
Available online at www.sciencedirect.com
ScienceDirect

Journal of Differential Equations 298 (2021) 323–345
www.elsevier.com/locate/jde

Positive supersolutions of fourth-order nonlinear elliptic 

equations: explicit estimates and Liouville theorems

Asadollah Aghajani a,b, Craig Cowan c, Vicenţiu D. Rădulescu d,e,f,∗
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Abstract

In this paper, we consider positive supersolutions of the semilinear fourth-order problem

{
(−�)2u = ρ(x)f (u) in �,

−�u > 0 in �,

where � is a domain in RN (bounded or not), f : Df = [0, af ) → [0, ∞) (0 < af � +∞) is a non-
decreasing continuous function with f (u) > 0 for u > 0 and ρ : � → R is a positive function. Using a 
maximum principle-based argument, we give explicit estimates on positive supersolutions that can easily 
be applied to obtain Liouville-type results for positive supersolutions either in exterior domains, or in un-
bounded domains � with the property that supx∈� dist (x, ∂�) = ∞. In particular, we consider the above 
problem with f (u) = up (p > 0) and with different weights ρ(x) = |x|a , eax1 or xm

1 (m is an even integer). 
Also, when f is convex and ρ : � → (0, ∞) is smooth with �(

√
ρ) > 0, then under an extra condition be-

tween f and ρ we show that every positive supersolution u of this problem with u = 0 on ∂� (� bounded) 
satisfies the inequality −�u ≥ √

2ρ(x)F (u) for all x ∈ �, where F(t) := ∫ t
0 (f (s) − f (0))ds.
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1. Introduction and main results

Our purpose in the present paper is to obtain explicit pointwise estimates on positive classical 
supersolutions of the problem

{
(−�)2u = ρ(x)f (u) in �,

−�u > 0 in �,
(1)

where � is a domain in RN (N ≥ 1) (bounded or not) and f , ρ satisfy

(C) f : Df = [0, af ) → [0, ∞) (0 < af � +∞) is a non-decreasing continuous function and 
ρ : � → R is a positive smooth function. Also we assume that f (u) > 0 for u > 0.

By a positive classical solution of (1) we mean a positive function u ∈ C4(�), verifying 
(−�)2u ≥ ρ(x)f (u) and −�u > 0 in � pointwise.

In this paper, we give explicit estimates on positive classical supersolutions u of problem (1)
at each point x ∈ �. As we shall see, the simplicity and robustness of our maximum principle-
based estimates provide their applicability to many fourth-order elliptic inequalities on arbitrary 
domains in RN , either bounded or unbounded. We are mainly interested in applications to 
Liouville-type theorems related to (1) with different weights in unbounded domains with the 
property that

sup
x∈�

dist (x, ∂�) = ∞.

In this way, our applications extend to RN , RN+ , exterior domains, or cone-like domains, as well 
as for obtaining upper bounds for the extremal parameter of fourth-order nonlinear eigenvalue 
problem under Navier boundary conditions on bounded domains.

Existence or nonexistence of solutions to some classes of higher order differential equations 
and systems on RN have received a great deal of attention in recent years. For instance, a differ-
ential equation or inequality of the form

(−�)mu ≥ f (u) in �, (2)

where � = RN or an exterior domain in RN . A relevant special case of (2) is when f (u) = up

with p > 0, that is (−�)mu ≥ up . It is well known that if 1 < p < N
N−2m

then the latter in-
equality in the whole space does not admit any nonnegative polysuperharmonic solution u, 
that is, (−�)iu ≥ 0 in �, i = 1, ..., m; see for example Corollary 3.6 in Caristi, D’Ambro-
sio and Mitidieri [9], where the authors have proved Liouville theorems for supersolutions of 
the polyharmonic Hénon-Lane-Emden system and also explored its connection with the Hardy-
Littlewood-Sobolev systems. Also, for the Liouville theorems for the polyharmonic Lane-Emden 
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equation (−�)mu = up in � = RN , see Lin [30] and Wei and Xu in [34] for the subcritical 
Sobolev exponent that is 1 < p < N+2m

N−2m
, N > 2m.

Recently, Perez, Melian and Quaas [8] studied the existence and nonexistence of positive 
supersolutions to the biharmonic problem

(−�)2u = g(u) in RN \ BR0 , (3)

where BR0 stands for the ball of radius R0 centered at the origin and g is continuous and non-
decreasing in [0, ∞). They proved that for 1 ≤ N ≤ 4, problem (3) does not admit any positive 
classical supersolution u verifying

−�u > 0 in RN \ BR0 . (4)

They also proved that if N ≥ 5, such supersolutions exist if and only if

δ∫
0

g(t)

t
2N−4
N−4

dt < ∞, (5)

for any δ > 0. To prove the results above, they employed the maximum principle and the method 
of sub and supersolutions, by showing that the existence of a positive supersolution u of problem 
(3) with the additional property (4) implies the existence of a radially symmetric positive solution 
of the same problem with the same property.

