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Abstract: In this paper, we consider the initial boundary value problem for a class of fourth-order wave equa-
tions with strong damping term, nonlinear weak damping term, strain term and nonlinear source term in
polynomial form. First, the local solution is obtained by using fix point theory. Then, by constructing the
potential well structure frame, we get the global existence, asymptotic behavior and blowup of solutions for
the subcritical initial energy and critical initial energy respectively. Ultimately, we prove the blowup in finite
time of solutions for the arbitrarily positive initial energy case.
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1 Introduction
In this paper,we investigate the following fourth-order nonlinear stronglydampedwave equationswith strain
term and nonlinear source term:

utt + ∆2u − ∆u +
n
∑
i=1

∂
∂xi

σi(uxi ) − ∆ut + |ut|r−1ut = f(u), (x, t) ∈ Ω × (0,∞), (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.2)

u = ∂u
∂n
= 0 or u = ∆u = 0, x ∈ ∂Ω, t ≥ 0, (1.3)

where Ω ⊂ ℝn is a bounded domain with a smooth boundary ∂Ω and r > 1 is a constant.
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(H1) The nonlinear function f(u) satisfies
(i) f ∈ C1 and f(0) = f (0) = 0,
(ii) f(u) is monotone and is convex for u > 0, concave for u < 0,
(iii) |f(u)| ≤ a1|u|p and (p + 1)F(u) ≤ uf(u) for some a1 > 0 (1 < p <∞ if n ≤ 4 and1 < p < n

n−4 if n ≥ 5),
(iv) F(u) = ∫u0 f(s) ds.

(H2) The function σi(i = 1, . . . , n) satisfies
(i) σi(s) ∈ C1 and σi(0) = σi (0) = 0,
(ii) σi(s) are monotone, and are convex for s > 0, concave for s < 0,
(iii) |σi(s)| ≤ a2|s|q and (q + 1)Gi(s) ≤ sσi(s) for some a2 > 0 (1 < q <∞ if n = 1, 2 and 1 < q < n

n−2
if n ≥ 3),

(iv) Gi(s) = ∫
s
0 σi(τ) dτ, 1 ≤ i ≤ n.

In view of its structure, equation (1.1) is a very complex model. By the strong damping term ∆ut, nonlinear
weakdamping term |ut|r−1ut, fourth-order term α∆2u, strain term∑ni=1 ∂

∂xi σi(uxi ) andgeneralized source term
f(u) in the equation, it takes into account not only many physical factors, but also a lot of complex physical
processes. Apparently, suchmodel equation does not exist in the first place, so we will introduce its develop-
ment and evolution to show its background by listing a lot of relatedmodel equations.We shall tell the stories
of the following model equations not only to illustrate the corresponding physical background, but also to
describe themathematical achievements in order to summarize the corresponding unsolved problems.Hence
the main goal of this paper is to try to solve some of those unsolved problems systematically by considering
amore generalmodel equation, that is, equation (1.1). First we shall beginwith fourth-order wave equations.

Usually, the fourth-order wave equations can be regarded as the formal extension of the classical second-
order Klein–Gordon equation in the way ∂tt − ∆ → ∂tt + ∆2 and also the model of Schrödinger equation by
(∂t + i∆)(∂t − i∆) = ∂tt + ∆2. Thismodel is not only ofmathematical interest, and its physical background can
be traced back to 1964, by recalling thework [8] by Bretherton as the first one, where a one-dimensional non-
linear fourth-order wave equation describing dispersive waves interacting weakly with a quadratic source
term was introduced in order to investigate the resonant interactions between waves. Meanwhile, for the
linear fourth-order wave equation as a model for a suspension bridge, the so-called beam equation describ-
ing the one-dimensional beam suspended by cables, some interesting phenomena like traveling waves and
nonlinear oscillations were studied in [27, 28]. We also refer to the pioneering contributions of P. Pucci and
J. Serrin [34, 36, 37] who investigated qualitative properties of dissipative wave systems, including asymp-
totic stability, local asymptotic stability and related blow-up phenomena. Some very recent results contained
in [21, 23] paralleled the conclusions of second-order Klein–Gordon equations established in [17, 19–26,
41, 42, 51] by proving the local existence, stability and instability of solitary waves, decay and the optical
decay rate of the solution to the Cauchy problem of fourth-order wave equation (λ = 1)

utt + ∆2u + mu = λ|u|p−1u.

Besides the above research for λ > 0 as the focusing case, the defocusing case λ < 0was considered in [31] by
proving the Levandosky–Strauss conjecture, that is, the scattering theory in the energy space. Although the
classical nonlinear second-order wave equations attract muchmore attention than the fourth-order ones do,
especially in the frame of variational methods to investigate the conditions of initial data for global existence
in time [17, 24–40, 51] and non-global existence [32], the abstract model considered by Levine in [24] can
include the fourth-order case. This observation that a lot of effects were devoted to extend the conclusions
of the second-order wave equation to the fourth-order wave equations, especially the classification of the
initial data leading to global existence in time or finite time blowup of solutions, motivates us to establish the
corresponding theories for the fourth-order case, which is also part of our motivations.

Given a model with strain term like utt − uxxt = σ(ux)x introduced to describe the longitudinal motion
of a homogeneous bar, in the absence of monotonicity of σ and the strict monotonicity of τ, the existence
of a Holder solution and time-asymptotic properties dependent on boundary conditions were presented by
Dafermos in [11]. Furthermore, the local and global existence of solutions to the initial boundary value prob-
lem of such a one-dimensional physical model equation were proved in [5]; then improvements were made
in [6] by considering more general monotone σ and obtaining the asymptotic behavior. The model equation
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also attracts a lot of attentions in various directions like well-posedness of weak solution, asymptotic analy-
sis and stability [15, 33, 38], and it was also extended to be considered in the form of nonlinear systems of
viscoelasticity [12].

The one-dimensional fourth-order wave equation

utt + uxxxx = a(u2x)x + f(x, t), x ∈ (0, 1), t > 0

was proposed in [4] to describe the elastoplastic microstructure models for longitudinal motion of an elasto-
plastic bar [2, 3]. And its two-dimensional case is related to some Kirchhoff–Boussinesq models [9, 10]. An
abstract model equation including strain and dissipative terms, and linear source term was treated by the
Galerkin method in [7] in order to get the global existence and asymptotic behavior of the solution. A class of
fourth-order wave equations with weak damping term and nonlinear strain term in the form

utt + ∆2u + λut =
N
∑
i=1

∂
∂xi

σi(uxi ) in Ω × (0, +∞)

was considered in [53]. The global existence and large time decay of the solution were obtained for the initial
datum in the potential well with the restriction on the initial energy, that is, E(0) < m−1

4(m+1) (
1
C∗b ) 2

m−1 < d. The
finite time blowup of the solution was also proved for the negative initial energy, that is, E(0) < 0. Later, the
above results were generalized and extended to both the cases E(0) < d and E(0) = d in [26]; especially, the
finite time blowup for positive initial energy was derived with the restriction on the dissipative parameter γ
in [26], which will be removed in this work.

Further, these two research groups of authors in [53] and [26] turned to consider themodelwave equation
with linear strong damping term, nonlinear strain term, nonlinear weak damping term and nonlinear source
term in unbounded domain as follows:

utt − ∆ut −
N
∑
i=1

∂
∂xi

σi(uxi ) + f(ut) = g(u) onℝN × (0, +∞).

Under some restrictions on these terms, the global existence andfinite timeblowup for negative initial energy,
that is, E(0) < 0, were derived in [52]. Then these results were improved in [51] by relaxing these restric-
tions and considering the positive initial energy case in the potential well, that is, E(0) < d, for both global
existence and finite time blowup of solutions.

Jorge A. Esquivel-Avila [13] studied the initial boundary value problem for a fourth-order wave equation
with nonlinear strain and source terms

utt + ∆2u − α∆u ± β
n
∑
i=1

∂
∂xi
(|uxi |m−2uxi ) = μ|u|r−2u, x ∈ Ω, t > 0,

and derived the sufficient conditions on the initial data for global solution and finite time blow-up solution
when E(0) ≤ d. Later Liu and Xu [25] extended these results by considering more general strain terms and
nonlinear source terms, giving vacuum isolating phenomena of the solution, obtaining some new invariant
sets and global existence theorems, and also generalizing some exponents. Then Shen et al. [18] pushed the
above restrictions on the initial energy to the arbitrarily positive initial energy level, that is, they proved the
finite time blowup for E(0) > 0 by taking advantage of the concavity method.

