Constant sign and nodal solutions for resonant double phase problems

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu and Yitian Wang

Abstract

We consider a double phase Dirichlet problem with a reaction which asymptotically as $x \rightarrow \pm \infty$ can be resonant with respect to the principle eigenvalue $\hat{\lambda}_{1}>0$ of the Dirichlet weighted p-Laplacian. Using variational tools, together with truncation and comparison techniques and critical groups, we show that the problem has at least three bounded solutions which are ordered and we provide sign information for all of them (positive, negative and nodal).

Resonoivan kaksivaiheongelman vakio- ja vaihtuvamerkkiset ratkaisut

Tiivistelmä. Tarkastelemme kaksivaiheista Dirichlet'n ongelmaa, jonka reaktiotermi voi resonoida painotetun Dirichlet'n p-Laplacen operaattorin pääominaisarvon $\hat{\lambda}_{1}>0$ kanssa asymptoottisesti, kun $x \rightarrow \pm \infty$. Käyttämällä variaatiomenetelmiä yhdessä katkaisu- ja vertailutekniikoiden sekä kriittisten ryhmien kanssa osoitamme, että ongelmalla on ainakin kolme rajallista ratkaisua, joilla on keskinäinen suuruusjärjestys ja määrätyt etumerkkiominaisuudet (positiivinen, negatiivinen ja vaihtuvamerkkinen).

1. Introduction

Let $\Omega \subseteq \mathbb{R}^{N}$ be a bounded domain with a Lipschitz boundary $\partial \Omega$. We study the following double phase Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta_{p}^{a} u-\Delta_{q} u=f(z, u(z)) \text { in } \Omega, \tag{1}\\
\left.u\right|_{\partial \Omega}=0,1<q<p<N .
\end{array}\right\}
$$

For $a \in L^{\infty}(\Omega) \backslash\{0\}$ with $a(z) \geq 0$ for a.a. $z \in \Omega$ and $1<r<\infty$, by Δ_{r}^{a} we denote the weighted p-Laplace differential operator with weight $a(\cdot)$ defined by

$$
\Delta_{r}^{a} u=\operatorname{div}\left(a(z)|D u|^{r-2} D u\right) .
$$

If $a \equiv 1$, then we have the standard r-Laplace differential operator. Equation (1) is driven by the sum of two such operators with distinct exponents. So, the differential operator in (1) is not homogeneous. This operator is related to the so-called "double phase" integral functional

$$
u \rightarrow \int_{\Omega}\left[a(z)|D u|^{p}+|D u|^{q}\right] \mathrm{d} z .
$$

The density of this functional is the integrand

$$
\eta(z, t)=a(z) t^{p}+t^{q} \quad \text { for all } z \in \Omega, \text { all } t \geqslant 0 .
$$

[^0]We do not assume that the weight $a(\cdot)$ is bounded away from zero (that is, we do not require that $0<\operatorname{ess}_{\inf }^{\Omega}$ a). So, the density integrand $\eta(z, \cdot)$ exhibits unbalanced growth

$$
t^{q} \leqslant \eta(z, t) \leqslant \hat{c}\left(1+t^{p}\right) \text { for a.a. } z \in \Omega, \text { all } t \geqslant 0, \text { some } \hat{c}>0 .
$$

Such functionals were first examined by Marcellini [13, 14] and Zhikov [24, 25] in the context of problems of the calculus of variations (including the Lavrentiev gap phenomenon) and of nonlinear elasticity theory.

Recently, the interest for these problems was revived and there have been efforts to develop a regularity theory. We refer to the works of Marcellini [15], MingioneRădulescu [16], Ragusa-Tachikawa [23] and the references therein. So far we have only local regularity results. A global regularity theory (that is, regularity up to the boundary), remains elusive. This removes from consideration many powerful tools which are available when dealing with balanced growth problems. So, the task of proving multiplicity theorems with sign information for all the solutions for double phase problems, is much more difficult.

In the past, most multiplicity results for double phase equations, assumed that the reaction is $(p-1)$-superlinear. We mention the works of Deregowska-GasinskiPapageorgiou [2], Gasinski-Papageorgiou [7], Gasinski-Winkert [8], Liu-Dai [12], Papageorgiou-Vetro-Vetro [21], Papageorgiou-Zhang [22]. Recently, Papageorgiou-Rădulescu-Zhang [20] and Papageorgiou-Pudelko-Rădulescu [17], developed the spectral properties of the weighted p-Lapiacian Δ_{p}^{a} and proved multiplicity theorems for resonant problems. They prove the existence of two solutions but do not provide sign information for them.

Here using a combination of variational tools, with truncation and comparison techniques and critical groups, under resonance conditions on the reaction, we prove a multiplicity theorem producing three nontrivial bounded solutions, two of constant sign (positive and negative) and the third nodal (sign changing). It appears that our result here is the first multiplicity result for double phase equations with sign information for all the solutions.

2. Mathematical background and hypotheses

A first consequence of the unbalanced growth of $\eta(z, \cdot)$ is that the standard Sobolev spaces do not provide an adequate framework to deal with problem (1). We need to use generalized Orlicz spaces. A comprehensive presentation of the theory of these spaces can be found in the book of Harjulehto and Hästo [10].

We introduce the conditions on the exponents and on the weight function.
Recall that $C^{0,1}(\bar{\Omega})$ is the space of all Lipschitz continuous functions $u: \bar{\Omega} \rightarrow \mathbb{R}$.
Also, by \mathcal{A}_{p} we denote the class of all p-Muckenhoupt weights (see Cruz UribeFiorenza [1, p. 142] and Harjulehto-Hästo [10, p. 114]).
$\mathbf{H}_{\mathbf{0}}: a \in C^{0,1}(\bar{\Omega}) \cap \mathcal{A}_{p}, a(z)>0$ for all $z \in \Omega, 1<q<p<N, 2 \leqslant p, \frac{p}{q}<1+\frac{1}{N}$.
Remark 2.1. The hypothesis that $a \in C^{0,1}(\bar{\Omega})$, implies that the Poincaré inequality holds in the corresponding Orlicz-Sobolev space. The hypothesis that $a \in \mathcal{A}_{p}$ permits the use of the spectral analysis for Δ_{p}^{a} which was done in [17].

The last inequality in H_{0} is common in double phase Dirichlet problems and it says that the two exponents p, q can not be far apart. Also, it implies that $p<q^{*}=$ $\frac{N q}{N-q}$ and this in turn leads to compact embeddings of some relevant spaces.

Recall that $\eta(z, t)$ is the density of the double phase integral functional, that is,

$$
\eta(z, t)=a(z) t^{p}+t^{q} \quad \text { for a.a. } z \in \Omega \text {, all } t \geqslant 0 .
$$

Note that for all $z \in \Omega, \eta(z, \cdot)$ is uniformly convex.
Let $L^{0}(\Omega)$ be the space of all measurable functions $u: \Omega \rightarrow \mathbb{R}$. As usual we identify two such functions which differ only on a Lebesgue-null set.

The generalized Orlicz-Lebesgue space $L^{\eta}(\Omega)$ is defined by

$$
L^{\eta}(\Omega)=\left\{u \in L^{0}(\Omega): \rho_{\eta}(u)=\int_{\Omega} \eta(z,|u|) \mathrm{d} z<\infty\right\} .
$$

The function $\rho_{\eta}(\cdot)$ is the "modular function" corresponding to the density η. We equip $L^{\eta}(\Omega)$ with the so-called "Luxemburg norm" $\|\cdot\|_{\eta}$ defined by

$$
\|u\|_{\eta}=\inf \left\{\lambda>0: \rho_{\eta}\left(\frac{u}{\lambda}\right) \leqslant 1\right\} \text { for all } u \in L^{\eta}(\Omega)
$$

With this norm $L^{\eta}(\Omega)$ becomes a separable Banach space which is uniformly convex, thus reflexive. Using $L^{\eta}(\Omega)$, we can define the corresponding generalized OrliczSobolev space $W^{1, \eta}(\Omega)$ by

$$
W^{1, \eta}(\Omega)=\left\{u \in L^{\eta}(\Omega):|D u| \in L^{\eta}(\Omega)\right\} .
$$

We equip this space with the norm $\|\cdot\|_{1, \eta}$ defined by

$$
\|u\|_{1, \eta}=\|u\|_{\eta}+\|D u\|_{\eta} \quad \text { for all } u \in W^{1, \eta}(\Omega),
$$

where $\|D u\|_{\eta}=\||D u|\|_{\eta}$. Also we set

$$
W_{0}^{1, \eta}(\Omega)={\overline{C_{c}^{\infty}(\Omega)}}_{\|\cdot\|_{1, \eta} .}
$$

As we already mentioned, since $a \in C^{0,1}(\bar{\Omega})$, on $W_{0}^{1, \eta}(\Omega)$ the Poincare inequality holds, namely we can find $c=c(\Omega)>0$ such that

$$
\|u\|_{\eta} \leqslant c\|D u\|_{\eta} \quad \text { for all } u \in W_{0}^{1, \eta}(\Omega)
$$

Therefore on $W_{0}^{1, \eta}(\Omega)$, we can use the equivalent norm

$$
\|u\|=\|D u\|_{\eta} \quad \text { for all } u \in W_{0}^{1, \eta}(\Omega)
$$

Both $W^{1, \eta}(\Omega)$ and $W_{0}^{1, \eta}(\Omega)$ are separable Banach spaces, which are uniformly convex (thus reflexive). We have some useful embeddings between these spaces.

Proposition 1. The following results hold:
(a) let $s \in[1, q]$. Then $L^{\eta}(\Omega) \hookrightarrow L^{s}(\Omega), W_{0}^{1, \eta}(\Omega) \hookrightarrow W_{0}^{1, s}(\Omega)$ continuously.
(b) $W_{0}^{1, \eta}(\Omega) \hookrightarrow L^{s}(\Omega)$ continuously for all $s \in\left[1, q^{*}\right]$.
(c) $W_{0}^{1, \eta}(\Omega) \hookrightarrow L^{s}(\Omega)$ compactly for all $s \in\left[1, q^{*}\right)$.

There is a close relation between the norm $\|\cdot\|$ and the modular function $\rho_{\eta}(\cdot)$.
Proposition 2. The following results hold:
(a) $\|u\|=\lambda \Leftrightarrow \rho_{\eta}\left(\frac{D u}{\lambda}\right)=1$.
(b) $\|u\|<1($ resp. $=1,>1) \Leftrightarrow \rho_{\eta}(D u)<1($ resp. $=1,>1)$.
(c) $\|u\|<1 \Rightarrow\|u\|^{p} \leqslant \rho_{\eta}(D u) \leqslant\|u\|^{q}$.
(d) $\|u\|>1 \Rightarrow\|u\|^{q} \leqslant \rho_{\eta}(D u) \leqslant\|u\|^{p}$.
(e) $\|u\| \rightarrow 0$ (resp., $\|u\| \rightarrow \infty) \Leftrightarrow \rho_{\eta}(D u) \rightarrow 0$ (resp. $\left.\rho_{\eta}(D u) \rightarrow \infty\right)$.

We introduce the operator $V: W_{0}^{1, \eta}(\Omega) \rightarrow W_{0}^{1, \eta}(\Omega)^{*}$ defined by

$$
\langle V(u), h\rangle=\int_{\Omega}\left[a(z)|D u|^{p-2}+|D u|^{q-2}\right](D u, D h)_{\mathbb{R}^{N}} \mathrm{~d} z \quad \text { for all } u, h \in W_{0}^{1, \eta}(\Omega) .
$$

This operator has the following properties (see Liu-Dai [12]).
Proposition 3. The operator $V: W_{0}^{1, \eta}(\Omega) \rightarrow W_{0}^{1, \eta}(\Omega)^{*}$ is bounded (that is, maps bounded sets to bounded sets), continuous, strictly monotone (thus maximal monotone too) and of type $(S)_{+}$, that is, "if $u_{n} \xrightarrow{w} u$ in $W_{0}^{1, \eta}(\Omega)$ and $\limsup { }_{n \rightarrow \infty}\left\langle V\left(u_{n}\right), u_{n}-u\right\rangle \leq 0$, then $u_{n} \rightarrow u$ in $W_{0}^{1, \eta}(\Omega)$ ".