We also refer to Guo and Liu [24], where the authors established the nonexistence of non-
trivial nonnegative classical solutions for problem (3) with g(u) = up and Dirichlet boundary 
condition u = ∂u

∂ν
= 0 on ∂BR0 , where ν is the unit outward normal vector of ∂BR0 relative to 

BR0 whenever 1 < p < N+4
N−4 , or the Navier boundary condition u = �u = 0 on ∂BR0 when 

1 < p ≤ N+4
N−4 . The study of this type of equations plays an important role in conformal geometry 

[11,18,28] and other related fields [20]. For more results on the structure of positive solutions 
or classification of positive entire solutions via Morse index of the equation (3) with g(u) = up , 
or some related problems, we refer to [12,15–17,23,27,26,31,35,36] and the references therein. 
It is worth mentioning here that nonlinear Liouville theorems for second order equations of the 
form −�u = f (u) have been frequently discussed in the literature, and there are general results 
on nonexistence for both positive solutions and supersolutions (see for instance the references in 
[1,2]).

In this paper, by just using the maximum principle for the Laplace operator, we estimate the 
solutions of (1) in any ball Br(x) ⊂ �. As we shall see, our estimates can be easily applied to 
obtain Liouville-type results for solutions of the general equation (1) in unbounded domains (see 
section 2).

In order to formulate our main estimates, we need to introduce some notation as follows. 
Define, for a given positive supersolution u of problem (1),

mx(r) = inf
y∈Br (x)

u(y) and ρx(r) = inf
y∈Br (x)

ρ(y) for 0 < r < d�(x) := dist (x, ∂�).

We set d�(x) = +∞ if � = RN .
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Theorem 1. Let u be a positive classical supersolution of problem (1) with f, ρ satisfying con-
dition (C). Then for all x ∈ � we have

u(x)∫
mx(r)

ds

f (s)
≥ 1

N2(N + 2)

r∫
0

s3ρx(s)ds, 0 < r < d�(x). (6)

In particular, when ρ ≡ 1 we have

u(x)∫
mx(r)

ds

f (s)
≥ r4

4N2(N + 2)
, 0 < r < d�(x). (7)

Remark 1. (a) Notice that if 1
f

∈ L1(0, a) with 0 < a < af , then the above result provides an 

explicit lower estimate for u(x) in terms of d�(x). Indeed, in this case, taking H(t) := ∫ t

0
ds

f (s)

we get from (6) that

u(x) ≥ H−1
( 1

N2(N + 2)

d�(x)∫
0

s3ρx(s)ds
)
, x ∈ �,

where H−1 is the inverse function of H . Also, when 1
f

/∈ L1(0, a) for 0 < a < af , then the 
estimate (6) gives an upper bound for infy∈Br (x) u(y) for any x ∈ � and 0 < r < d�(x). This 
estimate, together with Lemma 1 below, will be used to obtain Liouville-type results on exterior 
domains in RN .

(b) The requirement that the supersolutions verify the inequality −�u > 0, in order to ob-
tain Liouville theorems, is by no means superfluous (see a discussion in [9]), and examples of 
supersolutions not enjoying this property can be constructed.

Another interesting problem related to equation (1) is to find pointwise inequalities for −�u, 
provided that u is a positive classical supersolution. In the case of the fourth-order Lane-Emden 
equation

(−�)2u = up in RN, (8)

Souplet [33] proved that the following pointwise inequality holds for nonnegative solutions of 
problem (8):

−�u ≥
√

2

p + 1
u

p+1
2 in RN. (9)

Indeed, if we set v = −�u then, from the fact that −�u ≥ 0, we can consider (8) as a special 
case (when q = 1) of the Lane-Emden system
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{
−�u = vq in RN,

−�v = up in RN,
(10)

where p ≥ q ≥ 1. Then from Lemma 2.7 in [33] one has

up+1

p + 1
≤ vq+1

q + 1
in RN,

for nonnegative solutions u and v of (10) when pq > 1. Applying the above inequality, we see 
that the pointwise inequality (9) holds for nonnegative solutions of (8).
Recently, Fazly, Wei and Xu [21] improved the above result and established that every bounded 
positive solution u of the fourth-order Hénon equation

(−�)2u = |x|aup in RN, (11)

satisfies the following pointwise inequality

−�u ≥
√

2

p + 1 − cN

|x| a
2 u

p+1
2 + 2

N − 4

|∇u|2
u

in RN, (12)

where cN = 8
N−2 and 0 ≤ a ≤ infk≥0 Ak (where Ak is defined in [21, relation (4.28)]). For 

the proof of this estimate, motivated by Moser’s proof of the Harnack inequality as well as by 
Moser iteration type arguments in the regularity theory, the authors in [21] developed an iteration 
method to establish the above pointwise inequality.

We also refer to Cowan, Esposito and Ghoussoub [13] who proved that if u is a positive 
solution of the fourth-order autonomous problem

{
(−�)2u = f (u) x ∈ �,

u = �u = 0 x ∈ ∂�,

where � ⊂RN is a smooth bounded domain and f is smooth, increasing and convex with f (0) >
0 then

−�u ≥
√

2F̃ (u), x ∈ �,

where

F̃ (t) :=
t∫

0

f̃ (s)ds, f̃ (t) := f (t) − f (0). (13)

In this paper, we prove the following pointwise inequality for −�u, for any positive superso-
lution u of the non-autonomous problem (1) in any bounded domain.
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Theorem 2. Let u be a positive classical supersolution of problem (1) in a bounded domain 
� ⊂ RN with u = 0 on ∂�. We assume that f : [0, af ) → [0, ∞) is smooth, increasing and 
strictly convex, and ρ : � → (0, ∞) is smooth with �(