The dissipative model with linear weak damping utt + ut + ∆2u − α∆u +∑ni=1 ∂
∂xi σi(uxi ) = f(u) was dis-

cussed by Wang and Wang in [44]. They proved the finite time blowup for both negative initial energy, that
is, E(0) < 0, and arbitrary positive initial energy, that is, E(0) > 0, and global existence and exponential
decay of solutions starting from the initial data in the so-called potential well, that is, E(0) < p−22p k

− 2p
p−2p and

‖u0‖B < k−
2p
p−2p . The corresponding model with strong damping term was considered in [14], and the global

existence and exponential attractors were established; here we specially remind that the term ∆pu in their
model plays the role of the strain term in the present paper. Not only that, Jorge Silva and Ma [19, 20] stud-
ied a viscoelastic version of the problem with a memory term; they got the existence of global attractor and
asymptotic stability, respectively.
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Terms included in the equation

utt ∆2u ∆u ∑ni=1
∂
∂xi

σi(uxi ) ∆ut |ut |r−1ut f(u) Results

• • • Global existence for E(0) < d (see [5])

• • • • Describe the elastoplastic microstructure models
for longitudinal motion of an elastoplastic bar [4]

• • • • Global existence and asymptotic behavior for E(0) < d (see [7])

• • • • Global existence and asymptotic behavior
for E(0) < m−1

4(m+1) (
1

C∗b ) 2
m−1 < d and

finite time blowup for E(0) < 0 (see [53])

• • • • Global existence and finite time blowup for E(0) < d,
global existence for E(0) = d (see [26])

• • • • Global existence and finite time blowup for E(0) < 0 (see [52])

• • • • Global solution and finite time blowup for E(0) ≤ d (see [13])

• • • • • Global existence and finite time blowup for E(0) < d,
global existence for E(0) = d (see [25])

• • • • • Finite time blowup for E(0) > 0 (see [18])

• • • • • • Finite time blowup for E(0) < 0 and E(0) > 0,
global existence and exponential decay
for E(0) < p−2

2p k−
2p
p−2p and ‖u0‖B < k−

2p
p−2p (see [44])

Table 1: The mathematical physics models and compositions of the results.

The potential well theory [32, 40, 43] and its improved version [26] allow us to consider the case without
positive definite energy, and also a lot of efforts devoted to extend the negative initial energy blowup for
E(0) < 0 to thepositive initial energyblowup for E(0) < d (see [35]), to study the critical initial energy E(0) = d
(see [45]) and the arbitrary positive initial energy E(0) > 0 (see [18, 48]). All of above efforts push such studies
to a new stage, so we expect to conduct such research in a comprehensive and systematical way, that is, to
solve the problem related to subcritical energy level E(0) < d, critical energy level E(0) = d and arbitrary high
initial level E(0) > 0 in a uniform frame [46, 47, 49, 50]. Then we can easily figure out the corresponding
unsolved problems related to different equations. For example, the case E(0) < 0 was considered in [52],
and the case E(0) < d is not solved; the case E(0) < d was considered in [53], and the case E(0) = d is not
solved; the case E(0) ≤ d was considered in [13], and the case E(0) > 0 is not solved. It seems necessary to
deal with the unsolved problems by the above observations for different model equations, but we realize
that this kind of studies may produce a lot of paper fragments, that is to say, maybe one paper deals with an
equation with nonlinear strain and source terms when E(0) < d and another paper tackles an equation with
more general strain term and nonlinear source terms when E(0) > 0. In order to avoid such problems, we
consider a more general model, although there is no actual physical background for it, but this allows us to
gather all the terms apparently in different model equations together in order to better solve these unsolved
problems comprehensively and systematically. Although readers can easily find these unresolved problems
for corresponding model equations from the above discussion, we still feel that it is necessary to present
these problems in a more understandable way, so we give the following Table 1. In this table, each black
dot represents a specific term in the model, and the far right description shows the results that have been
obtained. By comparison, it is easy to see which problem is not solved for this model. So, next, we will follow
the following train of thought to solve the problem. In Section 2, some preparing knowledge are introduced,
such as stable sets and the depth of the potential well. In Section 3, local existence and uniqueness of the
solution is proved. Section 4 is devoted to obtain the global existence, asymptotic behavior and nonexistence
of solutions with initial energy E(0) < d. In Section 5, the global existence, asymptotic behavior and finite
time blowup for the critical initial energy E(0) = d are studied. In Section 6, we prove that the solution to
problem (1.1)–(1.3) blows up in finite time for E(0) > 0 when r = 1. We refer to the recent monograph by
Papageorgiou, Rădulescu and Repovš [30] for various analytic tools used in this paper.
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2 Preliminaries
Throughout the present paper, the following notations are used for precise statements: Lp(Ω)(2 ≤ p < +∞)
denotes the usual space of all Lp-functions on Ω with norm ‖u‖Lp(Ω) = ‖u‖p, ‖u‖L2(Ω) = ‖u‖ and the inner
product (u, v) = ∫Ω uv dx. Let

H :=
{
{
{

H2
0(Ω) for u = 0 and ∂u

∂n = 0 on ∂Ω,
H2(Ω) ∩ H1

0(Ω) for u = 0 and ∆u = 0 on ∂Ω,

and ‖u‖2H := ‖∆u‖2 + ‖∇u‖2. In addition, we denote the duality paring between H−1 and H by ⟨ ⋅ , ⋅ ⟩.

Lemma 2.1 ([1]). For any u ∈ H2(Ω) ∩ H1
0(Ω), the norm ‖∆u‖ is equivalent to ‖u‖2,2.

Corollary 2.2. For any u ∈ H, the norm ‖u‖H is equivalent to ‖u‖2,2. Let C be the optimal constant such that
‖u‖2H ≥ C‖u‖.

Corollary 2.3 ([1]). Let p and q be defined by (H1) and (H2). Then
(i) H → Lp+1(Ω) compactly and ‖u‖p+1 ≤ C1‖u‖H ,
(ii) H → W1,q+1(Ω) compactly and ‖u‖1,q+1 ≤ C2‖u‖H ,
where C1 and C2 are constants independent of u.

Definition 2.4. Function u(x, t) is called a weak solution to problem (1.1)–(1.3) on Ω × [0, T) if

u(x, t) ∈ L∞(0, T;H), ut(x, t) ∈ L2(0,∞;H1
0(Ω)) ∩ L∞(0, T; L2(Ω))

satisfying

⟨utt , w⟩ + ∫
Ω

∇u∇w dx + ∫
Ω

∆u∆w dx + ∫
Ω

∇ut∇w dx + ∫
Ω

|ut|r−1utw dx

= (f(u), w) +
n
∑
i=1
(σi(uxi ), wxi ) for all w ∈ H, 0 < t < T. (2.1)

Next, for problem (1.1)–(1.3), we introduce the energy functional

E(t) := E(u(t)) = 12 ‖ut‖
2 +

1
2 ‖u‖

2
H −

n
∑
i=1
∫
Ω

Gi(uxi ) dx − ∫
Ω

F(u) dx, (2.2)

the potential energy functional

J(u) := J(u(t)) = 12 ‖u‖
2
H −

n
∑
i=1
∫
Ω

Gi(uxi ) dx − ∫
Ω

F(u) dx, (2.3)

the Nehari function
I(u) := I(u(t)) = ‖u‖2H −

n
∑
i=1
∫
Ω

uxiσi(uxi ) dx − ∫
Ω

uf(u) dx, (2.4)

the potential well (stable set)W = {u ∈ H | I(u) > 0} ∪ {0} and the outer space of the potential well (unstable
set) V = {u ∈ H | I(u) < 0}.

Lemma 2.5. Let u(x, t) be a solution to problem (1.1)–(1.3) with u0 ∈ H and u1 ∈ L2(Ω). Then the energy
functional E(t) is non-increasing about t.

Proof. Multiplying equation (1.1) by ut and integrating it over Ω × [0, t), we obtain

E(t) +
t

∫
0

‖∇uτ(τ)‖2 dτ +
t

∫
0

‖uτ(τ)‖r+1r+1 dτ = E(0) (2.5)

and E(t) = −‖∇ut‖2 − ‖ut‖r+1r+1 ≤ 0.
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Lemma 2.6. From (H1) and (H2), we can easily derive

E(0) ≥ E(t) = 12 ‖ut‖
2 + J(u) ≥ 12 ‖ut‖

2 +
p − 1

2(p + 1) ‖u‖
2
H +

1
p + 1 I(u). (2.6)

Now we define the depth of the potential well as

d := inf
u∈N

J(u), (2.7)

whereN := {u ∈ H \ {0} | I(u) = 0}.

Lemma 2.7. Let (H1) and (H2) hold and q ≥ p. Then

d = (12 −
1

p + 1)r
2, (2.8)

where r is the unique real root of the equation h(r) := a1Cp+11 rp−1 + a2C
q+1
2 rq−1 = 1.

Proof. From (2.7), this implies I(u) = 0, which, along with (H1) and (H2), gives

‖u‖2H =
n
∑
i=1
∫
Ω

uxiσi(uxi ) dx + ∫
Ω

uf(u) dx. (2.9)

Recalling (H1) and (H2) and Corollary 2.3, we get
n
∑
i=1
∫
Ω

uxiσi(uxi ) dx + ∫
Ω

uf(u) dx ≤ a1‖u‖
p+1
p+1 + a2

n
∑
i=1
‖uxi‖

q+1
q+1 ≤ a1C

p+1
1 ‖u‖

p+1
H + a2C

q+1
2 ‖u‖

q+1
H . (2.10)

Incorporating (2.9), (2.10) and the fact that h(r) is increasing and ‖u‖H ≥ rmean h(‖u‖H) ≥ 1. Then, by (2.6)
and (2.7), we gain

J(u) ≥ p − 1
2(p + 1) ‖u‖

2
H +

1
p + 1 I(u) =

p − 1
2(p + 1) ‖u‖

2
H ≥

p − 1
2(p + 1) r

2,

which implies (2.8).

3 Local solution
This section considers the existence and uniqueness of a local solution by employing the contraction map-
ping principle. For any fixed time T, we consider the space H := C([0, T];H) ∩ C1([0, T]; L2(Ω)) with the
norm ‖u‖2H := maxt∈[0,T](‖ut‖2 + ‖u‖2H).