Let $\eta_{0}(z, t)=a(z) t^{p}, z \in \Omega, t \geqslant 0$. For this integrand we introduce the generalized Orlicz spaces $L^{\eta_{0}}(\Omega)$ and $W_{0}^{1, \eta_{0}}(\Omega)$. We equip $L^{\eta_{0}}(\Omega)$ with the Luxemburg norm

$$
\|u\|_{\eta_{0}}=\inf \left\{\lambda>0: \rho_{\eta_{0}}\left(\frac{u}{\lambda}\right) \leq 1\right\}
$$

and $W_{0}^{1, \eta_{0}}(\Omega)$ with the norm

$$
\|u\|_{1, \eta_{0}}=\|u\|_{\eta_{0}}+\|D u\|_{\eta_{0}} .
$$

These are separable reflexive (in fact uniformly convex) Banach spaces. From Papa-georgiou-Rădulescu-Zhang [20] (Lemma 2.1), we know that

$$
\begin{equation*}
W_{0}^{1, \eta_{0}}(\Omega) \hookrightarrow L^{\eta_{0}}(\Omega) \text { compactly. } \tag{2}
\end{equation*}
$$

We consider the following nonlinear eigenvalue problem

$$
\left\{\begin{array}{l}
-\Delta_{p}^{a} u(z)=\hat{\lambda} \alpha(z)|u(z)|^{p-2} u(z) \text { in } \Omega, \tag{3}\\
\left.u\right|_{\partial \Omega}=0 .
\end{array}\right\} .
$$

Using (2), we can show that the eigenvalue problem (3) has a smallest eigenvalue $\hat{\lambda}_{1}>0$, which has the following variational characterization

$$
\begin{equation*}
\hat{\lambda}_{1}=\inf \left\{\frac{\rho_{\eta_{0}}(D u)}{\rho_{\eta_{0}}(u)}: u \in W_{0}^{1, \eta_{0}}(\Omega), u \neq 0\right\} \tag{4}
\end{equation*}
$$

where $\rho_{\eta_{0}}(u)=\int_{\Omega} \eta_{0}(z,|u|) \mathrm{d} z$.
This eigenvalue is simple (that is, if \hat{u}, \hat{v}, are eigenfunctions corresponding to $\hat{\lambda}_{1}>0$, then $\hat{u}=\vartheta \hat{v}$ for some $\vartheta \in \mathbb{R} \backslash\{0\}$), isolated.

The infimum in (4) is realized on the corresponding one-dimensional eigenspace, the elements of which have fixed sign. By \hat{u}_{1} we denote the corresponding positive $L^{\eta_{0}}(\Omega)$-normalized eigenfunction (that is, $\left\|\hat{u}_{1}\right\|_{\eta_{0}}=1$). We have

$$
\hat{u}_{1} \in W_{0}^{1, \eta}(\Omega) \cap L^{\infty}(\Omega)
$$

and for every $K \subseteq \Omega$ compact, we have

$$
0<c_{K} \leqslant \hat{u}_{1}(z) \quad \text { for a.a. } z \in \Omega .
$$

In the sequel for every $u \in L^{0}(\Omega)$ with this property, we write $0 \prec u$. We mention that all higher eigenvalues of (3), have nodal eigenfunctions. For details, see [17].

If $u \in L^{0}(\Omega)$, then $u^{+}=\max \{u, 0\}, u^{-}=\max \{-u, 0\}$. We have $u=u^{+}-$ $u^{-},|u|=u^{+}+u^{-}$and if $u \in W_{0}^{1, \eta}(\Omega)$, then $u^{ \pm} \in W_{0}^{1, \eta}(\Omega)$. If $h_{1}, h_{2} \in L^{0}(\Omega)$, then

$$
\left[h_{1}, h_{2}\right]=\left\{u \in W_{0}^{1, \eta}(\Omega): h_{1}(z) \leqslant u(z) \leqslant h_{2}(z) \text { for a.a. } z \in \Omega\right\} .
$$

Let X be a Banach space, $\varphi \in C^{1}(X)$ and $c \in \mathbb{R}$. We introduce the following sets:

$$
\begin{aligned}
K_{\varphi} & =\left\{u \in X: \varphi^{\prime}(u)=0\right\} \quad(\text { the critical set of } \varphi), \\
\varphi^{c} & =\{u \in X: \varphi(u) \leq c\} .
\end{aligned}
$$

We say that $\varphi(\cdot)$ satisfies the " C-condition", if every sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq X$ such that

$$
\begin{aligned}
& \left\{\varphi\left(u_{n}\right)\right\}_{n \in \mathbb{N}} \subseteq \mathbb{R} \text { is bounded, } \\
& \left(1+\left\|u_{n}\right\|_{X}\right) \varphi^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } X^{*} \text { as } n \rightarrow \infty
\end{aligned}
$$

admits a strongly convergent subsequence.
This is a compactness condition on $\varphi(\cdot)$, which compensates for the fact that the ambient space X need not be locally compact (being in general infinite dimensional).

Let $\left(Y_{1}, Y_{2}\right)$ be a topological pair such that $Y_{2} \subseteq Y_{1} \subseteq X$. For $k \in \mathbb{N}_{0}$, by $H_{k}\left(Y_{1}, Y_{2}\right)$ we denote the $k^{\text {th }}$-relative singular homology group with integer coefficients. Let $u \in K_{\varphi}$ be isolated and set $c=\varphi(u)$. Then the critical groups of $\varphi(\cdot)$ at u are defined by

$$
C_{k}(\varphi, u)=H_{k}\left(\varphi^{c} \cap \mathcal{U}, \varphi^{c} \cap \mathcal{U} \backslash\{u\}\right) \quad \text { for all } k \in \mathbb{N}_{0},
$$

with \mathcal{U} being an open neighborhood of u such that $K_{\varphi} \cap \varphi^{c} \cap \mathcal{U}=\{u\}$. The excision property of singular homology implies that this definition is independent of the choice of the isolating neighborhood \mathcal{U}.

Suppose that $\varphi \in C^{1}(X)$ satisfies the C-condition and that $-\infty<\inf \varphi\left(K_{\varphi}\right)$. The critical groups of $\varphi(\cdot)$ at infinity are defined by

$$
C_{k}(\varphi, \infty)=H_{k}\left(X, \varphi^{c}\right) \quad \text { for all } k \in \mathbb{N}_{0}
$$

The second deformation theorem (see [19, p. 386]) implies that this definition is independent of the choice of the level $c<\inf \varphi\left(K_{\varphi}\right)$.

Suppose that K_{φ} is finite. We introduce the following series in $t \in \mathbb{R}$.

$$
\begin{aligned}
M(t, u) & =\sum_{k \in \mathbb{N}_{0}} \operatorname{rank} C_{k}(\varphi, u) t^{k} \quad \text { for all } u \in K_{\varphi} \\
P(t, u) & =\sum_{k \in \mathbb{N}_{0}} \operatorname{rank} C_{k}(\varphi, \infty) t^{k}
\end{aligned}
$$

The "Morse relation" says that

$$
\begin{equation*}
\sum_{u \in K_{\varphi}} M(t, u)=P(t, \infty)+(1+t) Q(t) \quad \text { for all } t \in \mathbb{R} \tag{5}
\end{equation*}
$$

with $Q(t)=\sum_{k \in \mathbb{N}_{0}} \beta_{k} t^{k}$ a formal series in $t \in \mathbb{R}$ with nonnegative integer coefficients (see [19]).

We will use critical groups to overcome the difficulties we encounter due to the lack of a global regularity theory.

To do this, We will need the notion of $L^{\infty}(\Omega)$-locally Lipschitz integrand. We say that $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is an $L^{\infty}(\Omega)$-locally Lipschitz integrand, if

- for all $x \in \mathbb{R}, z \rightarrow g(z, x)$ is measurable;
- for a.a. $z \in \Omega$ and all compact $K \subseteq \mathbb{R}$, there exists $g_{K} \in L^{\infty}(\Omega)$ such that

$$
|g(z, x)-g(z, y)| \leqslant g_{K}(z)|x-y| \quad \text { for a.a. } z \in \Omega \text { all } x, y \in K
$$

The hypotheses on the reaction $f(z, x)$ are the following:
$\mathbf{H}_{1}: f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is an L^{∞}-locally Lipschitz integrand such that for a.a. $z \in \Omega$, $f(z, 0)=0, f(z, x) x \geqslant 0$ for all $x \in \mathbb{R}$ and
(i) $|f(z, x)| \leqslant \hat{a}(z)\left(1+|x|^{p-1}\right)$ for a.a. $z \in \Omega$, all $x \in \mathbb{R}$, with $\hat{a} \in L^{\infty}(\Omega)$;
(ii) $F(z, x)=\int_{0}^{x} f(z, s) \mathrm{d} s$, then $\lim _{x \rightarrow \pm \infty} \frac{p F(z, x)}{a(z)|x|^{p}} \leq \hat{\lambda}_{1}$ uniformly for a.a. $z \in \Omega$;
(iii) there exists $\beta_{0}>0$ such that

$$
-\beta_{0} \leqslant f(z, x) x-p F(z, x) \text { for a.a. } z \in \Omega \text {, all } x \in \mathbb{R} ;
$$

(iv) there exist $\delta>0$ and $\tau \in(1, q)$ such that

$$
c_{0}|x|^{\tau} \leq f(z, x) x \leq \tau F(z, x)
$$

for a.a. $z \in \Omega$, all $|x| \leq \delta$, some $c_{0}>0$.
Remark 2.2. Hypothesis H_{1} (ii) implies that we also have

$$
\limsup _{x \rightarrow \pm \infty} \frac{f(z, x)}{a(z)|x|^{p-2} x} \leqslant \hat{\lambda}_{1} \quad \text { unformly for a.a. } z \in \Omega
$$

So, our hypotheses cover the resonant case. Hypothesis H_{1} (iv) implies the presence of a local concave term near zero.

Let $\varphi: W_{0}^{1, \eta}(\Omega) \rightarrow \mathbb{R}$ be the energy functional for problem (1) defined by

$$
\varphi(u)=\frac{1}{p} \rho_{\eta_{0}}(D u)+\frac{1}{q}\|D u\|_{q}^{q}-\int_{\Omega} F(z, u) \mathrm{d} z \quad \text { for all } u \in W_{0}^{1, \eta}(\Omega) .
$$

Evidently $\varphi \in C^{1}\left(W_{0}^{1, \eta}(\Omega)\right)$.
Also in order to produce solutions of constant sign, we consider the positive and negative truncations of $\varphi(\cdot)$, namely the C^{1}-functionals $\varphi_{ \pm}: W_{0}^{1, \eta}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\varphi_{ \pm}(u)=\frac{1}{p} \rho_{\eta_{0}}(D u)+\frac{1}{q}\|D u\|_{q}^{q}-\int_{\Omega} F\left(z, \pm u^{ \pm}\right) \mathrm{d} z \quad \text { for all } u \in W_{0}^{1, \eta}(\Omega)
$$

3. Solutions of constant sign

In this section we produce two bounded constant sign solutions (positive and negative) using the direct method of the calculus of variations.