√
ρ) ≥ 0. Moreover, we assume that

4f ′(t)F̃ (t)

f̃ (t)2
≥ τρ := sup

x∈�

�ρ√
ρ�(

√
ρ)

< ∞ for all t ∈ (0, ||u||∞), (14)

where F̃ (t) defined in (13). Then u satisfies the pointwise inequality

−�u ≥
√

2ρ(x)F̃ (u), x ∈ �. (15)

For example, when f (u) = up and ρ(x) = |x|a (a ∈ R) so that ρ is smooth and subharmonic 
in a domain � (which depends on a and 0 ∈ � or not), then we have

τρ = 4(a + N − 2)

a + 2N − 4
< ∞,

which is independent of � and estimate (14) is equivalent to

p >
N − 2 + a

N − 2
.

If in problem (1) the functions ρ, f additionally satisfy the conditions of Theorem 2 one can 
use this result to improve the estimate of Theorem 1 as follows. We just consider the case when 
ρ(x) ≡ 1 and will apply it to bound the extremal parameter of semilinear biharmonic elliptic 
problems under Navier boundary conditions.

Theorem 3. Let u be a positive classical supersolution of the problem

⎧⎪⎨
⎪⎩

(−�)2u = f (u) in �,

−�u > 0 in �,

u = 0 on ∂�,

(16)

where � is a bounded domain in RN and f : [0, af ) → [0, ∞) is smooth, increasing and strictly 
convex. Then u satisfies the pointwise inequality

u(x0)∫
mx0 (r)

ds

f (s) + N(N+2)√
2r2

�

√
F̃ (s)

≥ r4

4N2(N + 2)
, for 0 < r < d�(x), (17)

where r� := supx∈� d�(x) is the radius of the largest ball contained in �. Also, we have

−�u ≥
√

2F̃ (u), x ∈ �. (18)

In order to apply the above estimates to get Liouville-type results we also need the following 
auxiliary property.
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Lemma 1. Suppose that u > 0 is a smooth function such that

−�u > 0 and (−�)2u > 0,

in an exterior domain � ⊂RN (N ≥ 5). Then there exists a positive constant c, depending only 
on u, � and N , so that

u(x) ≥ c|x|4−N, x ∈ �, (19)

and

lim inf|x|→∞ u(x) ≤ C and lim inf|x|→∞ −�u(x) ≤ C. (20)

Proof. Since (−�)2u = −�(−�u) ≥ 0 then −�u is a positive superharmonic function in �. 
Then it is well-known (see [32] or [4, Lemma 2.5]) that we have

−�u ≥ C|x|2−N in �.

Fix r0 > 0 such that RN \Br0 ⊂ �. Select c > 0 so small that c < C
2(N−4)

and also u ≥ c|x|4−N in 

a neighborhood of ∂Br0 . Then for each ε > 0, there exists Rε > r0 such that u + ε ≥ ε ≥ c|x|4−N

in RN \ BRε . Now note that we have

−�u ≥ C|x|2−N ≥ 2c(N − 4)|x|2−N = −�(c|x|4−N).

Applying the maximum principle in BR \ Br0 , for each R > Rε we get

u + ε ≥ c|x|4−N in RN \ BR0 .

Letting ε → 0 we obtain u ≥ c|x|4−N in RN \ Br0 that proves (19). Also, since u and −�u

are positive superharmonic functions then the inequality (20) is a consequence of Lemma 2.5 in 
[4]. �

Finally, we point out that the main results included in this paper can be generalized to the 
higher order differential inequality

(−�)mu ≥ ρ(x)f (u) in �, (21)

where u ∈ C2m(�) verifies

(−�)iu ≥ 0 in �, i = 1, ...,m. (22)

2. Applications

In this section we give some applications of our main estimates.
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2.1. Liouville-type results

Proposition 1. Consider the problem

{
(−�)2u = |x|aup in �,

−�u > 0 in �,
(23)

where p > 0 and � is a domain in RN . Then

(a) if p > 1 and � is an exterior domain in RN , N ≥ 5, and

p ≤ N + a

N − 4
, (24)

then the above problem does not admit any positive, classical supersolution in �. Also, the 
same property is true when p = 1 and a > −4.

(b) Let p < 1 and a > −4. If � is an exterior domain in RN , N ≥ 5, then problem (23) does not 
admit any positive, classical supersolution in �. Also, the same nonexistence result holds 
for bounded classical supersolutions if � is an unbounded domain in RN (N ≥ 1) with the 
property that supx∈� d�(x) = ∞.

(c) Let � be a bounded domain in RN , N ≥ 2. When 0 /∈ � we assume a ≥ 0, and a ≥ 4 when 
0 ∈ �. If u is a positive, classical supersolution of problem (23) with u = 0 in ∂�, then we 
have

−�u ≥
√

2

p + 1
|x| a

2 u
p+1

2 , in �, (25)

provided that p > N−2+a
N−2 .