First, in order to obtain the local existence anduniqueness of solution,we introduce the following lemma.

Lemma 3.1. For any T > 0, if u ∈H solves problem (1.1)–(1.3) with the initial data (u0, u1), then there exists
a unique v ∈H ∩ C2([0, T], H−1) with vt ∈ L2([0, T], H1

0(Ω)) satisfying the linear problem

{{{{{{
{{{{{{
{

vtt + ∆2v − ∆v − ∆vt + |vt|r−1vt = f(u) −
n
∑
i=1

∂
∂xi

σi(uxi ), x ∈ [0, T) × Ω,

v(x, 0) = u0(x), vt(x, 0) = u1(x), x ∈ Ω,
v(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

(3.1)

Proof. The proof of this lemma is based on the Galerkin method. We set Wh := Span{ω1, . . . , ωh} for every
h ≥ 1, where ωh is the orthogonal complete system of the eigenfunction of the equation ∆ω + λω = 0,
ω|∂ω = 0, such that ‖ωj‖ = 1 for all j. Let

uh0 :=
h
∑
j=1
(∫
Ω

∆u0∆ωj dx)ωj , uh1 :=
h
∑
j=1
(∫
Ω

u1ωj dx)ωj .
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Then uh0 ∈ Wh, uh1 ∈ Wh, and
uh0 → u0 ∈ H, h → +∞,
uh1 → u1 ∈ L2(Ω), h → +∞.

For any h ≥ 1, we seek functions γh1 , . . . , γ
h
h ∈ C

2[0, T] such that

vh(t) =
h
∑
j=1
γhj (t)ωj (3.2)

solves the problem

{{
{{
{

∫
Ω

( ̈vh(t) + ∆2vh(t) − ∆vh(t) − ∆ ̇vh(t) + |vh(t)|r−1vh(t))η dx = f(u) −
n
∑
i=1

∂
∂xi

σi(uxi ),

vh(0) = uh0 , ̇v
h(0) = uh1 ,

(3.3)

where η ∈ Wh and t ≥ 0. Taking η = ωj for j = 1, . . . , h in (3.3), we can derive the following Cauchy problem
for an ordinary differential equation with the unknown γhj :

{{{{{{{{
{{{{{{{{
{

̈γhj (t) + λ
2
j γ
h
i (t) + λjγ

h
j (t) + λj ̇γ

h
j (t) + |γ

h
j (t)|

r+1γhj (t) = ψj(t),

γhj (0) = ∫
Ω

∆u0∆ωj dx,

̇γhj (0) = ∫
Ω

u1ωj dx,

(3.4)

where
ψj(t) = ∫

Ω

f(u(t))ωj dx − ∫
Ω

n
∑
i=1

∂
∂xi

σi(uxi )ωj dx, t ∈ C[0, T].

Then, for all j, problem (3.4) yields a unique global solution γhj ∈ C2[0, T], which gives a unique vh defined
by (3.2) satisfying (3.3). In particular, (3.2) implies that ̇vh(t) ∈ H1

0(Ω) for t ∈ [0, T]. Then, from Poincaré’s
inequality, we can see that

‖∇ ̇vh(t)‖2 ≥ c‖ ̇vh(t)‖2, t ∈ [0, T]. (3.5)

Taking η = ̇vh(t) into (3.3) and integrating the obtained results over [0, t] ⊂ [0, T], we have

‖ ̇vh(t)‖2 + ‖vh(t)‖2H + 2
t

∫
0

‖∇ ̇vh(τ)‖2 dτ + 2
t

∫
0

‖ ̇vh(τ)‖r+1r+1 dτ

= ‖uh1(t)‖
2 + ‖uh(0)‖2H + 2

t

∫
0

(∫
Ω

f(u(τ)) ̇vh(τ) dx) dτ

− 2
t

∫
0

(∫
Ω

n
∑
i=1

∂
∂xi

σi(uxi ) ̇vh(τ) dx) dτ, h ≥ 1. (3.6)

Next we estimate the last two terms on the right-hand side of (3.6) as follows. For the first term, from (H1),
Hölder, Sobolev and Young inequalities, and for all u ∈H , it follows that

2
t

∫
0

∫
Ω

f(u(τ)) ̇vh(τ) dτ ≤ 2
t

∫
0

∫
Ω

a1|u|p ̇vh(τ) dx dτ ≤ 2a1
t

∫
0

‖u‖p2p‖ ̇vh(τ)‖ dτ

≤ 2a12c
1
2 C̃p

t

∫
0

‖u‖pH(2c)
− 12 ‖ ̇vh(τ)‖ dτ

≤ C
t

∫
0

‖u‖2pH dτ + 1
2c

t

∫
0

‖ ̇vh(τ)‖2 dτ ≤ C1(T) +
1
2

t

∫
0

‖∇ ̇vh(τ)‖2 dτ, (3.7)

where c is defined in (3.5).
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For the second term, from (H2), this implies −σi(s) ≤ a2|s|q, which helps us to derive

−2
t

∫
0

∫
Ω

n
∑
i=1

∂
∂xi

σi(uxi ) ̇vh(τ) dx dτ = 2
t

∫
0

∫
Ω

n
∑
i=1
σi(uxi )∇ ̇vh(τ) dx dτ

≤ 2
t

∫
0

∫
Ω

n
∑
i=1
a2|uxi |q∇ ̇vh(τ) dx dτ

≤ 2a2
t

∫
0

n
∑
i=1
‖uxi‖

q
2q‖∇ ̇vh(τ)‖ dτ

≤ 2a2Cq2

t

∫
0

‖u‖qH‖∇ ̇vh(τ)‖ dτ

≤ C̃2
t

∫
0

‖u‖2qH dτ + 12

t

∫
0

‖∇ ̇vh(τ)‖2 dτ

≤ C2(T) +
1
2

t

∫
0

‖∇ ̇vh(τ)‖2 dτ. (3.8)

Substituting (3.7) and (3.8) into (3.6) yields

‖ ̇vh(t)‖2 + ‖vh(t)‖2H + 2
t

∫
0

‖∇ ̇vh(τ)‖2 dτ + 2
t

∫
0

‖ ̇vh(τ)‖r+1r+1 dτ ≤ CT , (3.9)

where CT = ‖uh1‖2 + ‖u
h
0‖

2
H + C1(T) + C2(T) is independent of h recalling that u

h
0 and u

h
1 converge. Hence (3.9)

implies that
∙ {vh} is bounded in L∞([0, T], H),
∙ { ̇vh} is bounded in Lr+1([0, T], Lr+1(Ω)) ∩ L∞([0, T], L2(Ω)) ∩ L2([0, T], H1

0(Ω)),
∙ { ̈vh} is bounded in L2([0, T], H−1).
Therefore, up to a subsequence, we may pass to the limit in (3.3) and get a weak solution v(t) to a problem
satisfying the above regularity. So the existence of v to problem (3.1) is obtained.

Uniqueness follows by contradiction: if v and v were two solutions to problem (3.1) with the same initial
data, by subtracting the equations and testing with vt − vt, instead of (3.6), we get

‖vt(t) − vt(t)‖22 + ‖v(t) − v(t)‖
2
H + 2

t

∫
0

‖∇vτ(τ) − ∇vτ(τ)‖2 dτ + 2
t

∫
0

‖vτ(τ) − vτ(τ)‖r+1r+1 dτ = 0,

which gives v ≡ v. The proof of the lemma is now completed.

Now we show the existence and uniqueness of a local solution to problem (1.1)–(1.3).

Theorem 3.2 (Local existence and uniqueness). Let u0 ∈ H, u1 ∈ L2(Ω), and let (H1)and (H2) hold. Then there
exists a unique local solution of problem (1.1)–(1.3)

u ∈ C([0, Tm), H),
ut ∈ L2([0, Tm), H1

0(Ω)) ∩ L∞([0, Tm), Lr+1(Ω)) for some Tm > 0.

Proof. Take (u0, u1) satisfying (1.2). Let R20 := 1
2 (‖u0‖

2
H + ‖u1‖

2), and for any T > 0, we consider

MT = {u | u ∈H : u(x, 0) = u0, ut(x, 0) = u1, ‖u‖2H ≤ R
2
0} with R ≥ R0.

Then, from Lemma 3.1, we can define a map satisfying Φ(MT ) ⊆MT , and v = Φ(u) is the unique solution
for any u ∈MT .

