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Abstract. We present some recent existence and uniqueness results for elliptic boundary value
problems involving singular nonlinearities that generalize the Lane-Emden-Fowler equation. The
following types of problems are considered: (i) singular problems with sublinear nonlinearity
and two parameters; (ii) combined effects of asymptotically linear and singular nonlinearities in
bifurcation problems; (iii) bifurcation for a class of singular elliptic problems with subquadratic
convection term. In some concrete situations we also establish the asymptotic behavior of the
solution around the bifurcation point. Our approach relies on maximum principle combined with
various techniques for elliptic equations.
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MOTIVATION AND PREVIOUS RESULTS

Singular elliptic problems have been intensively studied in the last decades. These kind
of problems are closely related to the study of blow-up boundary solutions associated to
elliptic problems. To be more specific, let us consider the following example ∆u = up in Ω,

u > 0 in Ω,
u = +∞ on ∂Ω,

(1)

where Ω ⊂ RN is a smooth bounded domain and p > 1. It is known that this problem
has a classical solution u ∈C2(Ω)∩C(Ω) see [13]. With the change of variable v = u−1,
the problem (1) becomes

−∆v = v2−p− 2
v
|∇v|2 in Ω,

v > 0 in Ω,
v = 0 on ∂Ω.

(2)

The above equation contains both singular nonlinearities (like v−1 or v2−p, if p > 2) and
a convection term (denoted by |∇v|2). These nonlinearities make more difficult to handle
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problems like (2). Our purpose in this paper is to give an overview on some old and
new results in this direction. We recall the pioneering paper of Crandall, Rabinowtz and
Tartar [16] that contains one of the first existence results for singular elliptic problems.
More exactly, in [16] the following problem has been considered −∆u+au = u−α in Ω,

u > 0 in Ω,
u = 0 on ∂Ω.

(3)

This is a generalization of the Lane-Emden-Fowler equation that corresponds to the case
a = 0. It is proved in [16] that problem (3) has a unique solution, for any α > 0.

Singular elliptic equations arise in the study of non-Newtonian fluids, chemical het-
erogenous catalysts, in the theory of heat conduction in electrically conducting materi-
als. For instance, problems of this type characterize some reaction-diffusion processes
where the condition u ≥ 0 is viewed as the density of a reactant and the region where
u = 0 is called the dead core, where no reaction takes place (see [2] for the study of a
single, irreversible steady-state reaction).

Problems of this type are also encountered in glacial advance, in transport of coal
slurries down conveyor belts and in several other geophysical and industrial contents
(see [4] for the case of the incompressible flow of a uniform stream past a semi-infinite
flat plate at zero incidence). For more details we also refer to [8, 14, 26, 29] and the
references therein.

Many authors considered the problem −∆u+K(x)u−α = λup in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(4)

where λ ≥ 0 and α, p ∈ (0,1). For K ≡ −1, it was proved in Coclite and Palmieri [15]
that (4) has at least one solution for all λ ≥ 0 and 0 < p < 1. In turn, if p≥ 1, there exists
λ ∗ > 0 such that (4) has a solution for 0 < λ < λ ∗ and no solution exists if λ > λ ∗.

On the other hand, if K ≡ 1 and λ = p = 1, the problem (4) was considered in [10]
where it is shown that (4) has no solution, provided that 0 < α < 1 and λ1 ≥ 1 (that is, if
Ω is “small”), where λ1 denotes the first eigenvalue of (−∆) in H1

0 (Ω). In Shi and Yao
[30] it is proved that for λ > 0 sufficiently large, problem (4) has at least one solution
uλ ∈C1(Ω) and

c1d(x)≤ uλ (x)≤ c2d(x),

for any x ∈Ω and for some constants c1,c2 > 0 independent of x.
Problems related to multiplicity and uniqueness become difficult even in simple cases.

In [28] it is studied the existence of radial symmetric solutions to the problem ∆u+λ (up−u−α) = 0 in B1,
u > 0 in B1,
u = 0 on ∂B1,

where α > 0, 0 < p < 1, λ > 0, and B1 is the unit ball in RN . Using a bifurcation theorem
of Crandall and Rabinowitz, it has been shown in [28] that there exists λ1 > λ0 > 0 such



that the above problem has no solutions for λ < λ0, exactly one solution for λ = λ0 or
λ > λ1, and two solutions for λ0 < λ ≤ λ1.