Proof. (a) First note that with f (u) = up we have

u(x)∫
mx(r)

ds

f (s)
= u(x)1−p − mx(r)

1−p

1 − p
, 0 < r < d�(x), x ∈ �, p = 1 (26)

and when p = 1

u(x)∫
mx(r)

ds

f (s)
= ln

u(x)

mx(r)
, 0 < r < d�(x), x ∈ �. (27)

To prove (a), for simplicity take � :=RN − B1. Then for ρ(x) = |x|a when a ≥ 0 we have

ρx(r) = inf ρ(y) = (|x| − r)a, 0 < r < |x| − 1.

Br (x)
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By Theorem 1, for x ∈ � and 0 < r < |x| − 1 we obtain, when p = 1

u(x)1−p − mx(r)
1−p

1 − p
≥ 1

N2(N + 2)

r∫
0

s3(|x| − s)ads

= |x|4+a

N2(N + 2)

r
|x|∫

0

t3(1 − t)adt. (28)

Similarly, for a < 0, we get (noticing that ρx(r) = (|x| + r)a in this case)

u(x)1−p − mx(r)
1−p

1 − p
≥ |x|4+a

N2(N + 2)

r
|x|∫

0

t3(1 + t)adt, 0 < r < |x| − 1. (29)

Now let p > 1 and a ∈ R. From inequalities (28) and (29), for |x|
2 < r < |x| − 1 we obtain

mx(r) ≤ C|x| −(4+a)
p−1 , (30)

where

C :=
( p − 1

N2(N + 2)

1
2∫

0

t3(1 − (sgna)t)adt
) −1

p−1
,

in which sgn is the signum function, and note that C is a constant independent of x, r .
On the other hand, by Lemma 1 we have mx(r) ≥ c|x|4−N when |x|

2 < r < |x| − 1. This latter 
inequality together with (30) implies that N −4 ≥ 4+a

p−1 or p ≥ N+a
N−4 . Thus, there is no any positive 

supersolution if p < N+a
N−4 .

To prove the result when p = N+a
N−4 , note that in this case we have 4+a

p−1 = N − 4. It then follows 
by (30) that

mx(r) ≤ C|x|4−N,
|x|
2

< r < |x| − 1.

Also by Lemma 1 we have mx(r) ≥ c|x|4−N , when |x|
2 < r < |x| − 1. Thus, taking β(r) :=

infRN\Br

u(x)

|x|4−N , we must have c ≤ β(r) ≤ C. Now from the fact that −�u ≥ C|x|2−N , using 
Lemma 2.2 in [4] and similar to end of the proof of Theorem 2.1 in [4] we can show that β(r) →
∞, which is a contradiction.
We now consider the case p = 1. By (27) and the estimate obtained above on 

∫ r

0 s3ρx(s)ds, we 
obtain that

u(x) ≥ mx(r)e
C|x|4+a

.
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Next, by Lemma 1 we obtain

u(x) ≥ C1|x|4−NeC|x|4+a

.

Hence, when a > −4, we have u(x) → ∞ as |x| → ∞, which contradicts (20) in Lemma 1.

(b) Now assume p < 1. Then from the inequalities in part (a) we get

u(x) ≥ Cd�(x)
4+a
1−p .

If a > −4 and � is an exterior domain then the above inequality implies that lim inf|x|→∞ u(x) =
∞, which contradicts Lemma 1. Also, if a > −4 and supx∈� d�(x) = ∞ then u can not be 
bounded by the above inequality.

(c) Now let � be a bounded domain and u = 0 on ∂�. By the assumption on � the function 
ρ(x) = |x|a is smooth with �(

√
ρ) ≥ 0 and

τρ = 4(a + N − 2)

a + 2N − 4
,

where τρ defined in (14). Also we have, F̃ (t) = tp+1

p+1 , thus (14) is equivalent to

4f ′(t)F̃ (t)

f̃ (t)2
= 4p

p + 1
≥ 4(a + N − 2)

a + 2N − 4
,

or

p ≥ a + N − 2

N − 2
.

And in this range of p we have from Theorem 2

−�u ≥
√

2ρ(x)F̃ (u) =
√

2

p + 1
|x| a

2 u
p+1

2 .

The proof is now complete. �
Remark 2. It is worth mentioning that the above results can be also obtained for the more general 
problem

{
(−�)2u = |x|af (u) in �,

−�u ≥ 0 on ∂�,
(31)

where f satisfies (C). One can also establish that the nonexistence results for positive supersolu-
tions depend on the behavior of f (t) near zero, as follows. Consider for example the case when 
� is an exterior domain in RN , (N ≥ 5). From (20) in Lemma 1, there exists a sequence xj ∈ �
332
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so that |xj | → ∞ as j → ∞ and u(xj ) ≤ C < ∞. Then using Theorem 1 and the computations 
we did above, we get

C∫
mxj

(r)

ds

f (s)
≥

u(xj )∫
mxj

(r)

ds

f (s)
≥ C1|xj |4+a, (32)

for |xj |
2 < r < dxj

(�) and j large, also by Lemma 1, mxj
(r) ≥ c|xj |4−N . Then from (32) we 

infer that

C∫
|xj |4−N

ds

f (s)
≥ C1|xj |4+a,

or

|xj |−(4+a)

C∫
|xj |4−N

ds

f (s)
≥ C1, for j large. (33)

But (33) fails if a > −4 and for some C < ∞

lim
t→0

t
4+a
N−4

C∫
t

ds

f (s)
= 0. (34)

Hence, there exists no positive supersolution for problem (31) in exterior domains if (34) holds.