Proposition 4. If hypotheses H_{0}, H_{1} hold, then the functionals $\varphi_{ \pm}, \varphi$ are coercive.

Proof. We do the proof for $\varphi_{+}(\cdot)$, the proofs for $\varphi_{-}(\cdot), \varphi(\cdot)$ being similar.
We argue by contradiction. So, suppose we can find $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, \eta}(\Omega)$ such that

$$
\begin{equation*}
\left\|u_{n}\right\| \rightarrow \infty \text { as } n \rightarrow \infty \text { and } \varphi_{+}\left(u_{n}\right) \leqslant c_{1} \text { for some } c_{1}>0, \text { all } n \in \mathbb{N} . \tag{6}
\end{equation*}
$$

From the inequality in (6), we see that if $\left\{u_{n}^{+}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, \eta}(\Omega)$ is bounded, then so is $\left\{u_{n}^{-}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, \eta}(\Omega)$ and then $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, \eta}(\Omega)$ is bounded, contradicting (6). Therefore we may assume that

$$
\begin{equation*}
\left\|u_{n}^{+}\right\| \rightarrow \infty \text { as } n \rightarrow \infty \tag{7}
\end{equation*}
$$

First suppose that $\left\{u_{n}^{+}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, \eta_{0}}(\Omega)$ is bounded (recall that $W_{0}^{1, \eta}(\Omega) \hookrightarrow$ $W_{0}^{1, \eta_{0}}(\Omega)$ continuously). Hypotheses H_{1} (i), (ii) imply that we can find $c_{2}>0$ such
that

$$
\begin{equation*}
F(z, x) \leqslant \frac{1}{p}\left(\hat{\lambda}_{1}+1\right) a(z)|x|^{p}+c_{2} \quad \text { for a.a. } z \in \Omega, \text { all } x \in \mathbb{R} \tag{8}
\end{equation*}
$$

from (6), we have

$$
\begin{aligned}
& \frac{1}{p} \rho_{\eta}\left(D u_{n}^{+}\right)+\frac{1}{q}\left\|D u_{n}^{+}\right\|_{q}^{q} \leqslant c_{1}+\int_{\Omega} F\left(z, u_{n}^{+}\right) \mathrm{d} z, \\
\Rightarrow & \frac{1}{p}\left[\rho_{\eta_{0}}\left(D u_{n}^{+}\right)-\hat{\lambda}_{1} \rho_{\eta_{0}}\left(u_{n}^{+}\right)\right]+\frac{1}{q}\left\|D u_{n}^{+}\right\|_{q}^{q} \leqslant c_{3}+\frac{1}{p} \rho_{\eta_{0}}\left(u_{n}^{+}\right) \\
& \text {for some } \left.c_{3}>0, \text { all } n \in \mathbb{N} \text { (see }[8]\right), \\
\Rightarrow & \frac{1}{q}\left\|D u_{n}^{+}\right\|_{q}^{q} \leqslant c_{4} \text { for some } c_{4}>0, \text { all } n \in \mathbb{N}
\end{aligned}
$$

(see (4) and recall that we have assumed that $\left\{u_{n}^{+}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, \eta_{0}}(\Omega)$ is bounded),
$\Rightarrow\left\{u_{n}^{+}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, q}(\Omega)$ is bounded,
$\Rightarrow\left\{u_{n}^{+}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, \eta}(\Omega)$ is bounded.
But this contradicts (7). Therefore we may assume that

$$
\begin{equation*}
\left\|u_{n}^{+}\right\|_{1, \eta_{0}} \rightarrow \infty \text { as } n \rightarrow \infty \tag{9}
\end{equation*}
$$

Let $y_{n}=\frac{u_{n}^{+}}{\left\|u_{n}^{u}\right\|_{1, \eta_{0}}}$ for all $n \in \mathbb{N}$. We have

$$
\left\|y_{n}\right\|_{1, \eta_{0}}=1, y_{0} \geqslant 0 \text { for all } n \in \mathbb{N} .
$$

Recall that $W_{0}^{1, \eta_{0}}(\Omega) \hookrightarrow L^{\eta_{0}}(\Omega)$ compactly (see [20]). Since $W_{0}^{1, \eta_{0}}(\Omega)$ is a separable, reflexive Banach space, we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } W_{0}^{1, \eta_{0}}(\Omega), \quad y_{n} \rightarrow y \text { in } L^{\eta_{0}}(\Omega) \quad \text { as } n \rightarrow \infty . \tag{10}
\end{equation*}
$$

From (6) we have

$$
\begin{align*}
& \frac{1}{p} \rho_{\eta_{0}}\left(D u_{n}^{+}\right)+\frac{1}{q}\left\|D u_{n}^{+}\right\|^{q}-\int_{n} F\left(z, u_{n}^{+}\right) \mathrm{d} z \leqslant c_{1} \text { for all } n \in \mathbb{N}, \\
\Rightarrow & \frac{1}{p} \rho_{\eta_{0}}\left(D y_{n}\right)+\frac{1}{q\left\|u_{n}^{+}\right\|_{1, \eta_{0}}^{p-q}}\left\|D y_{n}\right\|_{q}^{q}-\int_{\Omega} \frac{F\left(z, u_{n}^{+}\right)}{\left\|u_{n}^{+}\right\|_{1, \eta_{0}}^{p}} \leqslant \frac{c_{1}}{\left\|u_{n}^{+}\right\|_{1, \eta_{0}}^{p}} \quad \text { for all } n \in \mathbb{N} . \tag{11}
\end{align*}
$$

Claim. $-\beta_{0} \leqslant \hat{\lambda}_{1} a(z) v^{p}-p F(z, v)$ for a.a. $z \in \Omega$, all $v \geqslant 0$.
For $x>0$, we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{F(z, x)}{x^{p}}\right) & =\frac{f(z, x) x^{p}-p x^{p-1} F(z, x)}{x^{2} p}=\frac{f(z, x) x-p F(z, x)}{x^{p+1}} \\
& \geqslant-\frac{\beta_{0}}{x^{p+1}} \quad \text { for a.a. } z \in \Omega \text { (see hypothesis } H_{1} \text { (iii)). }
\end{aligned}
$$

Integrating this inequality, we obtain

$$
\frac{F(z, x)}{x^{p}}-\frac{F(z, v)}{v^{p}} \geqslant \frac{\beta_{0}}{p}\left[\frac{1}{x^{p}}-\frac{1}{v^{p}}\right] \text { for a.a. } z \in \Omega, \text { all } x \geqslant v>0 .
$$

Passing to the limit as $x \rightarrow+\infty$ and using hypothesis H_{1} (ii), we obtain

$$
\begin{aligned}
& \frac{\hat{\lambda}_{1} a(z)}{p}-\frac{F(z, v)}{v^{p}} \geqslant-\frac{\beta_{0}}{p v^{p}}, \\
\Rightarrow & \hat{\lambda}_{1} \alpha(z) v^{p}-p F(z, v) \geqslant-\beta_{0} \text { for a.a. } z \in \Omega, \text { all } v \geqslant 0 .
\end{aligned}
$$

This proves the Claim.
The above Claim implies that

$$
\begin{equation*}
-F(z, x) \geqslant-\frac{1}{p} \beta_{0}-\frac{1}{p} \hat{\lambda}_{1} \alpha(z) x^{p} \text { for a.a. } z \in \Omega \text {, all } x \geqslant 0 . \tag{12}
\end{equation*}
$$

We use (12) in (11) and have

$$
\frac{1}{p}\left(\rho_{\eta_{0}}\left(D y_{n}\right)-\hat{\lambda}_{1} \rho_{\eta_{0}}\left(y_{n}\right)\right) \leqslant \varepsilon_{n} \text { for all } n \in \mathbb{N}, \text { with } \varepsilon_{n} \rightarrow 0^{+} \text {as } n \rightarrow \infty
$$

If we pass to the limit as $n \rightarrow \infty$ and use (10), we obtain

$$
\rho_{\eta_{0}}(D y) \leqslant \hat{\lambda}_{1} \rho_{\eta_{0}}(y) .
$$

Note that the modular function $\rho_{\eta_{0}}(\cdot)$ is continuous, convex, thus weakly lower semicontinuous on $W_{0}^{1, \eta_{0}}(\Omega)$. From (4) if follows that

$$
\begin{aligned}
& \rho_{\eta_{0}}(D y)=\hat{\lambda}_{1} \rho_{\eta_{0}}(y) \\
\Rightarrow & y=\hat{u}_{1} \succ 0 \quad \text { or } y=0 \quad(\text { recall that } y \geqslant 0) .
\end{aligned}
$$

If $y=0$, then

$$
\begin{aligned}
& \rho_{\eta_{0}}\left(D y_{n}\right), \rho_{\eta_{0}}\left(y_{n}\right) \rightarrow 0, \\
\Rightarrow & y_{n} \rightarrow 0 \text { in } W_{0}^{1, \eta_{0}}(\Omega) \text { as } n \rightarrow \infty,
\end{aligned}
$$

which contradicts the fact that $\left\|y_{n}\right\|_{1, \eta_{0}}=1$ for all $n \in \mathbb{N}$,
If $y=\hat{u}_{1}$, then since $\hat{u}_{1} \succ 0$, we infer that

$$
\begin{equation*}
u_{n}^{+}(z) \rightarrow+\infty \text { for a.a. } z \in \Omega \text { as } n \rightarrow \infty . \tag{13}
\end{equation*}
$$

From (6) we have

$$
\begin{aligned}
& \rho_{\eta}\left(D u_{n}^{+}\right)+\frac{p}{q}\left\|D u_{n}^{+}\right\|_{q}^{q}-\int_{\Omega} p F\left(z, u_{n}^{+}\right) \mathrm{d} z \leqslant p c_{1} \text { for all } n \in \mathbb{N}, \\
\Rightarrow & \int_{\Omega}\left[\hat{\lambda}_{1} a(z)\left(u_{n}^{+}\right)^{p}-p F\left(z, u_{n}^{+}\right)\right] \mathrm{d} z+\frac{p}{q}\left\|D u_{n}^{+}\right\|_{q}^{q} \leqslant p c_{1} \quad \text { (see the Claim). }
\end{aligned}
$$

If $\hat{\lambda}_{1}(q)>0$ denotes the principal eigenvalue of $\left(-\Delta_{q}, W_{0}^{1, q}(\Omega)\right)$ and since $\hat{\lambda}_{1}(q)\|v\|_{q}^{q} \leqslant$ $\|D v\|_{q}^{q}$ for all $v \in W_{0}^{1, q}(\Omega)$ (see Gasinski-Papageorgiou [5]), we have

$$
\begin{equation*}
\frac{p}{q} \hat{\lambda}_{1}(q) \int_{\Omega}\left(u_{n}^{+}\right)^{q} \mathrm{~d} z \leqslant c_{5} \text { for all } n \in \mathbb{N} \text {, some } c_{5}>0 \quad \text { (see the Claim). } \tag{14}
\end{equation*}
$$

Using (13), (14) and Fatou's lemma, we reach a contradiction.
Therefore $\left\{u_{n}^{+}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, \eta_{0}}(\Omega)$ is bounded, which we have seen earlier that it implies that $\left\{u_{n}^{+}\right\} \subseteq W^{1, q}(\Omega)$ is bounded, hence $\left\{u_{n}^{+}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, \eta}(\Omega)$ is bounded, contradicting (7). We conclude that $\varphi_{+}(\cdot)$ coercive.

Similarly we show that $\varphi_{-}(\cdot)$ and $\varphi(\cdot)$ are coercive.
Now we can produce two constant sign solutions.