Our purpose in this survey paper is to present various existence, and non–existence
results for several classes of singular elliptic problems. We also take into account bifur-
cation nonlinear problems and establish the precise rate decay of the solution in some
concrete situations. We intend to reflect the “competition" between different quantities,
such as: sublinear or superlinear nonlinearities, singular nonlinear terms (like u−α , for
α > 0), convection nonlinearities (like |∇u|a, with 0 < a≤ 2), as well as sign–changing
potentials.

A SINGULAR PROBLEM WITH SUBLINEAR NONLINEARITY

Consider the following boundary value problem with two parameters: −∆u+K(x)g(u) = λ f (x,u)+ µh(x) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(5)

where Ω is a smooth bounded domain in RN (N ≥ 2), K,h ∈ C0,γ(Ω), with h > 0 on
Ω, and λ , µ are positive real numbers. We suppose that f : Ω× [0,∞) → [0,∞) is a
Hölder continuous function which is positive on Ω× (0,∞). We also assume that f is
non–decreasing with respect to the second variable and is sublinear, that is,

( f 1) the mapping (0,∞) 3 s 7−→ f (x,s)
s

is non–increasing for all x ∈Ω;

( f 2) lim
s↓0

f (x,s)
s

= +∞ and lim
s→∞

f (x,s)
s

= 0, uniformly for x ∈Ω.

We assume that g ∈C1(0,∞) is a nonnegative and nonincreasing function satisfying

(g1) lim
s→0+

g(s) = +∞;

(g2)
∫ 1

0
g(s)ds < +∞.

The above conditions (g1) and (g2) are fulfilled by singular nonlinearities like g(u) =
u−α , with α ∈ (0,1). This case includes the generalized Lane-Emden equations (see
[35]). Obviously, hypothesis (g2) implies the following Keller-Osserman type condition
around the origin:

(g3)
∫ 1

0

(∫ t

0
g(s)ds

)−1/2

dt < ∞.

As proved by Bénilan, Brezis and Crandall [4], condition (g3) is equivalent to the
property of compact support, that is, for every h ∈ L1(RN) with compact support,
there exists a unique u ∈W 1,1(RN) with compact support such that ∆u ∈ L1(RN) and
−∆u+g(u) = h, a.e. in RN . That it is why it is natural to try to find solutions in the class

E = {u ∈C2(Ω)∩C(Ω); ∆u ∈ L1(Ω)}.



Our analysis developed in [18] showed that the sign of the extremal values of K plays an
significant role in the study of the existence of a classical solution to problem (5). Define

E := {u ∈C2(Ω); ∆u ∈ L1(Ω)}.

We will show that (5) has a solution in E for λ and µ belonging to a certain range. A
very useful tool in our approach is the following existence result which is due to Shi and
Yao [30] and concerns the problem −∆u = Ψ(x,u) in Ω,

u > 0 in Ω ,
u = ψ on ∂Ω,

(6)

where ψ ∈C2,γ(∂Ω) (0 < γ < 1) and Ψ : Ω×(0,∞)→R is a Hölder continuous function
with exponent γ on each compact subset of Ω× (0,∞). Note that Ψ is not defined in the
origin with respect to the second variable so Ψ may be singular at that point. We have

Lemma 1. (see [30]). Assume that Ψ satisfies the following assumptions

(A1) limsup
s→+∞

(
s−1 max

x∈Ω

Ψ(x,s)
)

< λ1;

(A2) for each t > 0, there exists a constant D(t) > 0 such that

Ψ(x,r)−Ψ(x,s)≥−D(t)(r− s), for x ∈Ω and r ≥ s≥ t;

(A3) there exist η0 > 0 and an open subset Ω0 ⊂Ω such that

min
x∈Ω

Ψ(x,s)≥ 0 for x ∈ (0,η0),

and

lim
s→0+

Ψ(x,s)
s

= +∞ uniformly for x ∈Ω0.

Then, the problem (6) has at least one positive solution u ∈ C2,γ(G)∩C(Ω), for any
compact set G⊂Ω∪{x ∈ ∂Ω; ψ(x) > 0}.

The main difficulty in the treatment of (5) is the lack of the usual maximal principle
between super and sub-solutions, due to the singular character of the equation. To
overcome it, we state the following comparison principle which improves Lemma 3
in Shi and Yao [30]. The proof was given in [22] and uses some ideas from [30], that
goes back to the pioneering work of Brezis and Kamin [6].

Lemma 2. (see [22]). Let Ψ : Ω× (0,∞) → R be a continuous function such that the

mapping (0,∞) 3 s 7−→ Ψ(x,s)
s

is strictly decreasing at each x ∈ Ω. Assume that there

exists v, w ∈C2(Ω)∩C(Ω) such that
(a) ∆w+Ψ(x,w)≤ 0≤ ∆v+Ψ(x,v) in Ω;
(b) v,w > 0 in Ω and v≤ w on ∂Ω;
(c) ∆v ∈ L1(Ω) or ∆w ∈ L1(Ω).