We present in what follows some examples illustrating that Theorem 1 can be used to deal 
with other related problems. For instance, this can occur when the weight |x|a is replaced by 
|x1|a , xm

1 , eax1 or even more general functions.

We first consider the problem

{
(−�)2u = eax1up in �

−�u > 0 in �,
(35)

where p > 0, a > 0 and � is an unbounded domain in RN .
We have the following nonexistence result for the supersolutions of (35).

Proposition 2. Consider the problem (35).

(a) When p ≥ 1 and � is an exterior domain, then problem (35) does not admit any positive, 
classical supersolution.
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(b) When p < 1, and � is an unbounded domain in RN with the property that

sup{x1; x = (x1, ..., xN) ∈ �} = ∞,

then the above problem does not have any bounded classical supersolution.

Proof. (a) For ρ(x) = eax1 we have

ρx(r) = inf
Br (x)

eay1 = ea(x1−r), 0 < r < d�(x), x ∈ �.

Then we compute

r∫
0

s3ρx(s)ds = eax1

r∫
0

s3e−asds

= eax1

(
6

a4 − e−ar
( r3

a
+ 3r2

a2 + 6r

a3 + 6

a4

))

≥ 5

a4 eax1, for r sufficiently large.

As before, by Theorem 1, for x ∈ � and 0 < r < d�(x) with |x| large, we obtain, when p = 1,

u(x)1−p − mx(r)
1−p

1 − p
≥ 5

a4 eax1, for r sufficiently large. (36)

Similarly, for p = 1 we get

u(x) ≥ mx(r)e
5
a4 eax1

, for r sufficiently large. (37)

If p > 1 we obtain from (36)

mx(r) ≤ Ce
−ax1
p−1 , for 0 < r < d�(x) sufficiently large.

Now for all points x = (x1, x1, ..., x1) with x1 > 0, the above estimate implies

mx(r) ≤ Ce
−a|x|

(p−1)
√

N
,

for 0 < r < d�(x) sufficiently large,

which is impossible as we know that mx(r) ≥ C|x|4−N for |x| large and r
|x| > 1

2 , r < d�(x).
When p = 1 and � is an exterior domain we get from (37) and Lemma 1

u(x) ≥ |x|4−Ne
5
a4 eax1

, for |x| sufficiently large.

Then for all points x̄ = (x1, x1, ..., x1) with x1 > 0 the above estimate implies that
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u(x̄) ≥ |x̄|4−Ne
5
a4 e

a
|x̄|√
N

, for |x̄| sufficiently large.

It then follows that u(x̄) → ∞ as |x̄| → ∞, hence u is unbounded.

(b) We consider the case p < 1. From (36) we get

u(x) ≥
(5(1 − p)

a4

) 1
1−p

e
ax1
1−p , for |x| sufficiently large.

We deduce that if sup{x1; x = (x1, ..., xN) ∈ �} = ∞, then u cannot be bounded. �
Now we consider problem (1) with the weight ρ(x) = xm

1 and f (u) = up . In this regard, we 
mention that the following problem for the Laplacian case

−�u = xm
1 up in RN,

where m is a positive integer, has been already considered in previous literature, see for example 
[7], [29], [19]. However, in all these works only odd integers are allowed. Our methods enable 
us to obtain a Liouville theorem for positive supersolutions in the complementary case where m
is an even integer.

Consider the problem

{
(−�)2u = xm

1 up in �

−�u > 0 in �.
(38)

We have the following nonexistence result for the supersolutions of (38).

Proposition 3. Consider problem (38), where p > 0, m > 0 is an even integer and � is an 
unbounded domain in RN . Then the following properties hold.

(a) If � is an exterior domain in RN , N ≥ 5 and 1 ≤ p ≤ N+m
N−4 , then the above problem does 

not admit any positive, classical supersolution in �.
(b) When p < 1, and � is an unbounded domain in RN with the property that

sup{x1; x = (x1, ..., xN) ∈ �} = ∞,

then the above problem does not have any bounded positive classical supersolution.

Proof. We first apply the estimates in Theorem 1 to x̄ ∈ � where x̄ = (x1, ..., x1) (x1 > 0). For 
the function ρ(x) = xm

1 and r = x1
2 , for which Br(x̄) ⊂ �, we have

ρx̄(r) = inf
Br(x̄)

ym
1 = (x1 − r)m ≥ xm

1

2m
.

Then we compute
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r∫
0

s3ρx̄(s)ds ≥ xm+4
1

2m+2 = C|x̄|m+4.