Proposition 5. If hypotheses H_{0}, H_{1} hold, then problem (1) has at least two constant sign solutions

$$
\begin{aligned}
& u_{0}, v_{0} \in W_{0}^{1, \eta}(\Omega) \cap L^{\infty}(\Omega), \\
& v_{0} \prec 0 \prec u_{0} .
\end{aligned}
$$

Proof. By Proposition $4, \varphi_{+}(\cdot)$ is coercive. Also using Proposition 1 and the sequential weak lower semicontinuity of the modular and norm functions, we see that $\varphi_{+}(\cdot)$ is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find $u_{0} \in W_{0}^{1, \eta}(\Omega)$ such that

$$
\begin{equation*}
\varphi_{+}\left(u_{0}\right)=\inf \left\{\varphi_{+}(u): u \in W_{0}^{1, \eta}(\Omega)\right\} \tag{15}
\end{equation*}
$$

Let $u \in C_{0}^{1}(\bar{\Omega})$ with $u(z)>0$ for all $z \in \Omega$. We an find $t \in(0,1)$ small such that

$$
\begin{equation*}
0 \leqslant t u(z) \leqslant \delta \text { for all } z \in \bar{\Omega} \tag{16}
\end{equation*}
$$

with $\delta>0$ as postulated by hypothesis H_{1} (iv). We have

$$
\varphi_{t}(t u) \leqslant \frac{t^{p}}{p} \rho_{\eta_{0}}(D u)+\frac{t^{q}}{q}\|D u\|_{q}^{q}-\frac{c_{0}}{\tau} t^{\tau}\|u\|_{\tau}^{\tau} \quad\left(\text { see hypothesis } H_{1}(\mathrm{iv})\right) .
$$

Since $1<\tau<q<p$, choosing $t \in(0,1)$ even smaller if necessary, we obtain

$$
\begin{aligned}
& \varphi_{+}(t u)<0 \\
\Rightarrow & \varphi_{+}\left(u_{0}\right)<0=\varphi_{+}(0) \quad(\operatorname{see}(15)), \\
\Rightarrow & u_{0} \neq 0
\end{aligned}
$$

From (15) we have

$$
\begin{aligned}
& \left\langle\varphi_{+}^{\prime}\left(u_{0}\right), h\right\rangle=0 \text { for all } h \in W_{0}^{1, \eta}(\Omega) \\
\Rightarrow & \left\langle V\left(u_{0}\right), h\right\rangle=\int_{\Omega} f\left(z, u_{0}^{+}\right) h \mathrm{~d} z \text { for all } h \in W_{0}^{1, \eta}(\Omega) .
\end{aligned}
$$

Choosing $h=-u_{0}^{-} \in W_{0}^{1, \eta}(\Omega)$, we obtain

$$
\begin{aligned}
& \rho_{\eta}\left(D u_{0}^{-}\right)=0 \\
\Rightarrow & u_{0} \geqslant 0, u_{0} \neq 0 \quad(\text { see Propesition } 2) .
\end{aligned}
$$

Therefore $u_{0} \in W_{0}^{1, \eta}(\Omega)$ is a positive solution. From Gasinski-Winkert [8] (Theorem 3.1), we have $u_{0} \in W_{0}^{1, \eta}(\Omega) \cap L^{\infty}(\Omega)$, In addition Proposition 2.4 of Papageorgiou-Vetro-Vetro [21] implies that $0 \prec u_{0}$.

Similarly, working with $\varphi_{-}(\cdot)$, we generate a negative solution $v_{0} \in W_{0}^{1, \eta}(\Omega) \cap$ $L^{\infty}(\Omega)$ with $v_{0} \prec 0$.

In fact, we can have extremal constant sign solutions that is, a smallest positive solution and a biggest negative solution. We will need these extremal solutions in order to produce a nodal one. To this end, motivated by hypothesis H_{1} (iv), we consider the following auxiliary double phase problem

$$
\left\{\begin{array}{l}
-\Delta_{p}^{a} u(z)-\Delta_{q} u(z)=c_{0}|u(z)|^{\tau-2} u(z) \text { in } \Omega \tag{Au}\\
\left.u\right|_{\partial \Omega}=0, \quad 1<\tau<q<p
\end{array}\right\}
$$

Proposition 6. If hypotheses H_{0} hold, then problem (Au) has a unique positive solution $\bar{u} \in W_{0}^{1, \eta}(\Omega) \cap L^{\infty}(\Omega), 0 \prec \bar{u}$ and since problem $(A u)$ is odd $\bar{v}=-\bar{u} \prec 0$ is the unique solution of $(A u)$.

Proof. Let $\sigma: W_{0}^{1, \eta}(\Omega) \rightarrow \mathbb{R}$ be the C^{1}-functional defined by

$$
\sigma(u)=\frac{1}{p} \rho_{\eta_{0}}(D u)+\frac{1}{q}\|D u\|_{q}^{q}-\frac{c_{0}}{\tau}\left\|u^{+}\right\|_{\tau}^{\tau} \quad \text { for all } u \in W_{0}^{1, \eta}(\Omega) .
$$

Evidently, $\sigma(\cdot)$ is coercive (since $\tau<q<p$) and sequentially weakly lower semicontinuous. So, we can find $\bar{u} \in W_{0}^{1, \eta}(\Omega)$ such that

$$
\begin{equation*}
\sigma(\bar{u})=\inf \left\{\sigma(u): u \in W_{0}^{1, \eta}(\Omega)\right\} \tag{17}
\end{equation*}
$$

If $u \in W_{0}^{1, \eta}(\Omega) \backslash\{0\}, u(z) \geqslant 0$ for a.a. $z \in \Omega$ and $t \in(0,1)$, then

$$
\sigma(t u) \leqslant \frac{t^{q}}{q} p_{\eta}(D u)-\frac{c_{0} t^{\tau}}{\tau}\|u\|_{\tau}^{\tau} .
$$

Since $\tau<q$, by choosing $t \in(0,1)$ even smaller if necessary, we have

$$
\begin{aligned}
& \sigma(t u)<0, \\
\Rightarrow & \sigma(\bar{u})<0=\sigma(0) \quad(\text { see }(17)), \\
\Rightarrow & \bar{u} \neq 0 .
\end{aligned}
$$

From (17) we have

$$
\begin{aligned}
\left\langle\sigma^{\prime}(\bar{u}), h\right\rangle & =0 \quad \text { for all } h \in W_{0}^{1, \eta}(\Omega), \\
\Rightarrow\langle V(\bar{u}), h\rangle & =c_{0} \int_{\Omega}\left(\bar{u}^{+}\right)^{\tau-1} h \mathrm{~d} z \quad \text { for all } h \in W_{0}^{1, \eta}(\Omega) .
\end{aligned}
$$

Using $h=-\bar{u}^{-} \in W_{0}^{1, \eta}(\Omega)$, we obtain

$$
\begin{aligned}
& \rho_{\eta}\left(D \bar{u}^{-}\right) \\
\Rightarrow \bar{u} & =0, \bar{u}
\end{aligned}
$$

So, \bar{u} is a positive solution of $(A u)$ and as before, we have $\bar{u} \in W_{0}^{1, \eta}(\Omega) \cap L^{\infty}(\Omega)$, $0 \prec \bar{u}$.

Suppose \bar{v} is another positive solution of $(A u)$. Again we have $\bar{v} \in W_{0}^{1, \eta}(\Omega) \cap$ $L^{\infty}(\Omega), 0 \prec \bar{v}$. Then we introduce the integral functional $j: L^{1}(\Omega) \rightarrow \overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty\}$ defined by

$$
j(u)= \begin{cases}\frac{1}{p} p_{\eta_{0}}\left(D u^{1 / q}\right)+\frac{1}{q}\left\|D u^{1 / q}\right\|_{q}^{q} & \text { if } u \geqslant 0, u^{1 / q} \in W_{0}^{1, \eta}(\Omega) \\ +\infty & \text { otherwise } .\end{cases}
$$

We set dom $j=\left\{u \in L^{1}(\Omega): j(u)<\infty\right\}$ (the effective domain of $\left.j(\cdot)\right)$. As in Papageorgiou-Rădulescu [18], using Lemma 1 of Diaz-Saa [3], we have that $j(\cdot)$ is convex.

For $\varepsilon>0$, we set

$$
\bar{u}_{\varepsilon}=\bar{u}+\varepsilon \quad \text { and } \quad \bar{v}_{\varepsilon}=\bar{v}+\varepsilon .
$$

Then $\bar{u}_{\varepsilon}, \bar{v}_{\varepsilon} \in \operatorname{int} L^{\infty}(\Omega)_{+}$with $L^{\infty}(\Omega)_{+}=\left\{y \in L^{\infty}(\Omega): y(z) \geqslant 0\right.$ for a.a. $\left.z \in \Omega\right\}$.
So, using Proposition 4.1.22 of Papageorgiou-Rădulescu-Repovs [19, p. 274], we have that

$$
\begin{equation*}
\frac{\bar{u}_{\varepsilon}}{\bar{v}_{\varepsilon}} \in L^{\infty}(\Omega) \quad \text { and } \quad \frac{\bar{v}_{\varepsilon}}{\bar{u}_{\varepsilon}} \in L^{\infty}(\Omega) . \tag{18}
\end{equation*}
$$

Let $h=\bar{u}_{\varepsilon}^{q}-\bar{v}_{\varepsilon}^{q} \in W_{0}^{1, \eta}(\Omega) \cap L^{\infty}(\Omega)$. On account of (18) for $t \in(0,1)$ small we have

$$
\bar{u}_{\varepsilon}+t h \in \operatorname{dom} j \quad \text { and } \quad \bar{v}_{\varepsilon}+t h \in \operatorname{dom} j .
$$

So, exploiting the convexity of $j(\cdot)$, we can compute the directional derivatives of $j(\cdot)$ at \bar{u}_{ε} and at \bar{v}_{ε} in the direction h. A direct computation gives

$$
\begin{aligned}
j^{\prime}\left(\bar{u}_{\varepsilon}^{q}\right)(h) & =\frac{1}{q} \int_{\Omega} \frac{-\Delta_{p}^{a} \bar{u}-\Delta_{q} \bar{u}}{\bar{u}_{\varepsilon}^{q-1}} h \mathrm{~d} z=\frac{c_{0}}{q} \int_{\Omega} \frac{\bar{u}^{\tau-1}}{\bar{u}_{\varepsilon}^{q-1}} h \mathrm{~d} z, \\
j^{\prime}\left(\bar{v}_{\varepsilon}^{q}\right)(h) & =\frac{1}{q} \int_{\Omega} \frac{-\Delta_{p}^{a} \bar{v}-\Delta_{q} \bar{v}}{\bar{v}_{\varepsilon}^{q-1}} h \mathrm{~d} z=\frac{c_{0}}{q} \int_{\Omega} \frac{\bar{v}^{\tau-1}}{\bar{v}_{\varepsilon}^{q-1}} h \mathrm{~d} z .
\end{aligned}
$$

The convexity of the integral functional $j(\cdot)$ implies the monotonicity of the directional derivative $j^{\prime}(\cdot)$. So, we have

$$
0 \leqslant \frac{c_{0}}{q} \int_{\Omega}\left(\frac{\bar{u}^{\tau-1}}{\bar{u}_{\varepsilon}^{q-1}}-\frac{\bar{v}^{\tau-1}}{\bar{v}_{\varepsilon}^{q-1}}\right)\left(\bar{u}_{\varepsilon}^{q}-\bar{v}_{\varepsilon}^{q}\right) \mathrm{d} z
$$

For $\varepsilon \in(0,1]$, note that

$$
\left(\frac{\bar{u}^{\tau-1}}{\bar{u}_{\varepsilon}^{q-1}}-\frac{\bar{v}^{\tau-1}}{\bar{v}_{\varepsilon}^{q-1}}\right)\left(\bar{u}_{\varepsilon}^{q}-\bar{v}_{\varepsilon}^{q}\right) \leqslant \bar{u}_{1}^{\tau}+\bar{v}_{1}^{\tau} \in L^{\infty}(\Omega) .
$$

So, by Fatou's lemma, we have

$$
\begin{aligned}
& 0 \leqslant \frac{c_{0}}{q} \limsup _{\varepsilon \rightarrow 0^{+}} \int_{\Omega}\left(\frac{\bar{u}^{\tau-1}}{\bar{u}_{\varepsilon}^{q-1}}-\frac{\bar{v}^{\tau-1}}{\bar{v}_{\varepsilon}^{q-1}}\right)\left(\bar{u}_{\varepsilon}^{q}-\bar{v}_{\varepsilon}^{q}\right) \mathrm{d} z \\
& \leqslant \frac{c_{0}}{q} \int_{n}\left(\frac{1}{\bar{u}^{q-\tau}}-\frac{1}{\bar{v}^{q-\tau}}\right)\left(\bar{u}^{q}-\bar{v}^{q}\right) \mathrm{d} z \leqslant 0, \\
& \Rightarrow \bar{u}=\bar{v}
\end{aligned}
$$

This proves the uniqueness of the positive solution of $(A u)$. Since the equation is odd, $\bar{v}=-\bar{u} \in W_{0}^{1, \eta}(\Omega) \cap L^{\infty}(\Omega), \bar{v} \prec 0$ is the unique negative solution of $(A u)$.