Next we will state that Φ is a contractive map from MT into itself for sufficiently large R and small
enough T, and then, by the contraction mapping principle, we can obtain a unique local solution to problem
(1.1)–(1.3). Now we prove it by two steps.
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Step (I). We claim that Φ maps MT into itself for sufficiently large R and small enough T. In other words,
we will show ‖Φ(u)‖H ≤ R provided that ‖u‖H ≤ R. If ‖u‖H ≤ R, taking Φ(u) = v into the energy identity
(see (3.6)) yields

‖vt‖2 + ‖v‖2H + 2
t

∫
0

‖∇vτ‖2 dτ + 2
t

∫
0

‖vτ‖r+1r+1 dτ

= ‖u1‖2 + ‖u0‖2H + 2
t

∫
0

∫
Ω

f(u(τ))vτ(τ) dτ − 2
t

∫
0

∫
Ω

n
∑
i=1

∂
∂xi

σi(uxi )vτ(τ) dτ. (3.10)

In the following, wewill employ theHölder inequality, the Young inequality, the Cauchy–Schwarz inequality,
the Sobolev embedding inequality and (H1) and (H2) to estimate the third term on the right side of (3.10) as

2
t

∫
0

∫
Ω

f(u(τ))vτ(τ) dτ ≤ 2
t

∫
0

∫
Ω

a1|u(τ)|pvτ(τ) dx dτ = 2a1
t

∫
0

‖u‖p2p‖vτ(τ)‖ dτ ≤ 2a1C̃
p
t

∫
0

‖u‖pH‖vτ(τ)‖ dτ

≤ C1
t

∫
0

‖u‖2pH dτ +
t

∫
0

‖vτ(τ)‖2 dτ ≤ C̃1(T) +
t

∫
0

‖vτ(τ)‖2 dτ, (3.11)

and the last term is estimated as

−2
t

∫
0

∫
Ω

n
∑
i=1

∂
∂xi

σi(uxi )vt(τ) dτ ≤ 2
t

∫
0

∫
Ω

n
∑
i=1
a2|uxi |q∇vτ(τ) dτ ≤ 2a2C

q
2

t

∫
0

‖u‖qH‖∇vτ(τ)‖ dτ

≤ C2
t

∫
0

‖u‖2qH dτ +
t

∫
0

‖∇vτ(τ)‖2 dτ ≤ C̃2(T) +
t

∫
0

‖∇vτ(τ)‖2 dτ. (3.12)

Combining (3.11) and (3.12), equation (3.10) becomes

‖vt‖2 + ‖v‖2H + 2
t

∫
0

‖∇vτ‖2 dτ + 2
t

∫
0

‖vτ‖r+1r+1 dτ

= ‖u1‖2 + ‖u0‖2H + 2
t

∫
0

∫
Ω

f(u(τ))vτ(τ) dτ − 2
t

∫
0

∫
Ω

n
∑
i=1

∂
∂xi

σi(uxi )vτ(τ) dτ

≤ ‖u1‖2 + ‖u0‖2H + Cm +
t

∫
0

‖vτ(τ)‖2 dτ +
t

∫
0

‖∇vτ(τ)‖2 dτ,

that is,

‖vt‖2 + ‖v‖2H ≤ 2R
2
0 + Cm +

t

∫
0

‖vτ(τ)‖2 dτ ≤ 2R20 + Cm +
t

∫
0

(‖vτ‖2 + ‖v‖2H) dτ,

where Cm = C̃1(T) + C̃2(T). By the Gronwall inequality, we can get ‖vt‖2 + ‖v‖2H ≤ (2R
2
0 + Cm)eT . At this point,

we can choose a small enough T such that (2R20 + Cm)eT < R. Then we have ‖v‖H ≤ R, which shows that
Φ(MT ) ⊆MT .

Step (II). We claim thatΦ is contractive inMT , that is, there exists a positive constant α with 0 < α < 1 such
that ‖Φ(w1) − Φ(w2)‖H ≤ α‖w1 − w2‖H for w1, w2 ∈MT .

For w1, w2 ∈MT , set v1 = Φ(w1), v2 = Φ(w2), z = w1 − w2. Then we have

{{{{{{{{{
{{{{{{{{{
{

ztt − ∆2z − ∆z +
n
∑
i=1

∂
∂xi

σi(w1xi ) −
n
∑
i=1

∂
∂xi

σi(w2xi ) − ∆zt

− |w1 t|r−1w1 t − |w2 t|r−1w2 t = f(w1) − f(w2),

z(x, 0) = 0, zt(x, 0) = 0 if x ∈ Ω,
z(x, t) = 0 if x ∈ ∂Ω, t ≥ 0.

(3.13)
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Multiplying the first equation of problem (3.13) by zt and integrating the obtained results over (0, T) × Ω
yields

1
2 ‖zt(t)‖

2 +
1
2 ‖z(t)‖

2
H +

t

∫
0

‖∇zτ‖2 dτ =
t

∫
0

∫
Ω

(f(w1(τ)) − f(w2(τ)))zτ(τ) dx dτ

− ∫
Ω

t

∫
0

(|w1τ|r−1w1τ − |w2τ|r−1w2τ)zτ dx dτ

−
t

∫
0

∫
Ω

(
n
∑
i=1

∂
∂xi

σi(w1xi ) −
n
∑
i=1

∂
∂xi

σi(w2xi ))zτ dx dτ. (3.14)

According to (H1), we can get |f(w1) − f(w2)| ≤ a1(|w1|p − |w2|p). Since w1, w2 ∈MT , we can estimate the
first term on the right side of (3.14) as



t

∫
0

∫
Ω

(f(w1(τ)) − f(w2(τ)))zτ(τ) dτ

≤ a1

t

∫
0

∫
Ω

(|w1|p − |w2|p)zτ(τ) dx dτ

≤ a1
t

∫
0

∫
Ω

ξ(t)(w1(τ) − w2(τ))zτ(τ) dx dτ,

where ξ(t) ≥ 0 is given by the Lagrange theorem such that ξ(t) ≥ p(|w1(t)| + |w2(t)|)p−1. Then we get

a1
t

∫
0

∫
Ω

ξ(t)(w1(τ) − w2(τ))zτ(τ) dx dτ ≤ CR2(p−1)T‖w1(τ) − w2(τ)‖2H +
1
2

t

∫
0

‖∇zτ‖2 dτ. (3.15)

For the second term, we notice that the nonlinear function h(s) = |s|r−1s is increasing. For the third term on
the right-hand side of (3.14), according to condition (H2) and the mean value theorem, it shows

−
t

∫
0

∫
Ω

(
n
∑
i=1

∂
∂xi

σi(w1xi ) −
n
∑
i=1

∂
∂xi

σi(w2xi ))zτ dx dτ ≤ a2
t

∫
0

∫
Ω

n
∑
i=1

∂
∂xi
(|w1xi |

q − |w2xi |
q) zτ dx dτ

≤ a2
t

∫
0

∫
Ω

n
∑
i=1

∂
∂xi

ϑ(t)(w1xi − w2xi )zτ dx dτ,

where ϑ(t) ≥ 0 is given by the Lagrange theorem such that ϑ(t) ≤ q(|w1xi (t)| + w2xi (t))
q−1. Then we get

a2
t

∫
0

∫
Ω

n
∑
i=1

∂
∂xi

ϑ(t)(w1xi − w2xi )zτ dx dτ ≤ CR
2(q−1)T‖w1(τ) − w2(τ)‖2H +

1
2

t

∫
0

‖∇zτ‖2 dτ. (3.16)

Therefore, by arguing as in (3.15) and (3.16), we obtain

1
2 ‖zt(t)‖

2 +
1
2 ‖z(t)‖

2
H +

t

∫
0

‖∇zτ‖2 dτ

≤ CR2(p−1)T‖w1(τ) − w2(τ)‖2H +
1
2

t

∫
0

‖∇zτ‖2 dτ + CR2(q−1)T‖w1(τ) − w2(τ)‖2H +
1
2

t

∫
0

‖∇zτ‖2 dτ

= CT(R2(p−1) + R2(q−1))‖w1(τ) − w2(τ)‖2H +
t

∫
0

‖∇zτ‖2 dτ,

that is,
‖zt(t)‖2 + ‖z(t)‖2H ≤ 2CT(R

2(p−1) + R2(q−1))‖z‖2H .

By taking a small enough T, we can obtain the contractiveness of Φ. Hence the proof of this theorem is
completed.
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4 Subcritical initial energy case E(0) < d

4.1 Global existence for E(0) < d

Lemma 4.1 (Invariant set W for E(0) < d). Let u0 ∈ H, u1 ∈ L2(Ω), and let (H1)and (H2)hold. Then the solution
to problem (1.1)–(1.3) with E(0) < d belongs toW, provided that u0 ∈ W .

Proof. Let u(t) be a solution to problem (1.1)–(1.3) with E(0) < d and u0 ∈ W, and let T be the maximum
existence time of u(t). Then it follows from Lemma 2.5 that E(u(t)) ≤ E(0) < d. Thus it suffices to show
that I(u(t)) > 0 for 0 < t < T. Arguing by contradiction, we suppose that there exists t1 ∈ (0, T) such that
I(u(t1)) ≤ 0. From the continuity of the solution in time, there exists t∗ ∈ (0, T) such that I(u(t∗)) = 0. Then,
from the definition of d, we have d ≤ J(u(t∗)) ≤ E(u(t∗)) ≤ E(0) < d, which is a contradiction.

Theorem 4.2 (Global existence for E(0) < d). Let u0 ∈ H, u1 ∈ L2(Ω), and let (H1) and (H2) hold and q ≥ p.
Assume that E(0)< d and u0 ∈ W . Then problem (1.1)–(1.3)admits a globalweak solution u(t) ∈ L∞ (0,∞;H),
ut ∈ L∞ (0,∞; L2(Ω)).