By the above estimate and as before, using Theorem 1 and Lemma 1, for x̄ ∈ � and r = x1
2 with 

|x̄| large, we obtain

mx̄(r) ≤ C|x̄|m+4
p−1 , p > 1, (39)

u(x̄) ≥ C|x|4−Ne|x̄|m+4
, p = 1 (40)

and

u(x̄) ≥ C|x̄|m+4
1−p , p < 1. (41)

Now the rest of the proof uses the same ideas as in the proof of Propositions 1 and 2. �
Remark 3. Notice that using our main estimates one can also extend the above nonexistence 
results to the more general problem

{
(−�)2u ≥ ρ(x1)f (u) in �,

−�u > 0 in �,
(42)

where ρ : R → [0, ∞) is a smooth function, and will see that the results depend on the behavior 
of ρ(t) at infinity, and not to the monotonicity property of ρ. To see similar problems to (42) for 
the Laplacian case we refer to [29], [19] and the references therein. We also notice that for the 
above problems (35) and (38) we cannot apply our Theorem 2 to get a pointwise inequality for 
−�u, because for the function ρ(x) = eax1 we have τρ = 4, and for ρ(x) = xm

1 we have τρ > 4, 

while for f (u) = up we have 4f ′(t)F̃ (t)

f̃ (t)2 = 4p
p+1 < 4. Thus, relation (14) in Theorem 2 does not 

hold in these cases. However, if we take in (42), for example

ρ(x1) = eax2
1 and f (u) = up (p > 1),

then we see that Theorem 2 can be applied on some bounded domains �. Indeed, in this case 

we have τρ = supx∈�

(
4 − 2

1+ax2
1

)
then (14) holds if one has supx∈� x2

1 ≤ p−1
2a

. Hence, every 

positive classical supersolution u with u = 0 on ∂� satisfies the differential inequality

−�u ≥
√

2

p + 1
e

ax2
1

2 u
p+1

2 in �,

provided that � satisfies

� ⊂ {x = (x1, ..., xN); |x1| ≤
√

p − 1 }.

2a
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A. Aghajani, C. Cowan and V.D. Rădulescu Journal of Differential Equations 298 (2021) 323–345
2.2. Fourth-order nonlinear eigenvalue problems

We now consider the semilinear biharmonic elliptic problem under Navier boundary condi-
tions

(Pλ)

{
(−�)2u = λρ(x)f (u) in �,

u = �u = 0 in ∂�,

where λ ≥ 0 is a parameter, � is a bounded domain in RN , N ≥ 2, ρ(x) ≥ 0 and smooth in �, 
and where f : [0, af ) (0 < af ≤ ∞) is smooth, increasing, convex with f (0) > 0. We define

λ∗ := sup{λ ≥ 0 : (Pλ) has a classical solution}.
This problem with well-known nonlinearities f (u) = eu, (1 + u)p (p > 1) and ρ(x) = 1, or 

f (u) = (1 − u)−2 and 0 ≤ ρ(x) ≤ 1 with ρ(x) > 0 on a set of positive Lebesgue measure, has 
been widely considered in the literature, under both Navier or Dirichlet boundary conditions, see 
for example [3,10,13,14,22,25] and the references cited therein. It is an interesting problem to 
estimate λ∗ both from below and above, when ρ(x) ≡ 1 we refer the reader to see Theorem 3 in 
Arioli-Gazzola-Grunau-Mitidieri [3] for the exponential nonlinearity, and Theorem 1 in Ferrero-
Grunau [22] with power-type nonlinearity. Also, in this regard, Berchio-Gazzola [6] proved that 
if ρ(x) ≡ 1 then the extremal parameter λ∗ of (Pλ) satisfies

0 < λ∗ <
λ1

αf

, αf := max{α > 0 : f (s) ≥ αs, for s ≥ 0}, (43)

where λ1 denotes the first eigenvalue of (−�)2 in � under Navier boundary conditions.

Here, as a consequence of Theorem 1, we obtain an explicit upper bound for λ∗ for the general 
problem (Pλ).

Corollary 1. The extremal parameter λ∗ of (Pλ) satisfies

λ∗ ≤ N2(N + 2)
( ∞∫

0

ds

f (s)

)(
sup
x∈�

d�(x)∫
0

s3ρx(s)ds
)−1

. (44)

In particular, when ρ(x) ≡ 1, we have

λ∗ ≤ 4N2(N + 2)

r4
�

∞∫
0

ds

f (s)
, (45)

where r� := supx∈� d�(x).
Also, when ρ and f satisfy the conditions of Theorem 2 then any classical solution uλ of (Pλ)

satisfies

−�uλ ≥
√

2ρ(x)F̃ (uλ), x ∈ �. (46)
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Example 1. Consider problem (Pλ) with f (u) = eu, ρ(x) = |x|a (a ≥ 0) and let � = BR be the 
ball of radius R centered at origin. Computing 

∫ d�(x)

0 s3ρx(s) for x ∈ BR we see that for a > 0
the supremum is attained at |x| = R

2 with

sup
x∈�

d�(x)∫
0

s3ρx(s)ds = (
R

2
)4+a

1∫
0

t3(1 − t)adt.

Thus, since 
∫ ∞

0
ds
es = 1, from (45) we obtain

λ∗ ≤ N2(N + 2)(
2

R
)4+a

( 1∫
0

t3(1 − t)adt
)−1

. (47)

Also, when a = 0, namely if ρ(x) ≡ 1, we obtain

λ∗(eu) ≤ 4N2(N + 2)

R4 . (48)

For the same problem with ρ(x) ≡ 1 and f (u) = (1 +u)p or the singular nonlinearity f (u) =
1

(1−u)p
(p > 1) we obtain

λ∗((1 + u)p) ≤ 4N2(N + 2)

(p − 1)R4 and λ∗(
1

(1 − u)p
) ≤ 4N2(N + 2)

(p + 1)R4 . (49)

Comparing our upper bounds for λ∗ in the example above (or the general formula given in 
(45)) with (43), we see that in small dimensions relation (43) gives a better estimate. However, 
in large dimension, relation (45) gives a better upper bound. Indeed, to use (43) one needs an 
estimate for λ1, for example the one obtained by Benedikt-Drábek in [5] shows that

λ1 ≤ 4N2

R4

2(3 + N
2 )

N(N
2 )(3)

= N2(N + 2)(N + 4)

R4 . (50)

Then we see that the upper bound given by (43) is O(N4) for large N but (45) is O(N3).