We introduce the following two sets

$$
\begin{aligned}
& S_{+}=\{\text {positive solutions of }(1)\} \\
& S_{-}=\{\text {negative solutions of }(1)\}
\end{aligned}
$$

From Proposition 5 and its proof, we have

$$
\begin{aligned}
& \phi \neq S_{+} \subseteq W_{0}^{1, \eta}(\Omega) \cap L^{\infty}(\Omega), 0 \prec u \text { for all } u \in S_{+} \\
& \phi \neq S_{-} \subseteq W_{0}^{1, \eta}(\Omega) \cap L^{\infty}(\Omega), v \prec 0 \text { for all } u \in S_{-} .
\end{aligned}
$$

The set S_{+}is downward directed (that is, if $u_{1} u_{2} \in S_{+}$, then there is $u \in S_{+}$such that $u \leq u_{1}, u \leq u_{2}$), while S_{-}is upward directed (that is, if $v_{1}, v_{2} \in S_{-}$, then there is $v \in S_{-}$. such that $v_{1} \leqslant v, v_{2} \leqslant v$, see Filippakis-Papageorgiou [4]). We prove the existence of extremal elements in these two sets.

Proposition 7. If hypotheses H_{0}, H_{1} hold, then there exist $u_{*} \in S_{+}$and $v_{*} \in S_{-}$ such that

$$
\begin{aligned}
& u_{*} \leqslant u \text { for all } u \in S_{+} \\
& v \leqslant v_{*} \text { for all } v \in S_{-}
\end{aligned}
$$

Proof. As we already mentioned, S_{+}is downward directed. So, using Theorem 5.109 of Hu -Papageorgiou [11, p. 308], we can find a decreasing sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq S_{+}$such that

$$
\inf S_{+}=\inf _{n \in \mathbb{N}} u_{n}
$$

We have

$$
\begin{align*}
\left\langle V\left(u_{n}\right), h\right\rangle & =\int_{\Omega} f\left(z, u_{n}\right) h \mathrm{~d} z \text { for all } h \in W_{0}^{1, \eta}(\Omega), \text { all } n \in \mathbb{N}, \tag{19}\\
0 & \leq u_{n} \leq u_{1} \tag{20}
\end{align*}
$$

In (19) we use the test function $h=u_{n} \in W_{0}^{1, \eta}(\Omega)$. From (20) and hypothesis H_{1} (i), we infer that

$$
\begin{aligned}
& \rho_{\eta}\left(D u_{n}\right) \leqslant c_{6} \text { for some } c_{6}>0, \text { all } n \in \mathbb{N}, \\
\Rightarrow & \left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, \eta}(\Omega) \text { is bounded. }
\end{aligned}
$$

We may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u_{*} \text { in } W_{0}^{1, \eta}(\Omega), u_{n} \rightarrow u_{*} \text { in } L^{p}(\Omega) \text { as } n \rightarrow \infty \quad \text { (see Proposition 1). } \tag{21}
\end{equation*}
$$

In (19) we use $h=u_{n}-u_{*} \in W_{0}^{1, \eta}(\Omega)$, pass to the limit as $n \rightarrow \infty$ and use (21). We obtain

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\langle V\left(u_{n}\right), u_{n}-u_{*}\right\rangle=0, \\
\Rightarrow & \left.u_{n} \rightarrow u_{*} \text { in } W_{0}^{1, \eta}(\Omega) \text { as } n \rightarrow \infty \quad \text { (see Proposition } 3\right) . \tag{22}
\end{align*}
$$

From hypothesis H_{1} (i) and (20), we have

$$
0 \leqslant f\left(z, u_{n}(z)\right) \leqslant \hat{a}(z)\left(1+u_{1}(z)^{p-1}\right)=\xi(z) \in L^{\infty}(\Omega) \quad \text { for a.a. } z \in \Omega, \text { all } n \in \mathbb{N}
$$

Hence via Moser's iteration process (see Guedda-Veron [9, Proposition 1.3]), we have

$$
\begin{equation*}
\left\|u_{n}\right\| \leqslant O\left(\left\|u_{n}\right\|\right) . \tag{23}
\end{equation*}
$$

So, if $u_{*}=0$, from (22) and (23), we have

$$
u_{n} \rightarrow 0 \text { in } L^{\infty}(\Omega) \text { as } n \rightarrow \infty .
$$

Therefore, we can find $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
0 \leqslant u_{n}(z) \leqslant \delta \text { for a.a. } z \in \Omega, \text { all } n \geqslant n_{0} \tag{24}
\end{equation*}
$$

(here $\delta>0$ is as in hypothesis H_{1} (iv)). We fix $n \geqslant n_{0}$ and introduce the Carathéodory function $k_{+}(z, x)$ defined by

$$
k_{+}(z, x)= \begin{cases}c_{0}\left(x^{+}\right)^{\tau-1} & \text { if } x \leqslant u_{n}(z) \tag{25}\\ c_{0} u_{n}(z)^{\tau-1} & \text { if } u_{n}(z)<x\end{cases}
$$

We set $K_{+}(z, x)=\int_{0}^{x} k_{+}(z, s) \mathrm{d} s$ and consider the C^{1}-functional $\psi_{+}: W_{0}^{1, \eta}(\Omega) \mapsto \mathbb{R}$ defined by

$$
\psi_{+}(u)=\frac{1}{p} \rho_{\eta_{0}}(D u)+\frac{1}{q}\|D u\|_{q}^{q}-\int_{\Omega} K_{+}(z, u) \mathrm{d} z \quad \text { for all } u \in W_{0}^{1, \eta}(\Omega) .
$$

It is clear from (25) that $\psi_{+}(\cdot)$ is coercive. Also, it is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find $\tilde{u} \in W_{0}^{1, \eta}(\Omega)$ such that

$$
\begin{equation*}
\psi_{+}(\tilde{u})=\inf \left\{\psi_{+}(u): u \in W_{0}^{1, \eta}(\Omega)\right\} . \tag{26}
\end{equation*}
$$

Let $u \in C_{0}^{1}(\bar{\Omega})$ with $u(z)>0$ for all $z \in \Omega$. For $t>0$, we have

$$
\begin{aligned}
\psi_{+}(t u)= & \frac{t^{p}}{p} \rho_{\eta_{0}}(D u)+\frac{t^{q}}{q}\|D u\|_{q}^{q}-\int_{\Omega} K_{+}(z, t u) \mathrm{d} z \\
= & \frac{t^{p}}{p} \rho_{\eta_{0}}(D u)+\frac{t^{q}}{q}\|D u\|_{q}^{q}-\int_{\left\{t u \leqslant u_{n}\right\}} \frac{c_{0} t^{\tau}}{\tau} u^{\tau} \mathrm{d} z \\
& -\int_{\left\{u_{n}<t u\right\}}\left(\frac{c_{0} u_{n}^{\tau}}{\tau}+c_{0} u_{n}^{\tau-1}\left(t u-u_{n}\right)\right) \mathrm{d} z \\
\leqslant & \frac{t^{p}}{p} \rho_{\eta_{0}}(D u)+\frac{t^{q}}{q}\|D u\|_{q}^{q}-\frac{c_{0} t^{\tau}}{\tau} \int_{\left\{t u \leqslant u_{n}\right\}} u^{\tau} \mathrm{d} z \\
= & \frac{t^{p}}{p} \rho_{\eta_{0}}(D u)+\frac{t^{q}}{q}\|D u\|_{q}^{q}-\frac{c_{0} t^{\tau}}{\tau} \int_{\Omega} u^{\tau} \mathrm{d} z+\frac{c_{0} t^{\tau}}{\tau} \int_{\left\{u_{n}<t u\right\}} u^{\tau} \mathrm{d} z
\end{aligned}
$$

Note that if $|\cdot|_{N}$ denotes the Lebesgue measure on \mathbb{R}^{N}, then since $0 \prec u_{n}$, we have $\left|\left\{u_{n}<t u\right\}\right|_{N} \rightarrow 0$ as $t \rightarrow 0^{+}$. Then

$$
\begin{aligned}
& \frac{\psi_{+}(t u)}{t^{\tau}} \leqslant \frac{t^{p-\tau}}{\tau} \rho_{\eta_{0}}(D u)+\frac{t^{q-\tau}}{q}\|D u\|_{q}^{q}-\frac{c_{0}}{\tau} \int_{\Omega} u^{\tau} \mathrm{d} z+\frac{c_{0}}{\tau} \int_{\left\{u_{n}<t u\right\}} u^{\tau} \mathrm{d} z \\
\Rightarrow & \limsup _{t \rightarrow 0^{+}} \frac{\psi_{+}(t u)}{t^{\tau}}<0, \\
\Rightarrow & \psi_{+}(t u)<0 \text { for } t \in(0,1) \quad \text { small, } \\
\Rightarrow & \psi_{+}(\tilde{u})<0=\psi_{+}(0) \quad(\text { see }(26)) \\
\Rightarrow & \tilde{u} \neq 0 .
\end{aligned}
$$

From (26) we have

$$
\begin{align*}
& \left\langle\psi_{+}^{\prime}(\tilde{u}), h\right\rangle=0 \text { for all } h \in W_{0}^{1, \eta}(\Omega) \\
\Rightarrow & \langle V(\tilde{u}), h\rangle=\int_{\Omega} k_{+}(z, \tilde{u}) h \mathrm{~d} z \text { for all } h \in W_{0}^{1, \eta}(\Omega) \tag{27}
\end{align*}
$$

In (27) first we choose the test function $h=-\tilde{u}^{-} \in W_{0}^{1, \eta}(\Omega)$ and obtain

$$
\begin{aligned}
& \rho_{\eta}\left(D \tilde{u}^{-}\right)=0, \\
\Rightarrow & \tilde{u} \geqslant 0 .
\end{aligned}
$$