Then v≤ w in Ω.



Notice that Ψλ ,µ(x,s) = −K(x)g(u)+ λ f (x,s)+ µh(x), (x,s) ∈ Ω× (0,∞) satisfies
the hypotheses in Lemma 1 and Lemma 2 provided K ≤ 0 in Ω. In this case we have

Theorem 1. Assume that K ≤ 0, f satisfies conditions ( f 1)− ( f 2) and g satisfies
(g1)− (g2). Then problem (5) has a unique solution uλ ,µ in E , for any λ , µ > 0.
Moreover, uλ ,µ is increasing with respect to λ and µ.

Let us now consider the case where K > 0 in Ω. Our next result shows the importance
of condition (g2).

Theorem 2. Assume that K > 0 and f satisfies ( f 1)− ( f 2). If
∫ 1

0 g(s)ds = +∞, then
problem (5) has no classical solution, for any λ , µ > 0.

If g satisfy (g2) the we have the following result

Theorem 3. Assume that K > 0, f satisfies ( f 1)− ( f 2), and g satisfies (g1)− (g2).
Then there exists λ∗,µ∗ > 0 such that:

– problem (5) has at least one solution in E either if λ > λ∗ or if µ > µ∗.
– problem (5) has no solution in E if λ < λ∗ and µ < µ∗.
Moreover, if either λ > λ∗ or if µ > µ∗, then problem (5) has a maximal solution in

E which is increasing with respect to λ and µ.

The diagram of dependence on λ and µ in Theorem 3 is depicted in Figure 1 below.

λ
*

*

μ

λ

μ

No solution

(0,0)

FIGURE 1. The dependence on λ and µ in Theorem 3

Sketch of the Proof. We split the proof in several steps.
Step I. Existence of the solutions of (5) for λ and µ large.

Let us remark first that Φλ ,µ(x,s) = λ f (x,s)+ µh(x), define for all (x,s) ∈ Ω× [0,∞)
satisfies the hypotheses in Lemma 1 and Lemma 2. Hence, the exists a unique solution



Uλ ,µ ∈C2(Ω) such that
−∆Uλ ,µ = λ f (x,Uλ ,µ)+ µh(x) in Ω,
Uλ ,µ > 0 in Ω,
Uλ ,µ = 0 on ∂Ω.

(7)

Obvious, Uλ ,µ is a super-solution of (5) for all λ ,µ > 0. The main point is to find a
sub-solution of (5). To this aim we consider the one dimensional problem h′′(t) = g(h(t)), for all t > 0,

h > 0, in (0,∞),
h(0) = 0.

(8)

Since
∫ 1

0 g(s)ds < ∞, we deduce that h′ can be extended in origin by taking h′(0) = 0.
Hence h ∈C2(0,∞)∩C1[0,∞). We fix µ > 0 and we prove that if λ > 0 is large enough,
there exists M > 0 such that uλ ,µ = Mh(ϕ1) is a sub-solution of (5). Using Lemma
2 we get uλ ,µ ≤ Uλ ,µ in Ω and by standard elliptic arguments there exists a solution
uλ ,µ ∈C2(Ω)∩C(Ω) of (5). Since h ∈C1[0,+∞), we deduce that uλ ,µ ∈ E . In the same
manner we fix λ > 0 and we deduce the existence of a solution in E of problem (5)
provided µ > 0 is large enough.
Step II. Nonexistence for λ ,µ small.
Using the assumptions of f there exists m > 0 such that

f (x,s)+h(x)− p(d(x))g(s) < ms, for all (x,s) ∈Ω× (0,+∞).

We claim that problem (5) has no classical solution for 0 < λ ,µ ≤ min{1,λ1/2m} .
Indeed, if u0 would be a classical solution of (5) with 0 < λ ,µ ≤min{1,λ1/2m} , then,
according to the above inequality, u0 is a sub-solution of

−∆u =
λ1

2
u in Ω,

u > 0 in Ω,
u = 0 on ∂Ω.