Now consider the biharmonic problem

(−�)2u = λ

(1 − u)2 in BR ⊂ RN

which models a simple micro-electromechanical system (MEMS) device, under Dirichlet bound-
ary conditions u = ∂νu = 0 on ∂BR . Cowan, Esposito, Ghoussoub, and Moradifam [14] proved 

that for large dimensions (actually, N ≥ 31) we have λ∗ ≤ HN

2 := N2(N−4)2

32 (see [14, Theorem 
4.2]), which is again O(N4).

Note also that if we use Theorem 3 to estimate λ∗, we then get a better upper bound, but less 
explicit, for λ∗. Indeed, we have the following result.
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Corollary 2. Consider problem (Pλ) with ρ(x) ≡ 1. Then the extremal parameter λ∗ satisfies the 
inequality

∞∫
0

ds

λ∗f (s) + N(N+2)√
2r2

�

√
λ∗F̃ (s)

≥ r4
�

4N2(N + 2)
, (51)

where r� := supx∈� d�(x).

Example 2. Consider (Pλ) with f (u) = eu, ρ(x) ≡ 1 and � = BR . Then from (51), after some 
simplifications, we obtain

1

λ∗

∞∫
0

ds

es + β
√

es − 1
≥ R4

4N2(N + 2)
, where β := N(N + 2)√

2λ∗R2
. (52)

Changing the variable es − 1 → t2 we have

∞∫
0

ds

es + β
√

es − 1
= 2

β

∞∫
0

tdt

(t2 + βt + 1)(t2 + 1)

= 2

β

(π

2
−

∞∫
0

dt

t2 + βt + 1

)
,

and using this in (52) we get

λ∗(eu) ≤ 128N2

R4

(π

2
−

∞∫
0

dt

t2 + βt + 1

)2
. (53)

Now, by computing the integral term on the right-hand side of (53) (which depends on β2 ≥ 4
or β2 < 4) one can get a better upper bound than (48). However, it is interesting to see that even 
using a weaker form of (53), that is, without considering the integral term, we get

λ∗(eu) ≤ 32π2N2

R4 , (54)

which is O(N2) for large dimension N .

3. Proofs of the main estimates

3.1. Proof of Theorem 1

Let u be a positive supersolution of (1). Fix x0 ∈ � and 0 < r < d�(x0). Then we have

(−�)2u ≥ ρx (r)f (mx (r)) in Br(x0). (55)
0 0
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Set

wr(y) := ρx0(r)f (mx0(r))

2N

(
r2 − |y − x0|2

)
. (56)

Then from (55) we have

−�(−�u) ≥ −�wr(y) in Br(x0) and wr ≡ 0 on ∂Br(x0).

Applying the maximum principle we obtain that −�u ≥ wr(y), in Br(x0). Also note that we 
have

wr(y) = −��r(y),

where

�r(y) = ρx0(r)f (mx0(r))

2N

( r2(r2 − |y − x0|2)
2N

− r4 − |y − x0|4
4(N + 2)

)
.

Hence, −�u ≥ −��r in Br(x0) with �r(y) = 0 on ∂Br(x0). Then by the maximum principle

u(y) − mx0(r) ≥ �r(y), y ∈ Br(x0).

Now let 0 < h < r and y ∈ Br−h(x0) ⊂ Br(x0). Since the function γ (t) := r2(r2−t2)
2N

− r4−t4

4(N+2)
is 

decreasing for t ∈ [0, r] we then get from the inequality above

u(y) − mx0(r) ≥ �r(y)

≥ ρx0(r)f (mx0(r))

2N

( r2(r2 − (r − h)2)

2N
− r4 − (r − h)4

4(N + 2)

)
, y ∈ Br−h(x0),

and taking infimum over Br−h(x0) and then dividing by h we obtain

mx0(r − h) − mx0(r)

h
≥ ρx0(r)f (mx0(r))

2N

( r2(r2 − (r − h)2)

2Nh
− r4 − (r − h)4

4(N + 2) h

)
, 0 < h < r.

Letting h → 0 in the above inequality, we arrive at the following ordinary differential inequality 
with initial value condition

⎧⎨
⎩ −m′

x0
(r) ≥ r3

N2(N + 2)
ρx0(r)f (mx0(r)) for a.e. r ∈ (0, d�(x0)),

mx0(0) = u(x0)

(57)

where “ ′ = d
dr

”. Dividing inequality (57) by f (mx0(r)) we can rewrite (57) as

G′(r) ≥ r3

2 ρx0(r), a.e. in (0, d�(x0)), (58)

N (N + 2)
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A. Aghajani, C. Cowan and V.D. Rădulescu Journal of Differential Equations 298 (2021) 323–345
where G : (0, d�(x0)) → R defined by

G(r) :=
u(x0)∫

mx0 (r)

ds

f (s)
, r ∈ (0, d�(x0)).