Proof. Let {wj(x)} be a system of base functions in H. Construct the approximate solution to problem (1.1)–
(1.3)

um(x, t) =
m
∑
j=1

gjm(t)wj(x), m = 1, 2, . . .

satisfying

⟨umtt , ws⟩ + (∆um , ∆ws) + (∇um , ∇ws) + (∇umt , ∇ws) − (f(um), ws)

= −(|umt|r−1umt , ws) +
n
∑
i=1
(σi(umxi ), wsxi ), s = 1, 2, . . . ,m, (4.1)

um(x, 0) =
m
∑
j=1
ajmwj(x)→ u0(x) in H, (4.2)

umt(x, 0) =
m
∑
j=1
bjmwj(x)→ u1(x) in L2(Ω). (4.3)

Multiplying (4.1) by gsm(t) and summing for s, we get

d
dt(

1
2 ‖umt‖

2 + ‖um‖2H −
n
∑
i=1
∫
Ω

Gi(umxi ) dx − ∫
Ω

F(um) dx) = −‖umt‖r+1r+1 − ‖∇umt‖
2. (4.4)

Integrating (4.4) over (0, t), we can obtain

1
2 ‖umt‖

2 + J(um) +
t

∫
0

(‖umτ‖r+1r+1 + ‖∇umτ‖
2) dτ = Em(0).

From (4.2) and (4.3), we get Em(0)→ E(0), m → +∞. Hence, for sufficiently large m, we have

1
2 ‖umt‖

2 + J(um) +
t

∫
0

(‖umτ‖r+1r+1 + ‖∇umτ‖
2) dτ < d. (4.5)

Recalling Lemma 2.6, we note that

J(um) ≥ (
1
2 −

1
p + 1)‖um‖

2
H +

1
p + 1 I(um). (4.6)

Hence, from (4.5) and (4.6), we get

1
2 ‖umt‖

2 +
p − 1

2(p + 1) ‖um‖
2
H +

1
p + 1 I(um) +

t

∫
0

(‖umτ‖r+1r+1 + ‖∇umτ‖
2) dτ < d. (4.7)
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By u0 ∈ W and 1
2 ‖umt(0)‖

2 + J(um(0)) = E(0), (4.2) and (4.3), we can get um(0) ∈ W for sufficiently large m.
From (4.5) and an argument similar to the proof of Lemma 4.1, we can prove that um(t) ∈ W for 0 ≤ t < +∞
and sufficiently large m. Thus (4.7) gives

1
2 ‖umt‖

2 + (
1
2 −

1
p + 1)‖um‖

2
H +

t

∫
0

(‖umτ‖r+1r+1 + ‖∇umτ‖
2) dτ < d (4.8)

for sufficiently large m and 0 ≤ t < +∞.
Inequality (4.8) gives

um is bounded in L∞(0,∞;H), (4.9)
umt is bounded in L2(0,∞;H1

0(Ω)) ∩ L∞(0,∞; L2(Ω)), (4.10)

|umt|r−1umt is bounded in L∞(0,∞; Lq1 (Ω)), where q1 =
r + 1
r

, (4.11)

|um|p−1um is bounded in L∞(0,∞; Lq2 (Ω)), where q2 =
p + 1
p

. (4.12)

Hence, integrating (4.1) with respect to t, for 0 ≤ t < +∞, we get

(umt , ws) +
t

∫
0

(∆um , ∆ws) dτ +
t

∫
0

(∇um , ∇ws) dτ + (∇um , ∇ws) +
t

∫
0

(|umτ|r−1umτ , ws) dτ

=
t

∫
0

(f(um), ws) dτ + (um1, ws) + (∇um0, ∇ws)

+
n
∑
i=1

t

∫
0

(σi(umxi ), wsxi ) dτ for all s ∈ H, 0 < t < T. (4.13)

Therefore, up to a subsequence, by (4.9)–(4.12), wemay pass to the limit in (4.13) and obtain aweak solution
u(x, t) to problem (1.1)–(1.3) with the above regularity and (2.1). On the other hand, from (4.2) and (4.3),
we have u(x, 0) = u0(x) in H and ut(x, 0) = u1(x) in L2(Ω).

4.2 Exponential decay for E(0) < d

This section considers the special case of (H1) and (H2), namely,
(H̃1) (i) f ∈ C1 and f(0) = f (0) = 0,

(ii) f(u) is monotone and is convex for u > 0, concave for u < 0,
(iii) |f(u)| ≤ a1|u|p and (p + 1)F(u) = uf(u) for some a1 > 0 (1 < p <∞ if n ≤ 4 and1 < p < n

n−4 if n ≥ 5),
(iv) F(u) = ∫u0 f(s) ds;

(H̃2) (i) σi(s) ∈ C1 and σi(0) = σi (0) = 0.
(ii) σi(s) are monotone, and are convex for s > 0, concave for s < 0.
(iii) |σi(s)| ≤ a2|s|q and (q + 1)Gi(s) = sσi(s) for some a2 > 0 (1 < q <∞ if n = 1, 2 and 1 < q < n

n−2
if n ≥ 3).

(iv) Gi(s) = ∫
s
0 σi(τ) dτ for 1 ≤ i ≤ n.

Lemma 4.3. Let u0 ∈ H, u1 ∈ L2(Ω), and let (H1) and (H2) hold and q ≥ p. Assume that u0 ∈ W and E(0) < d.
Then, for all t ∈ [0, T), we have

J(t) ≡ J(u(t)) ≥ p − 1
2(p + 1) ‖u(t)‖

2
H . (4.14)

Proof. The assertion (4.14) follows directly from Lemma 4.1 and Lemma 2.6.

Next we present the asymptotic behavior of the solution to problem (1.1)–(1.3) for E(0) < d.
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Theorem 4.4 (Exponential decay for E(0) < d). Let u0 ∈ H, u1 ∈ L2(Ω), and let (H̃1) and (H̃2) hold. Assume
that E(0) < d and u0 ∈ W . Then there exist two positive constants K and k such that E(t) ≤ Ke−kt for t ≥ 0.

Remark 4.5. It is easy to see that, from (2.8), the condition E(0) < d is equivalent to the inequality

β = a1C
p+1
1 (

2(p + 1)
p − 1 E(0))

p−1
2
+ a2C

q+1
2 (

2(p + 1)
p − 1 E(0))

q−1
2
< 1,

which will be used in the proof of Theorem 4.4.

Proof. Inspired by the idea in [16, 29], we define the auxiliary function

G(t) := E(t) + ε(u, ut) +
ε
2 ‖∇u‖

2. (4.15)

We can choose ε so small that

α1E(t) ≤ G(t) ≤ α2E(t) for some α1, α2 > 0. (4.16)

Testing equation (1.1) by u(x, t), we have

⟨u, utt⟩ + (∇u, ∇ut) + ‖u‖2H + ∫
Ω

|ut|r−1utu dx =
n
∑
i=1
∫
Ω

uxiσi(uxi ) dx + ∫
Ω

uf(u) dx. (4.17)

Then, from (4.15), Lemma 2.5 and (4.17), we can obtain

G(t) = E(t) + ε(‖ut‖2 + ⟨u, utt⟩ + (∇u, ∇ut))

= −‖ut‖r+1r+1 − ‖∇ut‖
2 + ε‖ut‖2 − ε∫

Ω

|ut|r−1utu dx + ε(
n
∑
i=1
∫
Ω

uxiσi(uxi ) dx + ∫
Ω

uf(u) dx − ‖u‖2H). (4.18)

From (2.2), (2.3), Lemma 2.6 and (2.4), we have

E(t) = 12 ‖ut‖
2 + J(u) ≥ 12 ‖ut‖

2 + (
1
2 −

1
p + 1)‖u‖

2
H +

1
p + 1 I(u)

=
1
2 (‖ut‖

2 + ‖u‖2H) +
1

p + 1 (I(u) − ‖u‖
2
H)

=
1
2 (‖ut‖

2 + ‖u‖2H) −
1

p + 1(
n
∑
i=1
∫
Ω

uxiσi(uxi ) dx + ∫
Ω

uf(u) dx).

Now we use Lemma 2.6, Lemma 2.7 and Remark 4.5 to estimate
n
∑
i=1
∫
Ω

uxiσi(uxi ) dx + ∫
Ω

uf(u) dx,

which yields

n
∑
i=1
∫
Ω

uxiσi(uxi ) dx + ∫
Ω

uf(u) dx = a(
n
∑
i=1
∫
Ω

uxiσi(uxi ) dx + ∫
Ω

uf(u) dx)

+ (1 − a)(
n
∑
i=1
∫
Ω

uxiσi(uxi ) dx + ∫
Ω

uf(u) dx)

≤
(q + 1)a

2 (‖ut‖2 + ‖u‖2H) − a(q + 1)E(t) + β(1 − a)‖u‖
2
H , (4.19)

where 0 < a < 1. By Young’s inequality to estimate ∫Ω|ut|
r−1utu dx, we have


∫
Ω

|ut|r−1utu dx

≤ δ‖ut(t)‖r+1r+1 + C(δ)‖u(t)‖

r+1
r+1 for δ > 0. (4.20)
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By (4.19), (4.20) and a simple computation, (4.18) becomes

G(t) ≤ εb‖ut‖2 + ε(
(q − 1)a

2 − (1 − β)(1 − a))‖u‖2H − ε(q + 1)aE(t)

+ (εδ − 1)‖ut‖r+1r+1 + εC(δ)‖u(t)‖
r+1
r+1 − ‖∇ut‖

2, (4.21)

where b = (q+1)a2 + 1. By (4.14) and choosing a close to 1 so that (q−1)a2 − (1 − β)(1 − a) ≥ 0, then (4.21)
reaches to

G(t) ≤ εb‖ut‖2 + ε(
(q − 1)a

2 − (1 − β)(1 − a))2(p + 1)p − 1 E(t) − ‖∇ut‖2

− ε(q + 1)aE(t) + (εδ − 1)‖ut‖r+1r+1 + εC(δ)‖u(t)‖
r+1
r+1.