(9)

Obviously, ϕ1 is a super-solution of (9) and by Lemma 2 we get u0 ≤ ϕ1 in Ω. Thus,
by standard elliptic arguments, problem (9) has a solution u ∈ C2(Ω). Multiplying by
ϕ1 in (9) and then integrating over Ω we have −

∫
Ω

ϕ1∆udx = λ1
2

∫
Ω

uϕ1dx, that is,
−

∫
Ω

u∆ϕ1dx = λ1
2

∫
Ω

uϕ1dx. The above equality yields
∫

Ω
uϕ1dx = 0, but this is clearly

a contradiction, since u and ϕ1 are both positive on Ω. It follows that (5) has no classical
solutions for 0 < λ ,µ ≤min{1,λ1/2m} .
Step III. Existence of a maximal solution of (5).
We show that if (5) has a solution uλ ,µ ∈ E , then it has a maximal solution that
belongs to E . Let λ ,µ > 0 be such that (5) has a solution uλ ,µ ∈ E . If Uλ ,µ is the
solution of (7), by Lemma 2 we have uλ ,µ ≤Uλ ,µ in Ω. For any j ≥ 1, denote Ω j ={

x ∈Ω; dist(x,∂Ω) > 1
j

}
. Let u0 = Uλ ,µ and u j be the solution of{

−∆ζ +g(u j−1) = λ f (x,u j−1)+ µh(x) in Ω j,
ζ = u j−1 in Ω\Ω j.



Using the fact that the mapping Φλ ,µ = λ f (x,s)+ µx(x), (x,s) ∈ Ω× (0,+∞) is non-
decreasing with respect to the second variable, we get uλ ,µ ≤ u j ≤ u j−1 ≤ u0 in Ω.

Define ûλ ,µ(x) = lim
j→∞

u j(x) for all x ∈ Ω. By standard elliptic arguments (see [23]) it

follows that ûλ ,µ is a solution of (5). It is clear that ûλ ,µ is the maximal solution of (5).
Moreover, since uλ ,µ ≤ ûλ ,µ in Ω, we have ûλ ,µ ∈ E .
Step IV. Dependence on λ and µ.
We first prove the dependence on λ of the maximal solution of (5). For this purpose,
define

A := {λ > 0; (5) has at least a solution in E , for all µ > 0}.
Let λ∗ = infA. From the previous steps we have A 6= /0 and λ∗ > 0. Using Lemma 2 we
deduce that (λ ∗,+∞). To prove the dependence on µ we argue in the same manner by
defining

B := {µ > 0; (5) has at least a solution in E , for all λ > 0}
and µ∗ = infB.

The proof of Theorem 3 is now complete.
The following result give partial answers in the case where the potential K(x) changes

sign.

Theorem 4. Assume that K changes the sign in Ω, f satisfies ( f 1)− ( f 2) and g verifies
(g1)− (g2). Then there exist λ∗ and µ∗ > 0 such that problem (5) has at least one
solution uλ ,µ ∈ E , provided that either λ > λ∗ or µ > µ∗. Moreover, for λ > λ∗ or
µ > µ∗, uλ ,µ is increasing with respect to λ and µ.

COMBINED EFFECTS OF ASYMPTOTICALLY LINEAR AND
SINGULAR NONLINEARITIES IN BIFURCATION PROBLEMS

OF LANE-EMDEN-FOWLER TYPE

This section is devoted to the study of the following singular elliptic problem with
asymptotic nonlinearities.

−∆u = λ f (u)+a(x)g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(10)

where a ∈ C0,γ(Ω), a ≥ 0, a 6≡ 0 in Ω, The main feature here is that the smooth term
f (x,u) is asymptotically linear. In other words, we drop out the assumption ( f 2) on f
and we require in turn that f fulfils the following assumption

( f 3) there exists m := lim
s→∞

f (x,s)
s

∈ (0,+∞), uniformly for x ∈Ω.

We also require the following growth condition of g near the origin
(g3) there exists c,η > 0 and α ∈ (0,1) such that g(s)≤ cs−α , ∀s ∈ (0,η).

A careful examination of (10) reveals the fact that the singular term g(u) is not
significant. Actually, the conclusions are close to those established in [27, Theorem A],
where an elliptic problem associated to an asymptotically linear function is studied.



Let λ1 be the first Dirichlet eigenvalue of (−∆) in Ω and λ ∗ := λ1/m. Set a∗ :=
minx∈Ω

a(x) and d(x) := dist(x,∂Ω).

Theorem 5. Assume that conditions ( f 1), ( f 3), (g1), and (g3) are fulfilled. Then the
following hold.

(i) If λ ≥ λ ∗, then problem (10) has no solutions in E .
(ii) If a∗ > 0 (resp. a∗ = 0) then problem (10) has a unique solution uλ ∈ E for all

−∞ < λ < λ ∗ (resp. 0 < λ < λ ∗) with the properties:
(ii1) uλ is strictly increasing with respect to λ ;
(ii2) there exist two positive constants c1, c2 > 0 depending on λ such that c1 d(x)≤
uλ (x)≤ c2 d(x), for all x ∈Ω;
(ii3) limλ↗λ ∗ uλ = +∞, uniformly on compact subsets of Ω.