Now note that since mx0(r) is decreasing and f is positive, G is a nondecreasing function. So, 
by the Lebesgue differentiation theorem

r∫
0

G′(s)ds ≤ G(r) − G(0) = G(r).

Thus, by integrating (58) from 0 to r , we get

u(x0)∫
mx0 (r)

ds

f (s)
≥ 1

N2(N + 2)

r∫
0

s3ρx0(s)ds,

which proves the estimate (6). �
3.2. Proof of Theorem 2

Set

b := √
ρ, g(u) :=

√
2F̃ (u).

First notice that we have g′(t), g′′(t) ≥ 0 for t > 0. Indeed, we have g′(t) = f̃ (t)√
2F̃ (t)

> 0 for t > 0, 

and

√
2g′′(t) =

f ′(t)
√

F̃ (t) − f̃ (t)2

2
√

F̃ (t)

F̃ (t)
= 2f ′(t)F̃ (t) − f̃ (t)2

2F̃ (t)

√
F̃ (t)

> 0 for t > 0,

because for the function h(t) := 2f ′(t)F̃ (t) − f̃ (t)2 we have h′(t) = 2f ′′(t)F̃ (t) ≥ 0 and also 
h(0) = 0 that implies h(t) > 0 for t > 0. Now we set

v := −�u − b(x)g(u),

We have v ≥ 0 on ∂� and

−�v = (−�)2u + �(b(x)g(u)) ≥
ρ(x)f (u) + (�b)g(u) + 2g′(u)∇b.∇u + bg′′(u)|∇u|2 − bg′(u)v − b2g′(u)g(u),
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which implies that

−�v + bg′(u)v ≥ ρ(x)
[
f (u) − g(u)g′(u)

] +
[
bg′′(u)|∇u|2 + (�b)g(u) − 2g′(u)|∇b||∇u|

]
.

(59)
Now note that the first term in the right-hand side of (59) is nonnegative because f (u) −
g(u)g′(u) = f (0) > 0. Also, using the inequality a2 + b2 ≥ 2ab we see that the last term in 
the right-hand side of (59) is larger than

(
2
√

b(�b)g(u)g′′(u) − 2g′(u)|∇b|
)
|∇u|,

which is nonnegative if we have

g′(u)2|∇b|2 ≤ b�b g(u)g′′(u),

or

g(u)g′′(u)

g′(u)2 ≥ |∇b|2
b�b

,

or equivalently,

2f ′(u)F̃ (u)

f̃ (u)2
− 1 ≥ |∇b|2

b�b
.

Using the formula �(b2) = 2|∇b|2 + 2b�b we can rewrite the above as

4f ′(u)F̃ (u)

f (u)2 ≥ �(b2)

b�b
= �ρ√

ρ�
√

ρ
,

which holds by the assumption that

4f ′(t)F̃ (t)

f̃ (t)2
≥ τρ for all t > 0.

Thus, we proved that −�v + bg′(u)v ≥ 0 in �, then the maximum principle implies that v ≥ 0
in �, hence (15). �
3.3. Proof of Theorem 3

Let u be a positive supersolution of (16). Fix x0 ∈ � and 0 < r < d�(x0). Using the same 
ideas as in the proof of Theorem 1 we obtain

−�(−�u) ≥ −�wr(y) in Br(x0) and wr ≡ 0 on ∂Br(x0),

where wr is given in (56) (with ρ ≡ 1). Then by the maximum principle we get
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−�u ≥ wr(y) + min
∂Br

(−�u). (60)

Now note that by the result of Theorem 2 we have −�u ≥
√

2F̃ (u) in �, which also implies that

min
∂Br

(−�u) ≥
√

2F̃ (mx0(r)). (61)

Using (61) in (60) we arrive at

−�u ≥ wr(y) +
√

2F̃ (mx0(r)) = −�Vr, (62)

where

Vr(y) := f (mx0(r))(r))

2N

( r2(r2 − |y − x0|2)
2N

− r4 − |y − x0|4
4(N + 2)

)

+
√

2F̃ (mx0(r)) (
r2 − |y − x0|2

2N
).

We then proceed quite similar as in the proof of Theorem 1 to arrive at the ordinary differential 
inequality

⎧⎨
⎩ −m′

x0
(r) ≥ r3

N2(N + 2)
f (mx0(r)) + r√

2N

√
F̃ (mx0(r)) for a.e. r ∈ (0, d�(x0)),

mx0(0) = u(x0)

(63)

Using the fact that r < d�(x0) ≤ r� and thus r ≥ r3

r2
�

, we can estimate the RHS of (63) to arrive 
at

−m′
x0

(r) ≥ r3

N2(N + 2)

(
f (mx0(r)) + N(N + 2)√

2τ 2
�

√
F̃ (mx0(r))

)
.

By an argument similar to the end of the proof of Theorem 1, dividing inequality (63) by the 
term in the RHS of the inequality and then integrating over [0, r] we get

u(x0)∫
mx0 (r)

ds

f (s) + N(N+2)√
2r2

�

√
F̃ (s)

≥ r4

4N2(N + 2)
,

which proves estimate (17). �
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