By the Poincaré inequality ‖ut‖ ≤ C‖∇ut‖, we can obtain

G(t) ≤ (εbC2 − 1)‖∇ut‖2 + ε(
(q − 1)a

2 − (1 − β)(1 − a))2(p + 1)p − 1 E(t)

− ε(q + 1)aE(t) + (εδ − 1)‖ut‖r+1r+1 + εC(δ)‖u(t)‖
r+1
r+1. (4.22)

Next we exploit the Sobolev embedding inequality and Lemma 4.3 to estimate ‖u(t)‖r+1r+1 as

‖u(t)‖r+1r+1 ≤ C
r+1
r+1(

2(p + 1)
p − 1 E(0))

r−1
2
‖u‖2H ≤ C

r+1
r+1(

2(p + 1)
p − 1 E(0))

r−1
2 2(p + 1)

p − 1 E(t).

Therefore, (4.22) turns into

G(t) ≤ −ε((1 − β)(1 − a) − C(δ)Cr+1r+1(
2(p + 1)
p − 1 E(0))

r−1
2
)
2(p + 1)
p − 1 E(t)

+ (εδ − 1)‖ut‖r+1r+1 + (εbC
2 − 1)‖∇ut‖2 + εa(q − 1 −

(q + 1)(p − 1)
p + 1 )

p + 1
p − 1E(t). (4.23)

At this point, we first choose δ so small that

γ1 = (1 − β)(1 − a) − C(δ)Cr+1r+1(
2(p + 1)
p − 1 E(0))

r−1
2
> 0,

and then, once δ is fixed (hence γ1 is fixed also), we can pick q < (p+1)γ1a + p so that

γ2 = γ1 − a(q − 1 −
(q + 1)(p − 1)

p + 1 ) > 0.

Moreover, once δ is chosen, we can take ε small so that γ3 = εbC2 − 1 ≤ 0 and γ4 = εδ − 1 ≤ 0, and (4.16)
remains valid. Consequently, (4.23) becomes

G(t) ≤ γ3‖ut‖2 + γ4‖ut‖r+1r+1 − εγ2
2(p + 1)
p − 1 E(t). (4.24)

A simple integration of (4.24) then leads to G(t) ≤ G(0)e−kt, which, together with (4.16), gives E(t) ≤ Ke−kt,
where k = 2εγ2(p+1)

α2(p−1) .

4.3 Finite time blowup for E(0) < d

In what follows, we state the finite time blowup of the solution to problem (1.1)–(1.3). By the same argument
as Lemma 4.3, we can get the following lemma.

Lemma 4.6 (Invariant set for E(0) < d). Let u0 ∈ H, u1 ∈ L2(Ω), and let (H1) and (H2) hold. Then the solution
to problem (1.1)–(1.3) with E(0) < d belongs to V, provided that u0 ∈ V .
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Lemma 4.7. Let u0 ∈ H, u1 ∈ L2(Ω), and let (H1) and (H2) hold and q ≥ p. Assume that u0 ∈ V and E(0) < d.
Then we have

p − 1
2(p + 1) ‖u‖

2
H > d. (4.25)

Proof. By Lemma 4.6, we get u(t) ∈ V, that is, I(u) < 0, which, together with (H1), (H2) and Corollary 2.3,
gives

‖u‖2H <
n
∑
i=1
∫
Ω

uxiσi(uxi ) dx + ∫
Ω

uf(u) dx ≤ a1‖u‖
p+1
p+1 + a2

n
∑
i=1
‖uxi‖

q+1
q+1

≤ a1C
p+1
1 ‖u‖

p+1
H + a2C

q+1
2 ‖u‖

q+1
H = h(‖u‖H)‖u‖

2
H

or, equivalently, h(‖u‖H) > 1 and ‖u‖H > r. Hence, by Lemma 2.6, we have

J(u) ≥ p − 1
2(p + 1) ‖u‖

2
H +

1
p + 1 I(u) =

p − 1
2(p + 1) ‖u‖

2
H >

p − 1
2(p + 1) r

2,

which, together with (2.8), gives (4.25).

Theorem 4.8 (Finite time blowup for E(0) < d). Let u0 ∈ H, u1 ∈ L2(Ω), q ≥ p > r > 1, and let (H1) and (H2)
hold. Assume that E(0) < d and u0 ∈ V . Then the solution to problem (1.1)–(1.3) blows up in finite time.

Proof. Let u(t) be the solution to problem (1.1)–(1.3) with E(0) < d and I(u0) < 0, and let T be the maximum
existence time of u(t). Then we prove T < +∞. Arguing by contradiction, we suppose T = +∞. For any T > 0,
we define θ(t) := ‖u‖2 and

ϑ(t) := a1‖u‖p+1p+1 + a2
n
∑
i=1
‖uxi‖

q+1
q+1.

Then, for t ∈ [0, T], we get θ(t) = 2(u, ut) and

θ(t) = 2⟨u, utt⟩ + 2‖ut‖2

= 2‖ut‖2 − 2‖u‖2H − 2(|ut|
r−1ut , u) − 2(∇u, ∇ut)

+ 2
n
∑
i=1
∫
Ω

uxiσi(uxi ) dx + 2∫
Ω

uf(u) dx. (4.26)

We now exploit the Hölder inequality, the so-called interpolation inequality, Lemma 4.6 and (H2) to estimate
the third term of (4.26). From Lemma 4.6 and (H2), we have

‖u‖2 < c‖u‖2H < c(
n
∑
i=1
∫
Ω

uxiσi(uxi ) dx + ∫
Ω

uf(u) dx) < cϑ(t)

and
c0‖u‖

p+1
p+1 ≤ a1‖u‖

p+1
p+1 + a2

n
∑
i=1
‖uxi‖

q+1
q+1 = ϑ(t),

which, together with the Hölder inequality and the so-called interpolation inequality, give

(|ut|
r−1ut , u) ≤ ‖u‖r+1‖ut‖

r
r+1 ≤ ‖u‖

δ‖u‖1−δp+1‖ut‖
r
r+1 < Cϑ(t)

1
r+1 ϑ(t) 1−δp+1− 1

r+1+ δ2 ‖ut‖rr+1, (4.27)

where δ = ( 1r+1 −
1
p+1 )/(

1
2 −

1
p+1 ). It is easy to see that

1−δ
p+1 −

1
r+1 +

δ
2 = 0. By applying Young’s inequality to

estimate the right side of (4.27), we have

|(|ut|r−1ut , u)| < η1ϑ(t) + cη1‖ut‖r+1r+1 for any η1 > 0. (4.28)

Therefore, from (2.4) and (4.28), equation (4.26) becomes

θ(t) > 2‖ut‖2 − 2(∇ut , ∇u) − 2I(u) − 2η1ϑ(t) − 2cη1‖ut‖r+1r+1. (4.29)
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Recalling (2.2) and (2.4), we get

I(t) ≤ I(t) + σ(E(0) − E(t))

≤ I(t) + σE(0) − σ2 ‖ut‖
2 −

σ
2 ‖u‖

2
H +

σ
p + 1

n
∑
i=1
∫
Ω

uxiσi(uxi ) dx +
σ

p + 1 ∫
Ω

uf(u) dx

≤ (
σ

p + 1 − 1)ϑ(t) + σE(0) −
σ
2 ‖ut‖

2 + (1 − σ2)‖u‖
2
H , (4.30)

where the constant σ > 2 will be chosen later. By (4.29) and (4.30), we have

θ(t) > (2 + σ)‖ut‖2 + (σ − 2)‖u‖2H − 2σE(0) − 2(∇u, ∇ut)

+ 2(1 − σ
p + 1 − η1)ϑ(t) − 2cη1‖ut‖

r+1
r+1, (4.31)

which, along with Young inequality, gives

θ(t) > (2 + σ)‖ut‖2 + (σ − 2)‖u‖2H − 2σE(0) − 2η2‖∇u‖
2

− 2cη2‖∇ut‖2 + 2(1 −
σ

p + 1 − η1)ϑ(t) − 2cη1‖ut‖
r+1
r+1

> (2 + σ)‖ut‖2 + (σ − 2)‖u‖2H − 2σE(0) − 2η2C‖u‖
2

− 2cη2‖∇ut‖2 + 2(1 −
σ

p + 1 − η1)ϑ(t) − 2cη1‖ut‖
r+1
r+1

> (2 + σ)‖ut‖2 + (σ − 2)‖u‖2H − 2σE(0) − 2cη2‖∇ut‖
2

+ 2(1 − σ
p + 1 − η1 − cCη2)ϑ(t) − 2cη1‖ut‖

r+1
r+1 (4.32)

for any η2 > 0, where C is the best constant of Poincaré’s inequality C‖u‖ ≤ ‖∇u‖. We choose the constant σ
so that

2(p + 1)d
(p + 1)d − (p − 1)E(0) < σ < p + 1,

which guarantees that σ > 2 since E(0) < d. Then, by this choice and (4.25), we get

(σ − 2)‖u‖2H − 2σE(0) >
2(p + 1)
p − 1 (σ − 2)d − 2σE(0) = 2(

p + 1
p − 1d − E(0))σ −

4(p + 1)
p − 1 d > 0. (4.33)

Once the constant σ is fixed, we choose the constant η = max{η1, cCη2} so that

C = 1 − σ
p + 1 − η > 0. (4.34)