The bifurcation diagram is depicted in Figure 2.

FIGURE 2. The bifurcation in Theorem 5.

Proof. The first part of the proof relies on standard arguments based on the maximum
principle (see [12] for details). The proof of (ii1) follows from Lemma 2 while the proof
of (ii2) use in a definite manner the growth assumption (g3) on g. The most interesting
part of the proof concerns (ii3) and, due to the special character of our problem, we will
be able to show that, in this case, L2–boundedness implies H1

0 –boundedness! We refer
to [27] for a related problem and further results.

Let uλ ∈ E be the unique solution of (10) for 0 < λ < λ ∗. We prove that lim
λ↗λ ∗

uλ =

+∞, uniformly on compact subsets of Ω. Suppose the contrary. Since (uλ )0<λ<λ ∗ is a
sequence of nonnegative super–harmonic functions in Ω then, by Theorem 4.1.9 in [24],



there exists a subsequence of (uλ )λ<λ ∗ [still denoted by (uλ )λ<λ ∗] which is convergent
in L1

loc(Ω).
We first prove that (uλ )λ<λ ∗ is bounded in L2(Ω). We argue by contradiction. Suppose

that (uλ )λ<λ ∗ is not bounded in L2(Ω). Thus, passing eventually at a subsequence we
have uλ = M(λ )wλ , where

M(λ ) = ||uλ ||L2(Ω) → ∞ as λ ↗ λ ∗ and wλ ∈ L2(Ω), ‖wλ‖L2(Ω) = 1. (11)

Using ( f 1), (g3) and the monotonicity assumption on g, we deduce the existence of
A, B, C, D > 0 (A > m) such that

f (t)≤ At +B, g(t)≤Ct−α +D, for all t > 0. (12)

This implies

1
M(λ )

(λ f (uλ )+a(x)g(uλ ))→ 0 in L1
loc(Ω) as λ ↗ λ

∗

that is,
−∆wλ → 0 in L1

loc(Ω) as λ ↗ λ
∗. (13)

By Green’s first identity, we have∫
Ω

∇wλ ·∇φ dx =−
∫

Ω

φ ∆wλ dx =−
∫

Suppφ

φ ∆wλ dx ∀φ ∈C∞
0 (Ω). (14)

Using (13) we derive that∣∣∣∣∫Suppφ

φ ∆wλ dx
∣∣∣∣≤ ∫

Suppφ

|φ ||∆wλ |dx

≤ ‖φ‖L∞

∫
Suppφ

|∆wλ |dx → 0 as λ ↗ λ
∗.

(15)

Combining (14) and (15), we arrive at∫
Ω

∇wλ ·∇φ dx → 0 as λ ↗ λ
∗, ∀φ ∈C∞

0 (Ω). (16)

By definition, the sequence (wλ )0<λ<λ ∗ is bounded in L2(Ω).



We claim that (wλ )λ<λ ∗ is bounded in H1
0 (Ω). Indeed, using (12) and Hölder’s

inequality, we have∫
Ω

|∇wλ |2 =−
∫

Ω

wλ ∆wλ =
−1

M(λ )

∫
Ω

wλ ∆uλ

=
1

M(λ )

∫
Ω

[λwλ f (uλ )+a(x)g(uλ )wλ ]

≤ λ

M(λ )

∫
Ω

wλ (Auλ +B)+
||a||∞
M(λ )

∫
Ω

wλ (Cu−α

λ
+D)

= λA
∫

Ω

w2
λ

+
||a||∞C

M(λ )1+α

∫
Ω

w1−α

λ
+

λB+‖a‖∞D
M(λ )

∫
Ω

wλ

≤ λ
∗A+

||a||∞C
M(λ )1+α

|Ω|(1+α)/2 +
λB+‖a‖∞D

M(λ )
|Ω|1/2.

From the above estimates, it is easy to see that (wλ )λ<λ ∗ is bounded in H1
0 (Ω), so the

claim is proved. Then, there exists w ∈ H1
0 (Ω) such that (up to a subsequence)

wλ ⇀ w weakly in H1
0 (Ω) as λ ↗ λ

∗ (17)

and, since H1
0 (Ω) is compactly embedded in L2(Ω),

wλ → w strongly in L2(Ω) as λ ↗ λ
∗. (18)

On the one hand, by (11) and (18), we derive that ‖w‖L2(Ω) = 1. Furthermore, using (16)
and (17), we infer that∫

Ω

∇w ·∇φ dx = 0, for all φ ∈C∞
0 (Ω).