Also, in (27), we choose $h=\left(\tilde{u}-u_{n}\right)^{+} \in W_{0}^{1, \eta}(\Omega)$. Then

$$
\begin{aligned}
&\left\langle V(\tilde{u}),\left(\tilde{u}-u_{n}\right)^{+}\right\rangle \\
&=\int_{\Omega} c_{0} u_{n}^{\tau-1}\left(\tilde{u}-u_{n}\right)^{+} \mathrm{d} z \quad(\text { see }(25)) \\
& \leqslant \int_{\Omega} f\left(z, u_{n}(z)\right)\left(\tilde{u}-u_{n}\right)^{+} \mathrm{d} z \quad\left(\text { see }(24) \text { and hypothesis } H_{1}(\text { (iv })\right) \\
&=\left\langle V\left(u_{n}\right),\left(\tilde{u}-u_{n}\right)\right\rangle \quad\left(\text { since } u_{n} \in S_{+}\right) \\
& \Rightarrow \quad \tilde{u} \leqslant u_{n} \quad(\text { see Proposition } 3) .
\end{aligned}
$$

So, we have proved that

$$
\begin{equation*}
\tilde{u} \in\left[0, u_{n}\right], \quad \tilde{u} \neq 0 \tag{28}
\end{equation*}
$$

From (28), (25) and (27), we infer that if is a positive solution of $(A u)$. Using Preposition 6, we infer that

$$
\begin{aligned}
& \tilde{u}=\bar{u}, \\
\Rightarrow & \bar{u} \leqslant u_{n} \text { for all } n \geqslant n_{0},
\end{aligned}
$$

which contradicts the fact that $u_{n} \rightarrow 0$ in $W_{0}^{1, \eta}(\Omega)$ as $n \rightarrow \infty$ (see (22) and recall that we have assumed $u_{*}=0$). Therefore $u_{*} \neq 0$ and from (19) and (22), in the limit as $n \rightarrow \infty$, we obtain

$$
\begin{aligned}
\left\langle V\left(u_{*}\right), h\right\rangle & =\int_{\Omega} f\left(z, u_{*}\right) h \mathrm{~d} z \quad \text { for all } h \in W_{0}^{1, \eta}(\Omega) \\
u & \leqslant u_{*}
\end{aligned}
$$

Therefore $u_{*} \in S_{+}, u_{*}=\inf S_{+}$.
Similarly, using the fact that S_{-}is upward directed and $\bar{v}=-\bar{u}$, we produce $v_{*} \in S_{-}$such that $v_{*}=\sup S_{-}$.

Consider the order interval

$$
\left[v_{*}, u_{*}\right]=\left\{u \in W_{0}^{1, \eta}(\Omega): v_{*}(z) \leqslant u(z) \leqslant u_{*}(z) \text { for a.a. } z \in \Omega\right\} .
$$

If we can find a nontrivial solution of (1) in this order interval which is distinct from v_{*}, u_{*}, then such a solution is necessarily nodal. So, our goal is to produce such a solution. This is done in the next section.

4. Nodal solution

In this section we produce a nodal solution following the strategy outlined at the end of the previous section. To focus on the order interval $\left[v_{*}, u_{*}\right]$, we introduce the following truncation of the reaction $f(z, \cdot)$

$$
l(z, x)= \begin{cases}f\left(z, v_{*}(z)\right) & \text { if } x<v_{*}(z) \tag{29}\\ f(z, x) & \text { if } v_{*}(z) \leqslant x \leqslant u_{*}(z) \\ f\left(z, u_{*}(z)\right) & \text { if } u_{*}(z)<x\end{cases}
$$

This is a Carathéodory function. We also introduce the positive and negative truncations of $f(z, \cdot)$, namely the Carathéodory functions

$$
\begin{equation*}
l_{ \pm}(z, x)=l\left(z, \pm x^{ \pm}\right) \tag{30}
\end{equation*}
$$

We set

$$
L(z, x)=\int_{0}^{x} l(z, s) \mathrm{d} s, \quad L_{ \pm}(z, x)=\int_{0}^{x} l_{ \pm}(z, s) \mathrm{d} s
$$

and consider the C^{1}-functionals $\gamma, \gamma_{ \pm}: W_{0}^{1, \eta}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
\gamma(u) & =\frac{1}{p} \rho_{\eta_{0}}(D u)+\frac{1}{q}\|D u\|_{q}^{q}-\int_{\Omega} L(z, u) \mathrm{d} z \\
\gamma_{ \pm}(u) & =\frac{1}{p} \rho_{\eta_{0}}(D u)+\frac{1}{q}\|D u\|_{q}^{q}-\int_{\Omega} L_{ \pm}(z, u) \mathrm{d} z
\end{aligned}
$$

for all $u \in W_{0}^{1, \eta}(\Omega)$.
From (29),(30) and the extremality of u_{*} and v_{*}, we have:
Proposition 8. If hypotheses H_{0}, H_{1} hold, then

$$
K_{\gamma} \subseteq\left[v_{*}, u_{*}\right], \quad K_{\gamma_{+}}=\left\{0, u_{*}\right\}, \quad K_{\gamma_{-}}=\left\{0, v_{*}\right\} .
$$

Also hypothesis H_{1} (iv) and Proposition 3.7 of Papageorgiou-Rădulescu [18], imply the following result.

Proposition 9. If hypotheses H_{0}, H_{1} hold, then

$$
C_{k}(\varphi, 0)=0 \quad \text { for all } k \in \mathbb{N}_{0} .
$$

Using this proposition and the C^{1}-continuity property of critical groups (see Theorem 5.126 of Gasinski-Papageorgiou [6, p. 836]), we can compute the critical groups $C_{k}(\gamma, 0)$ for all $k \in \mathbb{N}_{0}$.

Proposition 10. If hypotheses H_{0}, H_{1} hold, then

$$
C_{k}(\gamma, 0)=0 \quad \text { for all } k \in \mathbb{N}_{0}
$$

Proof. For all $u \in W_{0}^{1, \eta}(\Omega)$, we have

$$
\begin{aligned}
&|\gamma(u)-\varphi(u)| \leqslant \int_{\Omega}|L(z, u)-F(z, u)| \mathrm{d} z \\
&= \int_{\left\{u \leqslant v_{*}\right\}}\left|F\left(z, v_{*}\right)+\left(u-v_{*}\right) f\left(z, v_{*}\right)-F(z, u)\right| \mathrm{d} z \\
&+\int_{\left\{u_{*} \leqslant u\right\}}\left|F\left(z, u_{*}\right)+\left(u-u_{*}\right) f\left(z, u_{*}\right)-F(z, u)\right| \mathrm{d} z \quad(\text { see }(29)) \\
& \leqslant \int_{\left\{u<v_{*}\right\}}\left|F(z, u)-F\left(z, v_{*}\right)\right| \mathrm{d} z+\int_{\left\{u<v_{*}\right\}}\left|u-v_{*}\right|\left|f\left(z, v_{*}\right)\right| \mathrm{d} z \\
&+\int_{\left\{u_{*}<u\right\}}\left|F(z, u)-F\left(z, u_{*}\right)\right| \mathrm{d} z+\int_{\left\{u_{*}<u\right\}}\left(u-u_{*}\right) f\left(z, u_{*}\right) \mathrm{d} z \\
& \leqslant c_{7}\left[\int_{\left\{u<v_{*}\right\}}|u| \mathrm{d} z+\int_{\left\{u_{*}<u\right\}} u \mathrm{~d} z\right] \quad \text { for some } c_{7}>0 \\
& \leqslant c_{8}\|u\| \quad \text { for some } c_{8}>0 .
\end{aligned}
$$

Also for all $u, h \in W_{0}^{1, \eta}(\Omega)$, we have

$$
\begin{align*}
&\left|\left\langle\gamma^{\prime}(u)-\varphi^{\prime}(u), h\right\rangle\right| \\
& \leqslant \int_{\left\{u<v_{*}\right\}}|\gamma(z, u)-f(z, u)||h| \mathrm{d} z+\int_{\left\{u_{*}<u\right\}}|f(z, u)-\gamma(z, u)||h| \mathrm{d} z \\
& \leqslant \int_{\left\{u<v_{*}\right\}}\left|f\left(z, v_{*}\right)-f(z, u)\right||h| \mathrm{d} z+\int_{\left\{u_{*}<u\right\}}\left|f(z, u)-f\left(z, u_{*}\right)\right||h| \mathrm{d} z \tag{32}\\
& \leqslant c_{9}\left[\int_{\left\{u<v_{*}\right\}}\left|u-v_{*}\right||h| \mathrm{d} z+\int_{\left\{u_{*}<u\right\}}\left|u-u_{*}\right||h| \mathrm{d} z\right] \text { for some } c_{9}>0 \\
& \leqslant c_{10}\|u\|\|h\| \text { for some } c_{10}>0, \\
& \Rightarrow \quad\left\|\gamma^{\prime}(u)-\varphi^{\prime}(u)\right\|_{*} \leqslant c_{10}\|u\| .
\end{align*}
$$

From (31) and (32), we see that given $\varepsilon>0$, we can find $\hat{\delta} \in(0,1)$ such that

$$
\begin{equation*}
\|\gamma-\varphi\|_{C^{1}\left(\bar{B}_{\delta}\right)} \leq \varepsilon \quad \text { with } \bar{B}_{\hat{\delta}}=\left\{u \in W_{0}^{1, \eta}(\Omega):\|u\| \leqslant \hat{\delta}\right\} \tag{33}
\end{equation*}
$$

From Proposition 4 we know that $\varphi(\cdot)$ is coercive.
Also from (29) it is clear that $\gamma(\cdot)$ is coercive.
Therefore by [19, Proposition 5.1.15, p. 369], both functionals φ and γ satisfy the C-condition. Then the C^{1}-continuity property of critical groups (see Theorem 5.126
of Gasinski-Papageorgiou [6, p. 836]) implies that

$$
\begin{aligned}
C_{k}(\gamma, 0) & =C_{k}(\varphi, 0) \text { for all } k \in \mathbb{N}_{0} \\
\Rightarrow C_{k}(\gamma, 0) & =0 \text { for all } k \in \mathbb{N}_{0} \text { (see Preposition 9). }
\end{aligned}
$$

The proof is now complete.
We know that $u_{*}, v_{*} \in K_{\gamma}$ (see (29)) and we assume that K_{γ} is finite or otherwise on account of Proposition 8, we already have a whole sequence of distinct bounded nodal solutions and so we are done.

Proposition 11. If hypotheses H_{0}, H_{1} hold, then $C_{k}\left(\gamma, u_{*}\right)=C_{k}\left(\gamma_{+}, u_{*}\right)$ and $C_{k}\left(\gamma, v_{*}\right)=C_{k}\left(\gamma_{-}, v_{*}\right)$ for all $k \in \mathbb{N}_{0}$.

