeland solution v ∈ E of I.

Proof. We recall that I(u) − Cλn ≤ Jλn(u) ≤ I(u) + Cλn for all u ∈ E, hence infu∈B(0,1)I(u) − Cλn ≤
infu∈B(0,1)Jλn(u) ≤ infu∈B(0,1)I(u) + Cλn for all u ∈ E. Therefore cλn → c as n → +∞. By (G) and
since G(x, u) and (G)u(x, u) are bounded and λn → 0, we deduce that (un) is a (PS) sequence of I. So, by
Lemma 1.1, un → v in E. We conclude that I(v) = c and I ′(v) = 0. □

Lemma 1.11. Let (λn)n ⊂ R be a sequence converging to zero and un be a nonnegative Ekeland solution
of Jλn . Then ∥un∥∞ = ∥un∥

L∞(Ω+) for all n ∈ N. Moreover, up to a subsequence, un converges to a limit
w in L∞(Ω+), where w is an Ekeland solution of I.

Proof. For the first part, the proof is identical to that of Lemma 1.6.
For the second part, we apply Lemma 1.10. Thus, un → w in E, where w is an Ekeland solution of I.

So, it is sufficient to prove that un is bounded in W 2, N+1
2 (O). We claim that for all s ≥ 2, there exists

C1 = C1(O, s, q, N, b, g, a, V ) such that ∥un∥
L

(s+1)N
N−2 (O)

≤ C∥un∥2∗ for all n ∈ N. Fix k ≥ 2. Multiplying

Eq. (1.12) by |un|k−1
un, we obtain

k

∫
RN

|un|k−1|∇un|2dx +
∫
RN

V (x)|un|k+1
dx =

∫
RN

a(x)|un|k+q
dx

+ λn(
∫
RN

|un|k−1
unh(un)Gu(x, un)dx +

∫
RN

|un|k−1
unh′(un)G(x, un)dx).

So, for n large enough, we infer that

k

∫
RN

|un|k−1|∇un|2dx ≤
∫
RN

V −(x)|un|k+1
dx +

∫
RN

a+(x)|un|k+q
dx + C

∫
RN

b(x)|un|k−1
undx.

Using the arguments as in Lemma 1.7 and the above estimation, we deduce our claim. By this claim and
∥un∥∞ = ∥un∥

L∞(Ω+), the rest of the proof is the same as for Lemma 1.8. □
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Lemma 1.12. There exists λ0 > 0 such that any nonnegative Ekeland solution v ∈ E of Jλ with |λ| ≤ λ0
satisfies ∥v∥∞ ≤ 2M.

Proof. By contradiction, there exist λn ∈ R and un ∈ E such that λn → 0, un is a nonnegative Ekeland
solution of Jλn and ∥un∥∞ > 2M . By Lemmas 1.10 and 1.8, (un) converges to an Ekeland solution w ∈ E

of I with ∥w∥∞ < M . By Lemma 1.11, ∥un∥∞ < 2M for n large, contradiction. □

Choose λ0 > 0 that satisfies Lemmas 1.9 and 1.12. By Lemma 1.9, [2, Lemma 4] and since Jλ satisfies
the Palais–Smale condition, there exists uλ ∈ E such that uλ is a critical point of Jλ and cλ = Jλ(uλ)
with |λ| < |λ0|. By Lemma 1.12, ∥uλ∥∞ < 2M. Thus, h′(uλ) = 0 and h(uλ) = 1. By a standard bootstrap
argument, uλ is a classical nonnegative solution of (0.1). It remains to prove that uλ is compactly supported.
Indeed, by (B), (G) and (V ), for every 0 < λ < λ0, we have V (x) ≥ 0 and b(x) = 0 for all |x| ≥ R, with R

large enough. From now on the proof is identical to that of Lemma 1.5 and it will be omitted. The proof of
Theorem 0.1 is now completed. □
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