Since w ∈ H1
0 (Ω), using the above relation and the definition of H1

0 (Ω), we get w = 0.
This contradiction shows that (uλ )λ<λ ∗ is bounded in L2(Ω). As above for wλ , we can
derive that uλ is bounded in H1

0 (Ω). So, there exists u∗ ∈ H1
0 (Ω) such that, up to a

subsequence,  uλ ⇀ u∗ weakly in H1
0 (Ω) as λ ↗ λ ∗,

uλ → u∗ strongly in L2(Ω) as λ ↗ λ ∗,
uλ → u∗ a.e. in Ω as λ ↗ λ ∗.

(19)

Now we can proceed to obtain a contradiction. Multiplying by ϕ1 in (10) and inte-
grating over Ω we have

−
∫

Ω

ϕ1 ∆uλ = λ

∫
Ω

f (uλ )ϕ1 +
∫

Ω

a(x)g(uλ )ϕ1, for all 0 < λ < λ
∗. (20)

On the other hand, by ( f 1) it follows that f (uλ ) ≥ muλ in Ω, for all 0 < λ < λ ∗.
Combining this with (20) we obtain

λ1

∫
Ω

uλ ϕ1 ≥ λm
∫

Ω

uλ ϕ1 +
∫

Ω

a(x)g(uλ )ϕ1, for all 0 < λ < λ
∗. (21)



Notice that by (g1), (19) and the monotonicity of uλ with respect to λ we can apply the
Lebesgue convergence theorem to find∫

Ω

a(x)g(uλ )ϕ1 dx →
∫

Ω

a(x)g(u∗)ϕ1 dx as λ ↗ λ1.

Passing to the limit in (21) as λ ↗ λ ∗, and using (19), we obtain

λ1

∫
Ω

u∗ϕ1 ≥ λ1

∫
Ω

u∗ϕ1 +
∫

Ω

a(x)g(u∗)ϕ1.

Hence
∫

Ω

a(x)g(u∗)ϕ1 = 0, which is a contradiction. Therefore lim
λ↗λ ∗

uλ = +∞, uni-

formly on compact subsets of Ω. This concludes the proof.

BIFURCATION AND ASYMPTOTICS FOR A SINGULAR
ELLIPTIC EQUATION WITH CONVECTION TERM

In the present section we continue the bifurcation analysis for a large class of semilinear
elliptic equations with singular nonlinearity and Dirichlet boundary condition.

Let Ω⊂RN (N ≥ 2) be a bounded domain with a smooth boundary. We are concerned
in this section with singular elliptic problems of the following type −∆u = K(x)g(u)+λ |∇u|a + µ f (x,u) in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(22)

where K ∈C0,γ(Ω), 0 < a ≤ 2, 0 < µ and λ ∈ R. Throughout this section we suppose
that f : Ω× [0,∞) → [0,∞) is a Hölder continuous function which is nondecreasing
with respect to the second variable and is positive on Ω× (0,∞). We assume that
g ∈C1(0,+∞) is positive and fulfils the assumption (g1).

The main feature of this section is the presence of the convection term |∇u|a combined
with the potential K that may be negative.

Problems of this type arise in the study of guided modes of an electromagnetic field
in a nonlinear medium, satisfying adequate constitutive hypotheses. The following two
examples illustrate situations of this type: (i) if f (u) = u3(1 + γu2)−1 (γ > 0) then
problem (22) describes the variation of the dielectric constant of gas vapors where a
laser beam propagates (see [31, 32]); (ii) nonlinearities of the type f (u) = (1− e−γu2

)u
arise in the context of laser beams in plasmas (see [33]). If f (u) = eu/(1+εu) (ε > 0)
then the corresponding equation describes the temperature dependence of the reaction
rate for exothermic reactions obeying the simple Arrhenius rate law in circumstances
in which the heat flow is purely conductive (see [5, 34]). In this context the parameter
ε is a dimensionless ambient temperature and the parameter λ is a dimensionless heat
evolution rate. The corresponding equation

−∆u = g(u)+λ |∇u|p + µeu/(1+εu) in Ω



represents heat balance with reactant consumption ignored, where u is a dimensionless
temperature excess. The Dirichlet boundary condition u = 0 on ∂Ω is an isothermal
condition and, in this case, it describes the exchange of heat at the surface of the reactant
by Newtonian cooling.