Proof. From (29) and (30) we see that $L\left(z, u_{*}\right)=L_{+}\left(z, u_{*}\right)$ for every $u \in W_{0}^{1, \eta}(\Omega)$ we have

$$
\begin{align*}
& \left|\gamma(u)-\gamma_{+}(u)\right| \leqslant \int_{\Omega}\left|L(z, u)-L_{+}(z, u)\right| \mathrm{d} z \\
& \leqslant \int_{\Omega}\left|L(z, u)-L\left(z, u_{*}\right)\right| \mathrm{d} z+\int_{\Omega}\left|L_{+}\left(z, u_{*}\right)-L_{+}(z, u)\right| \mathrm{d} z \tag{34}
\end{align*}
$$

We estimate the two integrals in the right-hand side of (34). We have

$$
\begin{align*}
& \int_{\Omega}\left|L(z, u)-L\left(z, u_{*}\right)\right| \mathrm{d} z \\
& =\int_{\left\{u<v_{*}\right\}}\left|F\left(z, v_{*}\right)+\left(u-v_{*}\right) f\left(z, v_{*}\right)-F\left(z, u_{*}\right)\right| \mathrm{d} z \tag{35}\\
& \quad+\int_{\left\{v_{*} \leqslant u \leqslant u_{*}\right\}}\left|F(z, u)-F\left(z, u_{*}\right)\right| \mathrm{d} z \\
& \quad+\int_{\left\{u_{*}<u\right\}}\left(u-u_{*}\right) f\left(z, u_{*}\right) \mathrm{d} z \quad(\text { see }(29)) .
\end{align*}
$$

By I_{1}, we denote the first integral in the right-hand side of (35). Then

$$
\begin{align*}
I_{1} & \leqslant \int_{\left\{u<v_{*}\right\}}\left|F\left(z, v_{*}\right)-F\left(z, u_{*}\right)\right| \mathrm{d} z+\int_{\left\{u<v_{*}\right\}}\left(v_{*}-u\right)\left|f\left(z, v_{*}\right)\right| \mathrm{d} z \\
\leqslant & \int_{\left\{u<v_{*}\right\}} g_{K}(z)\left(u_{*}-v_{*}\right) \mathrm{d} z+\int_{\left\{u<v_{*}\right\}}\left(u_{*}-u\right)\left|f\left(z, v_{*}\right)\right| \mathrm{d} z \\
& \quad \text { with } K=[-\rho, \rho], \rho=\max \left\{\left\|u_{*}\right\|,\left\|v_{*}\right\|\right\} \tag{36}\\
\leqslant & \int_{\left\{u<v_{*}\right\}} g_{K}(z)\left(u_{*}-u\right) \mathrm{d} z+\int_{\left\{u<v_{*}\right\}}\left(u_{*}-u\right)\left|f\left(z, v_{*}\right)\right| \mathrm{d} z \\
\leqslant & c_{11}\left\|u-u_{*}\right\| \quad \text { for some } c_{11}>0 .
\end{align*}
$$

By I_{2}, we denote the second integral in the right-hand side of (35).
Evidently, $F(z, \cdot)$ is L^{∞}-locally Lipschitz and so

$$
\begin{equation*}
I_{2} \leqslant c_{12}\left\|u-u_{*}\right\| \quad \text { for some } c_{12}>0 . \tag{37}
\end{equation*}
$$

Finally, let I_{3} denote the integral in the right hand side of (35). Since $f\left(\cdot, u_{*}(\cdot)\right) \in$ $L^{\infty}(\Omega)$ (see hypothesis H_{1} (i)), we have

$$
\begin{equation*}
I_{3} \leqslant c_{13}\left\|u-u_{*}\right\| \quad \text { for some } c_{13}>0 . \tag{38}
\end{equation*}
$$

Using (36), (37) and (38), we have

$$
I_{1}+I_{2}+I_{3} \leqslant c_{14}\left\|u-u_{*}\right\| \quad \text { for some } c_{14}>0 .
$$

So, given $\varepsilon>0$, we can find $\rho_{0}>0$ such that for all $u \in \bar{B}_{\rho}\left(u_{*}\right) ; \rho \in\left(0, \rho_{0}\right]$ we have

$$
\begin{equation*}
\int_{\Omega}\left|L(z, u)-L\left(z, u_{*}\right)\right| \mathrm{d} z \leqslant \frac{\varepsilon}{4} \quad(\text { see }(35)) . \tag{39}
\end{equation*}
$$

Next, we estimate the second integral in the right hand side of (34). We have

$$
\begin{aligned}
& \int_{\Omega}\left|L_{+}\left(z, u_{*}\right)-L_{+}(z, u)\right| \mathrm{d} z \\
& =\int_{\{u<0\}} L_{+}\left(z, u_{*}\right) \mathrm{d} z+\int_{\left\{0 \leqslant u \leqslant u_{*}\right\}}\left|F(z, u)-F\left(z, u_{*}\right)\right| \mathrm{d} z \\
& \quad+\int_{\left\{u_{*}<u\right\}}\left(u-u_{*}\right) f\left(z, u_{*}\right) \mathrm{d} z \quad \text { see }(29),(30) \\
& \leqslant \int_{\{u<0\}} F\left(z, u_{*}\right) \mathrm{d} z+c_{15}\left\|u-u_{*}\right\| \quad \text { for some } c_{15}>0 .
\end{aligned}
$$

For $u \in \bar{B}_{\rho}\left(u_{*}\right)$, we have $|\{u<0\}|_{N} \rightarrow 0$ as $\rho \rightarrow 0^{+}$(recall that $0 \prec u_{*}$). Therefore for $\rho \in(0,1)$ small, we have

$$
\begin{equation*}
\int_{\Omega}\left|L_{+}(z, u)-L_{+}\left(z, u_{*}\right)\right| \mathrm{d} z \leqslant \frac{\varepsilon}{4} \quad \text { for all } u \in \bar{B}_{\rho}\left(u_{*}\right) \tag{40}
\end{equation*}
$$

We return to (34) and use (39), (40). We obtain that for $\rho \in(0,1)$ small

$$
\begin{equation*}
\left|\gamma(u)-\gamma_{+}(u)\right| \leqslant \frac{\varepsilon}{2} \quad \text { for all } u \in \bar{B}_{\rho}\left(u_{*}\right) \tag{41}
\end{equation*}
$$

We estimate the corresponding derivatives. So, for all $u, h \in W_{0}^{1, \eta}(\Omega)$, we have

$$
\begin{align*}
& \left|\left\langle\gamma^{\prime}(u)-\gamma_{+}^{\prime}(u), h\right\rangle\right| \leqslant \int_{\Omega}\left|l(z, u)-l_{+}(z, u)\right||h| \mathrm{d} z \\
& \leqslant \int_{\Omega}\left|l(z, u)-l\left(z, u_{*}\right)\right||h| \mathrm{d} z+\int_{\Omega}\left|l_{+}\left(z, u_{*}\right)-l_{+}(z, u)\right||h| \mathrm{d} z \tag{42}
\end{align*}
$$

since $l\left(z, u_{*}\right)=l_{+}\left(z, u_{*}\right)$, see (28),(29).
We have

$$
\begin{align*}
& \int_{\Omega}\left|l(z, u)-l\left(z, u_{*}\right)\right||h| \mathrm{d} z \\
& =\int_{\left\{u<v_{*}\right\}}\left|f\left(z, v_{*}\right)-f\left(z, u_{*}\right)\right||h| \mathrm{d} z+\int_{\left\{v_{*}<u \leqslant u_{*}\right\}}\left|f(z, u)-f\left(z, u_{*}\right)\right||h| \mathrm{d} z \tag{43}\\
& \leqslant \int_{\Omega} c_{16}\left|u-u_{*}\right||h| \mathrm{d} z \text { for some } c_{16}>0
\end{align*}
$$

(note that $0 \leqslant u_{*}-v_{*} \leqslant u_{*}-u$ on $\left\{u<v_{*}\right\}$).
From hypotheses H_{0}, we have

$$
2 \leqslant p<q^{*}
$$

and so $\left(q^{*}\right)^{\prime}<2<q^{*}$ (recall that if $s \in(1,2)$, then $s^{\prime} \in(2, \infty)$ satisfies $\frac{1}{s}+\frac{1}{s^{\prime}}=1$). From Proposition 1, we have

$$
u-u_{*} \in L^{\left(q^{*}\right)^{\prime}}(\Omega), \quad h \in L^{q^{*}}(\Omega)
$$

So, from (43) and Hölder's inequality, we obtain

$$
\begin{aligned}
\int_{\Omega}\left|l(z, u)-l\left(z, u_{*}\right)\right||h| \mathrm{d} z & \leqslant c_{17}\left\|u-u_{*}\right\|_{\left(q^{*}\right)^{\prime}}\|h\|_{q^{*}} \quad \text { for some } c_{17}>0 \\
& \leqslant c_{18}\left\|u-u_{*}\right\|\|h\| \text { for some } c_{18}>0
\end{aligned}
$$

(see Proposition 1).
Therefore given $\varepsilon>0$, for $\rho>0$ small we have

$$
\begin{equation*}
\int_{\Omega}\left|l(z, u)-l\left(z, u_{*}\right)\right||h| \mathrm{d} z \leqslant \frac{\varepsilon}{4}\|h\| \quad \text { for all } u \in \bar{B}_{\rho}\left(u_{*}\right) . \tag{44}
\end{equation*}
$$

Also we have

$$
\begin{aligned}
& \int_{\Omega}\left|l_{+}\left(z, u_{*}\right)-l_{+}(z, u)\right||h| \mathrm{d} z \\
& =\int_{\left\{u<v_{*}\right\}} f\left(z, u_{*}\right)|h| \mathrm{d} z+\int_{\left\{v_{*} \leqslant u \leqslant u_{*}\right\}}\left|f\left(z, u_{*}\right)-f(z, u)\right||h| \mathrm{d} z \\
& \leqslant c_{19}\left[\int_{\left\{u<v_{*}\right\}}|h| \mathrm{d} z+\int_{\left\{v_{*} \leqslant u \leqslant u_{*}\right\}}\left|u-u_{*}\right||h| \mathrm{d} z\right] \quad \text { for some } c_{19}>0 \\
& \leqslant c_{20}\left[\left|\left\{u<v_{*}\right\}\right|_{N}+\left\|u-u_{*}\right\|_{\left(q^{*}\right)^{\prime}}\right]\|h\|_{q^{*}} \text { for some } c_{20}>0 \\
& \text { (as before using Hölder's inequality) } \\
& \leqslant c_{21}\left[\left|\left\{u<v_{*}\right\}\right|_{N}+\left\|u-u_{*}\right\|\right]\|h\| \text { for some } c_{21}>0 .
\end{aligned}
$$

If $u \in \bar{B}_{\rho}\left(u_{*}\right)$, then $\left|\left\{u<v_{*}\right\}\right|_{N} \rightarrow 0$ as $\rho \rightarrow 0^{+}$. Therefore, for $\rho \in(0,1)$ small, we have

$$
\begin{equation*}
\int_{\Omega}\left|l_{+}(z, u)-l_{+}\left(z, u_{*}\right)\right||h| \mathrm{d} z \leqslant \frac{\varepsilon}{4}\|h\| . \tag{45}
\end{equation*}
$$

We return to (42) and use (44), (45) and obtain

$$
\begin{align*}
& \left|\left\langle\gamma^{\prime}(u)-\gamma_{+}^{\prime}(u), h\right\rangle\right| \leqslant \frac{\varepsilon}{2}\|h\|, \tag{46}\\
\Rightarrow & \left\|\gamma^{\prime}(u)-\gamma_{+}^{\prime}(u)\right\|_{*} \leqslant \frac{\varepsilon}{2} \text { for all } u \in \bar{B}_{\rho}\left(u_{*}\right) .
\end{align*}
$$

From (41) and (46) it follows that for $\rho \in(0,1)$ small

$$
\left\|\gamma-\gamma_{+}\right\|_{C^{1}\left(\bar{B}_{\rho}\left(u_{k}\right)\right)} \leqslant \varepsilon .
$$

The functionals γ, γ_{+}are coercive and so they satisfy the C-condition. Using the C^{1}-continuity property of critical groups, we have

$$
C_{k}\left(\gamma, u_{*}\right)=C_{k}\left(\gamma_{+}, u_{*}\right) \quad \text { for all } k \in \mathbb{N}_{0} .
$$

Similarly we show that

$$
C_{k}\left(\gamma, v_{*}\right)=C_{k}\left(\gamma, v_{*}\right) \quad \text { for all } k \in \mathbb{N}_{0} .
$$

The proof is now complete.
Now we are ready to produce a nodal solution.
Proposition 12. If hypotheses H_{0}, H_{1} hold, then problem (1) has a nodal solution

$$
\hat{y} \in\left[v_{*}, u_{*}\right] .
$$

Proof. We know that $\gamma_{+}(\cdot)$ is coercive (see (29), (30)). Also it is sequentially weakly lower semicontinuous.