Hence, by (4.32), (4.34), (4.33) and Lemma 4.7, inequality (4.31) becomes

θ(t) + cη(2‖ut‖r+1r+1 + 2‖∇ut‖
2) ≥ 2Cϑ(t) ≥ 2C‖u‖2H ≥

4C(q + 1)
q − 1 d > 0, (4.35)

where cη = max{cη1 , cη2 }. Integrating the last inequality of (4.35) about t yields

θ(t) + cη
t

∫
0

(2‖uτ‖r+1r+1 + 2‖∇uτ‖
2) dτ > 4C(q + 1)

q − 1 td + θ(0). (4.36)

Note that
t

∫
0

‖∇uτ‖2 dτ +
t

∫
0

‖uτ‖r+1r+1 dτ = E(0) − E(t) < D. (4.37)

By (4.37), inequality (4.36) becomes

θ(t) > 4C(q + 1)
q − 1 td + θ(0) − cηD. (4.38)



W. Lian et al., Global well-posedness | 605

Integrating (4.38) from 0 to t, we can obtain

θ(t) > 4C(q + 1)
q − 1 t2d + (θ(0) − cηD)t + θ(0) for all t > 0. (4.39)

That is, θ(t) has quadratic growth as t → +∞.
On the other hand, we estimate ‖u(t)‖2 as follows. By the regularity of u(t) in L2(Ω), the Hölder inequality

and (4.38), for all t ≥ 0, we have

∫
Ω

|u(t)|2 dx = ∫
Ω

(u0 +
t

∫
0

ut(t) dt)
2
dx

≤ 2‖u0‖2 + 2t∫
Ω

t

∫
0

|ut|2 dt dx

≤ 2‖u0‖2 + Ct1+
r−1
r+1( t∫

0

∫
Ω

|ut|r+1 dx dt)
2
r+1

≤ 2‖u0‖2 + Ct
2r
r+1 d 2

r+1 . (4.40)

Hence, by (4.40), for all t ≥ 0, we have

θ(t) ≤ 2‖u0‖2 + Ct
2r
r+1 d 2

r+1 . (4.41)

Since the power 2r
r+1 is smaller than 2, then (4.41) contradicts (4.39), which shows that θ(t) has at least

quadratic growth for t > 0. Therefore, the solution cannot be extended to the whole interval [0, +∞). This
completes the proof of Theorem 4.8.

5 Critical initial energy case E(0) = d
In this section, we study the global existence, exponential decay and finite time blowup for the critical initial
energy case E(0) = d.

Lemma 5.1. Let u0 ∈ H, u1 ∈ L2(Ω), and let (H1) and (H2) hold. If u(x, t) is an unsteady solution to problem
(1.1)–(1.3), then there exists a t ∈ (0, T) such that

t

∫
0

‖∇uτ‖2 dτ +
t

∫
0

‖uτ‖r+1r+1 dτ > 0. (5.1)

Proof. Let u(t) be an unsteady solution to problem (1.1)–(1.3) with E(0) = d, and let T be the maximum
existence time of u(t). We prove that there exists a t ∈ (0, T) such that (5.1) holds. Arguing by contradiction,
we suppose that, for t ∈ [0, T),

t

∫
0

‖∇uτ‖2 dτ +
t

∫
0

‖uτ‖r+1r+1 dτ ≡ 0,

which implies ‖∇ut‖2 dτ + ‖ut‖r+1r+1 = 0 for all x ∈ Ω, t ∈ [0, T). Thus we can conclude u(x, t) ≡ u0 for all x ∈ Ω,
t ∈ [0, T), that is, u(x, t) is a steady solution to problem (1.1)–(1.3), which is a contradiction.

5.1 Global existence for E(0) = d

Next we give the invariance of the stable set W under problem (1.1)–(1.3) at the critical initial energy
level E(0) = d.
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Lemma 5.2 (Invariant set W for E(0) = d). Let u0 ∈ H, u1 ∈ L2(Ω), and let (H1) and (H2) hold. If E(0) = d, then
the stable setW is invariant for problem (1.1)–(1.3).

Proof. Let u0 ∈ W be any solution to problem (1.1)–(1.3)with E(0) = d, and let T be the existence time of u(t).
Arguing by contradiction, we suppose that there exists a t0 ∈ (0, T) such that u(t0) ∈ ∂W, that is, I(u(t0)) = 0,
‖u(t0)‖H ̸= 0. Combining with the definition of the depth of potential well, we have J(u(t0)) ≥ d. According to
Lemma 2.5, we have

1
2 ‖ut(t0)‖

2 + J(u(t0)) +
t0

∫
0

‖∇uτ(τ)‖2 dτ +
t0

∫
0

‖uτ(τ)‖r+1r+1 dτ = E(0) = d.

Therefore, we can get
1
2 ‖ut(t0)‖

2 +
t0

∫
0

‖∇uτ(τ)‖2 dτ +
t0

∫
0

‖uτ(τ)‖r+1r+1 dτ = 0,

which implies that dudt = 0 for all 0 ≤ t ≤ t0 and x ∈ Ω. In other words, we have u(x, t) = u0(x) for all 0 ≤ t ≤ t0
and x ∈ Ω. Then I(u(t0)) = I(u0) > 0, obviously, which contradicts assumption I(u(t0)) = 0. This completes
the proof.

The global existence for problem (1.1)–(1.3) with E(0) = d is given as follows.

Theorem 5.3 (Global existence for E(0) = d). Let u0 ∈ H, u1 ∈ L2(Ω), and let (H1) and (H2) hold. If E(0) = d
and u0 ∈ W, then problem (1.1)–(1.3) admits a global solution.

Proof. It suffices to prove themaximal time T = +∞. Obviously, if u(x, t) is a steady solution to problem (1.1)–
(1.3), thenwe have T = +∞. If u(x, t) is a solution but not a steady solution to problem (1.1)–(1.3), then there
exists a t ∈ (0, T) from Lemma 5.1 such that

t

∫
0

‖∇uτ(τ)‖2 dτ +
t

∫
0

‖uτ(τ)‖r+1r+1 dτ > 0.

Combining Lemma 2.5 and E(0) = d, we have E(t) < d and u(t) ∈ W due to Lemma 5.2, that is, I(u(t)) > 0 or
‖u(t)‖H = 0. Let v(t) = u(t + t) for t ≥ 0. Then v(t) is a solution to problem (1.1)–(1.3). Therefore, the maxi-
mum time of v(t) is infinite due to Theorem 4.2, which implies T = +∞. This completes the proof.

5.2 Exponential decay for E(0) = d

Theorem 5.4 (Exponential decay for E(0) = d). Under the conditions of Theorem 5.3, for some positive con-
stants K1 and k, we have

0 < E(t) ≤ K1e−kt , 0 ≤ t < +∞. (5.2)

Proof. Immediately, (5.2) follows from Lemma 5.1, Theorem 5.3 and Theorem 4.4.

5.3 Finite time blowup for E(0) = d

Similar to Lemma 5.2, we infer the following.

Lemma 5.5 (Invariant set V for E(0) = d). Let u0 ∈ H, u1 ∈ L2(Ω), and let (H1) and (H2) hold. If E(0) = d, then
the unstable set V is invariant for problem (1.1)–(1.3).

Theorem 5.6 (Finite time blowup for E(0) = d). Let u0 ∈ H, u1 ∈ L2(Ω), and let (H1) and (H2) hold. If E(0) = d
and u0 ∈ V, then the solution to problem (1.1)–(1.3) blows up in finite time.

Proof. Similar to the proof of Theorem 5.3, this conclusion follows from Lemma 5.1, Lemma 5.5 and Theo-
rem 4.8.
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6 Arbitrarily positive initial energy case E(0) > 0 when r = 1
Lemma 6.1 (Invariant set V for E(0) > 0). Let u0 ∈ H, u1 ∈ L2(Ω), and let (H1) and (H2) hold. Then the solution
to problem (1.1)–(1.3) belongs to V, provided that u0 ∈ V and

‖∇u0‖2 + ‖u0‖2 + 2(u0, u1) > AE(0) > 0, (6.1)

where A = 2(p+1)(C+2)
(p−1)C , C is the best constant of Poincaré’s inequality

‖∇u‖2 ≥ C‖u‖2. (6.2)

Proof. We prove u(t) ∈ V for t ∈ [0, T0). Arguing by contradiction, we suppose that t0 ∈ (0, T) is the first time
such that

I(u(t0)) = 0 (6.3)

and I(u(t)) < 0 for t ∈ [0, t0). First we introduce the auxiliary function F(t) := ‖∇u(t)‖2 + ‖u(t)‖2 + 2(u, ut).
Then, from equation (1.1), it follows

F(t) = 2(∇u, ∇ut) + 2⟨u, utt⟩ + 2‖ut‖2 + 2(u, ut) = 2‖ut‖2 − 2I(u).

Hence, by u(t) ∈ V, we have F(t) > 0 for t ∈ [0, +∞). Moreover, from (6.1) and E(0) > 0, this implies that

F(0) = ‖∇u0‖2 + ‖u0‖2 + 2(u0, u1) > AE(0) > 0, where A = 2(p + 1)(C + 2)
(p − 1)C .

Therefore, we can see that F(t) > F(0) > 0, which shows that {t → ‖∇u(t)‖2 + ‖u(t)‖2 + 2(u, ut)} is strictly
increasing, namely,

‖∇u(t)‖2 + ‖u(t)‖2 + 2(u, ut) ≥ ‖∇u0‖2 + ‖u0‖2 + 2(u0, u1) ≥ AE(0), t ∈ [0, t0).