Our general setting includes some simple prototype models from boundary-layer
theory of viscous fluids (see [35]). If λ = 0 and f ≡ 0, (22) is called the Lane-Emden-
Fowler equation. Problems of this type, as well as the associated evolution equations,
describe naturally certain physical phenomena. For example, super-diffusivity equations
of this type have been proposed by de Gennes [17] as a model for long range Van der
Waals interactions in thin films spreading on solid surfaces. This equation also appears
in the study of cellular automata and interacting particle systems with self-organized
criticality (see [9]), as well as to describe the flow over an impermeable plate (see [7, 8]).
We also point out that, due to the meaning of the unknowns (concentrations, populations,
etc.), only the positive solutions are relevant in most cases.

As remarked in [11, 25], the requirement that the nonlinearity grows at most quadrat-
ically in |∇u| is natural in order to apply the maximum principle.

In our first result we assume λ =−1 and K < 0 in Ω. In this case, the existence of a
solution to (22) is close related to the decay rate around its singularity. In that sense, we
prove the following nonexistence result.

Theorem 6. Assume that K < 0 in Ω, µ =−1, f satisfies ( f 1)− ( f 2) and g verify (g1).

If
∫ 1

0
g(s)ds = +∞, then problem (22) has no classical solutions.

We now assume that
∫ 1

0
g(s)ds < +∞, that is, g fulfils (g2). We show in this case that

(22) has at least one solution provided µ > 0 is large enough.

Theorem 7. Assume that K < 0 in Ω, µ = −1, f satisfies ( f 1)− ( f 2) and g verify
(g1)− (g2).
Then, there exists µ∗ > 0 such that (22) has at least one classical solution if µ > µ∗ and
no solution exists if µ < µ∗.

The results are different if K > 0 in Ω. We first consider λ = 1 and 0 < a≤ 1. In this
case the study of existence is close related to the asymptotic behavior of the nonlinear
term f (x,u). To this aim we need the following assumptions on f :
( f 3) there exists c > 0 such that f (x,s)≥ cs for all (x,s) ∈Ω× [0,∞);

( f 4) the mapping (0,∞) 3 s 7−→ f (x,s)
s

is nondecreasing for all x ∈Ω,

Theorem 8. Assume that K < 0 in Ω, λ = 1 and 0 < a≤ 1. Then the following properties
hold true.

(i) If f satisfies either ( f 3) or ( f 4), then there exists µ∗ > 0 such that problem (22)
has at least one classical solution for µ < µ∗ and no solutions exist if µ > µ∗.

(ii) If 0 < a < 1 and f satisfies ( f 1)− ( f 2), then problem (22) has at least one
solution for all µ ≥ 0.



We now analyze the case µ = 1. Our framework is related to the sublinear case,
described by assumptions ( f 1) and ( f 2).

Theorem 9. Assume that K < 0 in Ω, µ = 1 and f satisfies assumptions ( f 1) and ( f 2).
Then the following properties hold true.

(i) If 0 < a < 1, then problem (22) has at least one classical solution for all λ ∈ R.
(ii) If 1 ≤ a ≤ 2, then there exists λ ∗ ∈ (0,∞] such that problem (22) has at least

one classical solution for −∞ < λ < λ ∗ and no solution exists if λ > λ ∗. Moreover, if
1 < a≤ 2, then λ ∗ is finite.

Related to the above result we raise the following open problem: if K ≡ 1, a = 1 and
µ = 1, is λ ∗ a finite number?

Theorem 9 shows the importance of the convection term λ |∇u|a in the singular
problem (22). Indeed, according to Theorem 1 and for any µ > 0, the boundary value
problem  −∆u = u−α +λ |∇u|a + µuβ in Ω,

u > 0 in Ω,
u = 0 on ∂Ω

(23)

has a unique solution, provided that λ = 0 and α , β ∈ (0,1). Theorem 9 shows that if
λ is not necessarily 0, then the following situations may occur : (i) problem (23) has
solutions if a ∈ (0,1) and for all λ ∈ R; (ii) if a ∈ (1,2) then there exists λ ∗ > 0 such
that problem (23) has a solution for any −∞ < λ < λ ∗ and no solution exists if λ > λ ∗.
Sketch of the proof. (i) We shall discuss separately the cases λ > 0 and λ ≤ 0.
Case λ > 0. Since f is sublinear, there exists ζ ∈C2(Ω) such that −∆ζ = f (x,ζ ) in Ω,

ζ > 0 in Ω,
ζ = 0 on ∂Ω.

(24)

Obviously, ζ is a sub-solution for (22) since λ ≥ 0. The main point is to find a super-
solution uλ of (22) such that ζ ≤ uλ in Ω. By the results in [3], there exists H : (0,η ]→
[0,∞) such that  H ′′(t) =−g(H(t)), for all 0 < t < η ,

H(0) = 0,
H > 0 in (0,η ].