So, by the Weierstrass-Tonelli theorem we can find $\tilde{u}_{*} \in W_{0}^{1, \eta}(\Omega)$ such that

$$
\begin{equation*}
\gamma_{+}\left(\tilde{u}_{*}\right)=\inf \left\{\gamma_{+}(u): u \in W_{0}^{1, \eta}(\Omega)\right\} \tag{47}
\end{equation*}
$$

Let $u \in C_{0}^{1}(\bar{\Omega}) \backslash\{0\}, u(z) \geqslant 0$ for all $z \in \bar{\Omega}$. For $t \in(0,1)$ small we have $0 \leqslant t u(z) \leqslant \delta$ for all $z \in \bar{\Omega}$ (with $\delta>0$ as postulated by hypothesis H_{1} (iv)). We have

$$
\begin{aligned}
\gamma_{+}(t u)= & \frac{t^{p}}{p} \rho_{\eta_{0}}(D u)+\frac{t^{q}}{q}\|D u\|_{q}^{q}-\int_{\Omega} L_{+}(z, t u) \mathrm{d} z \\
= & \frac{t^{p}}{p} \rho_{\eta_{0}}(D u)+\frac{t^{q}}{q}\|D u\|_{q}^{q}-\int_{\left\{t u \leqslant u_{*}\right\}} F(z, t u) \mathrm{d} z-\int_{\left\{u_{*}<t u\right\}} L_{+}(z, t u) \mathrm{d} z \\
\leqslant & \frac{t^{q}}{q} \rho_{\eta}(D u)-\frac{c_{0} t^{\tau}}{\tau} \int_{\left\{t u \leqslant u_{*}\right\}} u^{\tau} \mathrm{d} z \\
& \left(\text { since } L_{+} \geqslant 0 \text { and using hypothesis } H_{1}(\text { iv })\right) \\
= & \frac{t^{q}}{q} \rho_{\eta}(D u)-\frac{c_{0} t^{\tau}}{\tau}\|u\|_{\tau}^{\tau}+\frac{c_{0} t^{\tau}}{\tau} \int_{\left\{u_{*}<t u\right\}} u^{\tau} \mathrm{d} z
\end{aligned}
$$

Since $\left|\left\{u_{*}<t u\right\}\right|_{N} \rightarrow 0$ as $t \rightarrow 0^{+}$(recall that $0 \prec u_{*}$) and $1<\tau<q$, we see that for $t \in(0,1)$ small

$$
\begin{align*}
& \gamma_{+}(t u)<0 \\
\Rightarrow & \gamma_{+}\left(\tilde{u}_{*}\right)<0=\gamma_{+}(0) \quad(\text { see }(47)), \tag{48}\\
\Rightarrow & \tilde{u}_{*} \neq 0
\end{align*}
$$

From (47) and Proposition 8, we have

$$
\begin{aligned}
& \tilde{u}_{*} \in\left\{0, u_{*}\right\} \\
\Rightarrow & \tilde{u}_{*}=u_{*} \quad(\text { see }(42)), \\
\Rightarrow & C_{k}\left(\gamma_{+}, u_{*}\right)=\delta_{k, 0} \mathbb{Z} \quad \text { for all } k \in \mathbb{N}_{0} \\
\Rightarrow & \left.C_{k}\left(\gamma, u_{*}\right)=\delta_{k, 0} \mathbb{Z} \quad \text { for all } k \in \mathbb{N}_{0} \quad \text { (see Proposition } 11\right) .
\end{aligned}
$$

Similarly working with $\gamma_{-}(\cdot)$, we show that

$$
\begin{equation*}
C_{k}\left(\gamma, v_{*}\right)=\delta_{k, 0} \mathbb{Z} \quad \text { for all } k \in \mathbb{N}_{0} \tag{50}
\end{equation*}
$$

From Proposition 10, we have

$$
\begin{equation*}
C_{k}(\gamma, 0)=0 \quad \text { for all } k \in \mathbb{N}_{0} \tag{51}
\end{equation*}
$$

The functional $\gamma(\cdot)$ is coercive. So, [19, Proposition 6.2.24] implies that

$$
\begin{equation*}
C_{k}(\gamma, \infty)=\delta_{k, 0} \mathbb{Z} \quad \text { for all } k \in \mathbb{N}_{0} \tag{52}
\end{equation*}
$$

Suppose that $K_{\gamma}=\left\{0, u_{*}, v_{*}\right\}$. From (49), (50), (51), (52) and using the Morse relation with $t=-1$ (see (5)), we have

$$
2(-1)^{0}=(-1)^{0}
$$

a contradiction. So, there exists

$$
\begin{aligned}
& \hat{y} \in K_{\gamma} \backslash\left\{0, u_{*}, v_{*}\right\} \\
\Rightarrow & \hat{y} \in\left[v_{*}, u_{*}\right] \quad \text { (see Pronosition 8) }
\end{aligned}
$$

and so \hat{y} is a nodal solution of (1).

Therefore we can state the following multiplicity theorem for problem (1). We produce three nontrivial bounded solutions, all with sign information and ordered.

Theorem 4.1. If hypotheses H_{0}, H_{1} hold, then problem (1) has at least three nontrivial solutions

$$
\begin{aligned}
& u_{0} \in W_{0}^{1, \eta}(\Omega) \cap L^{\infty}(\Omega), 0 \prec u_{0}, \\
& v_{0} \in W_{0}^{1, \eta}(\Omega) \cap L^{\infty}(\Omega), v_{0} \prec 0, \\
& y_{0} \in\left[v_{0}, u_{0}\right] \text { nodal. }
\end{aligned}
$$

Remark 4.1. Our multiplicity result here extends the corresponding results in [17, 20], where the authors produce two solutions with no sign information.

Acknowledgements. The authors wish to thank a very knowledgeable referee for his/her many corrections and remarks that helped them to improve the paper. The research of Nikolaos S. Papageorgiou and Vicenţiu D. Rădulescu was supported by the grant "Nonlinear Differential Systems in Applied Sciences" of the Romanian Ministry of Research, Innovation and Digitization, within PNRR-III-C9-2022-I8 (Grant No. 22).

References

[1] Cruz Uribe, D. V., and A. Fiorenza: Variable Lebesgue spaces: Foundations and harmonic analysis. - Birkhäuser, Basel, 2013.
[2] Deregowska, B., L. Gasinski, and N. S. Papageorgiou: A multiplicity theorem for superlinear double phase problems. - Symmetry 13:9, 2021, 1556.
[3] Diaz, J. I., and J. E. SAA: Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. - C. R. Acad. Sci. Paris Sér. I Math. 305:12, 1987, 521-524.
[4] Filippakis, M., and N. S. Papageorgiou: Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian. - J. Differential Equations 245, 2008, 18831922.
[5] Gasinski, L., and N. S. Papageorgiou: Nonlinear analysis. - Chapman Hall/CRC, Boca Raton, Fl., 2006.
[6] Gasinski, L., and N. S. Papageorgiou: Exercises in analysis. Part 2: Nonlinear analysis. Springer, Cham, 2016.
[7] Gasinski, L., and N. S. Papageorgiou: Constant sign and nodal solutions for superlinear double phase problems. - Adv. Calc. Var. 14, 2021, 613-626.
[8] Gasinski, L., and P. Winkert: Constant sign solutions for double phase probleme with superlinear nonlinearity. - Nonlinear Anal. 195, 2020, 111739.
[9] Guedda, M., and L. Véron: Quasilinear elliptic equations involving critical Sobolev exponents. - Nonlinear Anal. 13, 1989, 879-902.
[10] Harjulehto, P., and P. Hästö: Orlicz spaces and generalized Orlicz spaces. - Lecture Notes in Math. 2236, Springer, Cham, 2019.
[11] Hu, S., and N. S. Papageorgiou: Research topics in analysis. Volume I: Grounding theory. - Birkhäuser, Cham, 2022.
[12] Liu, W., and G. Dai: Existence and multiplicity results for double phase problems. - J. Differential Equations 265, 2018, 4311-4334.
[13] Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. - Arch. Ration. Mech. Anal. 105, 1989, 267-284.
[14] Marcellini, P.: Regularity and existence of solutions of elliptic equations with p, q-growth conditions. - J. Differential Equations 90, 1991, 1-30.
[15] Marcellini, P.: Growth conditions and regularity for weak solutions to nonlinear pdes. - J. Math. Anal. Appl. 501, 2021, 124408.
[16] Mingione, G., and V. D. Rădulescu: Recent developments in problems with nonstardard growth and nonuniform ellipticity. - J. Math. Anal. Appl. 501, 2021, 125197.
[17] Papageorgiou, N. S., A. Pudelko, and V. D. Rădulescu: Nonautonomous (p, q) equations with unbalanced growth. - Math. Ann. 385, 2023, 1707-1745.
[18] Papageorgiou, N. S., and V. D. Rădulescu: Coercive and noncoercive nonlinear Neumann problems with indefinite potential. - Forum Math. 28, 2016, 545-571.
[19] Papageorgiou, N. S., V. D. Rădulescu, and D. D. Repovs: Nonlinear analysis - Theory and methods. - Springer, Cham, 2019.
[20] Papageorgiou, N. S., V. D. Rădulescu, and Y. Zhang: Resonant double phase equations. - Nonlinear Anal. Real World Appl. 64, 2022, 103454.
[21] Papageorgiou, N. S., C. Vetro, and F. Vetro: Multiple solutions for parametric double phoase Dirichlet problems. - Commun. Contemp. Math. 23, 2021, 2050006.
[22] Papageorgiou, N. S., and C. Zhang: Multiple ground state solutions with sign informeurion for double phase Robin problems. - Israel J. Math. 253, 2023, 419-443.
[23] Ragusa, M. A., and A. Tachikawa: Regularity for minimizers for functionals of double phase with variable exponents. - Adv. Nonlinear Anal. 9, 2020, 710-728.
[24] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity. - Math. USSR Izv. 29, 1987, 33-66.
[25] Zhikov, V. V.: On Lavrentiev's phenomenon. - Russian J. Math. Phys. 3, 1995, 249-269.

Received 2 July 2023 • Revision received 12 November 2023 • Accepted 15 November 2023
Published online 21 November 2023

Nikolaos S. Papageorgiou
National Technical University
Department of Mathematics
Zografou Campus, Athens 15780, Greece
and University of Craiova
Department of Mathematics
200585 Craiova, Romania
npapg@math.ntua.gr

Yitian Wang
Harbin Engineering University
College of Mathematical Sciences
150001, People's Republic of China
and University of Craiova
Department of Mathematics
Craiova, 200585, Romania
wangyitian@hrbeu.edu.cn

Vicenţiu D. Rădulescu
AGH University of Kraków, Faculty of Applied Mathematics
al. Mickiewicza 30, 30-059 Kraków, Poland
and Brno University of Technology, Faculty of Electrical Engineering and Communication
Technická 3058/10, Brno 61600, Czech Republic
and University of Craiova, Department of Mathematics
200585 Craiova, Romania
and Simion Stoilow Institute of Mathematics of the Romanian Academy
010702 Bucharest, Romania
and Zhejiang Normal University, School of Mathematics
Jinhua, Zhejiang 321004, China
radulescu@inf.ucv.ro

[^0]: https://doi.org/10.54330/afm. 141250
 2020 Mathematics Subject Classification: Primary 35J60; Secondary 58E05.
 Key words: Double phase operator, unbalanced growth, generalized Orlicz spaces, resonant equation, multiple solutions with sign information.

 Corresponding author: Yitian Wang.
 (c) 2023 The Finnish Mathematical Society