Besides, it gives
‖∇u(t0)‖2 + ‖u(t0)‖2 + 2(u(t0), ut(t0)) >

2(p + 1)(C + 2)
(p − 1)C E(0), (6.4)

according to the continuity of u(t) and ut(t) in t. Recalling (2.2) and (2.5), we gain

E(0) = E(t) +
t

∫
0

‖∇uτ‖2 dτ +
t

∫
0

‖uτ‖2 dτ

=
1
2 ‖ut‖

2 +
1
2 ‖u‖

2
H −

n
∑
i=1
∫
Ω

Gi(uxi ) dx − ∫
Ω

F(u) dx +
t

∫
0

‖∇uτ‖2 dτ +
t

∫
0

‖uτ‖2 dτ

=
1
2 ‖ut‖

2 +
p − 1

2(p + 1) ‖u‖
2
H +

1
p + 1 I(u) +

t

∫
0

‖∇uτ‖2 dτ +
t

∫
0

‖uτ‖2 dτ, (6.5)

which, together with (6.3), (6.2) and the Cauchy–Schwarz inequality, shows that

E(0) = E(t0) ≥
1
2 ‖ut(t0)‖

2 +
p − 1

2(p + 1) ‖u(t0)‖
2
H

≥
(p − 1)C

2(p + 1)(C + 2) ‖ut(t0)‖
2 +

p − 1
2(p + 1) ‖∇u(t0)‖

2

=
(p − 1)C

2(p + 1)(C + 2) ‖ut(t0)‖
2 +
(p − 1)C

2(p + 1)(C + 2) ‖∇u(t0)‖
2 +

p − 1
2(p + 1)(C + 2) ‖∇u(t0)‖

2

≥
(p − 1)C

2(p + 1)(C + 2) ‖ut(t0)‖
2 +
(p − 1)C

2(p + 1)(C + 2) ‖∇u(t0)‖
2 +
(p − 1)C

2(p + 1)(C + 2) ‖∇u(t0)‖
2

≥
(p − 1)C

2(p + 1)(C + 2) (‖∇u(t0)‖
2 + ‖u(t0)‖2 + 2(u(t0), ut(t0))). (6.6)

Obviously, (6.4) contradicts (6.6). This completes the proof.
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In the end, we present the finite time blow-up result of the solution to problem (1.1)–(1.3) with arbitrarily
high initial energy.

Theorem 6.2 (Finite time blowup for E(0) > 0). Let u0 ∈ H, u1 ∈ L2(Ω), and let (H1) and (H2) hold. Assume
that u0 ∈ V and (6.1) holds. Then the solution to problem (1.1)–(1.3) blows up in finite time.

Proof. Let u(t) be any solution to problem (1.1)–(1.3), (6.1) and u0 ∈ V. Then, from Lemma 6.1, it follows
that u ∈ V. Next we prove that the solution to problem (1.1)–(1.3) blows up in finite time. Arguing by con-
tradiction, we suppose that the solution u(x, t) is global. Then, for any T0 > 0, we introduce the auxiliary
function

B(t) := ‖u‖2 +
t

∫
0

(‖∇u(τ)‖2 + ‖u(τ)‖2) dτ + (T0 − t)(‖∇u0‖2 + ‖u0‖2).

It is obvious that B(t) > 0 for all t ∈ [0, T0]. From the continuity of B(t) in t, it is easy to see that there exists
ρ > 0 (independent of the choice of T0) such that

B(t) ≥ ρ for all t ∈ [0, T0]. (6.7)

Moreover, for t ∈ [0, T0], we can get

B(t) = 2(u, ut) + 2(‖∇u‖2 + ‖u‖2) − 2(‖∇u0‖2 + ‖u0‖2) = 2(u, ut) + 2
t

∫
0

∫
Ω

(∇u∇uτ + uuτ) dx dτ, (6.8)

B(t) = 2‖ut‖2 + 2⟨u, utt⟩ + 2∫
Ω

(∇u∇uτ + uuτ) dx = 2‖ut‖2 − 2I(u). (6.9)

From (6.8) this implies that

(B(t))2 = 4((u, ut)2 + 2(u, ut)
t

∫
0

∫
Ω

(∇u∇uτ + uuτ) dx dτ) + 4(
t

∫
0

∫
Ω

(∇u∇uτ + uuτ) dx dτ)
2
. (6.10)

Then, from the Cauchy–Schwarz inequality, it follows

(u, ut)2 ≤ ‖u‖2‖ut‖2,

(
t

∫
0

∫
Ω

(∇u∇uτ + uuτ) dx dτ)
2
≤

t

∫
0

(‖∇u‖2 + ‖u‖2) dτ
t

∫
0

(‖∇uτ‖2 + ‖uτ‖2) dτ

and

2(u, ut)
t

∫
0

∫
Ω

(∇u∇uτ + uuτ) dx dτ ≤ 2‖u‖‖ut‖(
t

∫
0

(‖∇u‖2 + ‖u‖2) dτ)
1
2

(
t

∫
0

(‖∇uτ‖2 + ‖uτ‖2) dτ)
1
2

≤ ‖u‖2
t

∫
0

(‖∇uτ‖2 + ‖uτ‖2) dτ + ‖ut‖2
t

∫
0

(‖∇u‖2 + ‖u‖2) dτ.

Therefore, (6.10) becomes

(B(t))2 ≤ 4(‖u‖2 +
t

∫
0

(‖∇u‖2 + ‖u‖2) dτ)(‖ut‖2 +
t

∫
0

(‖∇uτ‖2 + ‖uτ‖2) dτ)

≤ 4B(t)(‖ut‖2 +
t

∫
0

(‖∇uτ‖2 + ‖uτ‖2) dτ). (6.11)

Hence, from (6.9) and (6.11), we have

B(t)B(t) − λ + 34 (B
(t))2 ≥ B(t)(B(t) − (λ + 3)(‖ut‖2 +

t

∫
0

(‖∇uτ‖2 + ‖uτ‖2) dτ))

≥ B(t)(−(λ + 1)‖ut‖2 − 2I(u) − (λ + 3)
t

∫
0

(‖∇uτ‖2 + ‖uτ‖2) dτ). (6.12)
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Now we define

ξ(t) := −(λ + 1)‖ut‖2 − 2I(u) − (λ + 3)
t

∫
0

(‖∇uτ‖2 + ‖uτ‖2) dτ. (6.13)

From (6.5) and the Cauchy–Schwarz inequality, we gain

ξ(t) = (p − λ)‖ut‖2 + (p − 1)(‖∆u‖2 + ‖∇u‖2)

− 2(p + 1)E(0) − (2p − λ − 1)
t

∫
0

(‖∇uτ‖2 + ‖uτ‖2) dτ

≥ (p − λ)‖ut‖2 +
2(p − λ)

C
‖∇u‖2 + (p − 1 − 2(p − λ)C )

‖∇u‖2

− 2(p + 1)E(0) − (2p − λ − 1)
t

∫
0

(‖∇uτ‖2 + ‖uτ‖2) dτ

≥ (p − λ)‖ut‖2 + 2(p − λ)‖u‖2 + (p − 1 −
2(p − λ)

C )
‖∇u‖2

− 2(p + 1)E(0) − (2p − λ − 1)
t

∫
0

(‖∇uτ‖2 + ‖uτ‖2) dτ

≥ (p − λ)(‖ut‖2 + 2‖u‖2) + (p − 1 −
2(p − λ)

C )
‖∇u‖2

− 2(p + 1)E(0) − (2p − λ − 1)
t

∫
0

(‖∇uτ‖2 + ‖uτ‖2) dτ

≥ (p − λ)(2(u, ut) + ‖u‖2) + (p − 1 −
2(p − λ)

C )
‖∇u‖2

− 2(p + 1)E(0) − (2p − λ − 1)
t

∫
0

(‖∇uτ‖2 + ‖uτ‖2) dτ. (6.14)

At this point, we choose λ := p − C(p−1)C+2 , which guarantees that λ ∈ (1, p) since p > 1. Then, by a simple
computation and λ < 1 + 2p, we can get

ξ(t) ≥ C(p − 1)
C + 2 (‖∇u‖

2 + ‖u‖2 + 2(u, ut)) − 2(p + 1)E(0)

>
C(p − 1)
C + 2 (‖∇u0‖

2 + ‖u0‖2 + 2(u0, u1)) − 2(p + 1)E(0). (6.15)

Let
σ := C(p − 1)

C + 2 (‖∇u0‖
2 + ‖u0‖2 + 2(u0, u1)) − 2(p + 1)E(0).

Then, by taking advantage of (6.1), we can get

ξ(t) ≥ σ > 0. (6.16)

Therefore, by (6.12)–(6.16) and (6.7), we have

B(t)B(t) − λ + 34 (B
(t))2 > ρσ > 0, t ∈ [0, T0].

Set y(t) = B(t)− λ−14 . Then this inequality becomes

y(t) < − λ − 14 ρσy(t)
λ+7
λ−1 , t ∈ [0, T0],

where λ = p − C(p−1)C+2 . This proves that y(t) reaches 0 in finite time, say t → T∗. Since T∗ is independent of
the initial choice of T0, we may assume that T∗ < T0. This tells us that limt→T∗ B(t) = +∞, which completes
the proof.
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