(25)

Since H is concave, there exists H ′(0+) ∈(0,+∞]. By taking η > 0 small enough, we
can assume that H ′ > 0 in (0,η ], so H is increasing on [0,η ]. We are looking for a super-
solution of the form uλ = MH(cϕ1), where M,c > 0 and cϕ1 ≤ η in Ω. Since 0 < a < 1,
we can prove that uλ defined above is a super-solution of (22), provided M > 1 is large
enough.
Case λ ≤ 0. We fix ν > 0 and let uν ∈C2(Ω)∩C(Ω) be a solution of (22) with λ = ν .

Then uν is a super-solution of (22) for all λ ≤ 0. Set m := inf(x,s)∈Ω×(0,∞)

(
g(s) +

f (x,s)
)
. Since lims↘0 g(s) = +∞ and the mapping (0,∞) 3 s 7−→min

x∈Ω

f (x,s) is positive



and nondecreasing, we deduce that m is positive. Consider the problem −∆v = m+λ |∇v|a in Ω,
v > 0 in Ω,
v = 0 on ∂Ω.

(26)

If λ = 0, the existence of a solution to (26) is clearly understood. Assume that λ < 0.
Then, 0 is a sub-solution of (26) while Cϕ1 is a super-solution, for C > 0 large enough.
Hence, (26) has at least one solution v∈C2(Ω)∩C(Ω) and v > 0 in Ω. It only remains to
remark that v is sub-solution of (22) and −∆v ≤ m ≤−∆uν in Ω, which gives v ≤ uν in
Ω. Again by sub- super-solution method we conclude that (22) has at least one classical
solution uλ ∈C2(Ω)∩C(Ω).
(ii) The proof follows the same steps as above. The main difference is that in this case
we are able to show that uλ = MH(cϕ1) is a super-solution of (22) only for small values
of λ > 0 since 1 ≤ a ≤ 2. In order to prove the nonexistence of a classical solution to
(22) we use the following result which is due to Alaa and Pierre (see [1]).

Lemma 3. (see [1]). If a > 1, then there exists a real number σ̄ > 0 such that the
problem {

−∆v≥ |∇u|a +σ in Ω,
v = 0 on ∂Ω,

(27)

has no solutions for σ > σ̄ .
We give in what follows a complete description in the special case f ≡ 1 and a = 2.

More precisely, we consider the problem −∆u = g(u)+λ |∇u|2 + µ in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(28)

A key role in this case will be played by the asymptotic behavior of the singular term
g. In the statement of the next result we remark some similarities with Theorem 5. Let
lims→∞ g(s) = a ∈ [0,∞).

Theorem 10. The following properties hold true.
(i) Problem (28) has solution if and only if λ (a+ µ) < λ1.
(ii) Assume µ > 0 is fixed, g is decreasing and let λ ∗ := λ1/(a + µ). Then problem

(28) has a unique solution uλ for all λ < λ ∗ and the sequence (uλ )λ<λ ∗ is increasing
with respect to λ . Moreover, if limsups↘0 sαg(s) < +∞, for some α ∈ (0,1), then the
sequence of solutions (uλ )0<λ<λ ∗ has the following properties:

(ii1) for all 0 < λ < λ ∗ there exist two positive constants c1, c2 depending on λ

such that c1 d(x)≤ uλ ≤ c2 d(x) in Ω;
(ii2) uλ ∈C1,1−α(Ω)∩C2(Ω);
(ii3) uλ −→+∞ as λ ↗ λ ∗, uniformly on compact subsets of Ω.

We refer to [21] and [22] for complete proofs and further details.
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13. F.-C. Cîrstea and V. Rădulescu, Blow-up solutions for semilinear elliptic problems, Nonlinear Anal-
ysis, T.M.A. 48 (2002), 541-554.

14. D. S. Cohen and H. B. Keller, Some positive problems suggested by nonlinear heat generators, J.
Math. Mech. 16 (1967), 1361-1376.

15. M. Coclite and G. Palmieri, On a singular nonlinear Dirichlet problem, Commun. Partial Diff.
Equations 14 (1989), 1315–1327.

16. M. G. Crandall, P. H. Rabinowitz, and L. Tartar, On a Dirichlet problem with a singular nonlinearity,
Commun. Partial Diff. Equations 2 (1977), 193–222.

17. P. G. de Gennes, Wetting: statics and dynamics, Review of Modern Physics 57 (1985), 827x-863.
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