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The Stationary Navier-Stokes Equations in
Variable Exponent Spaces of Clifford-Valued
Functions
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Abstract. In the frame of variable exponent spaces of Clifford-valued
functions and using the Banach fixed-point theorem, we obtain the ex-
istence and uniqueness of solutions to the stationary Navier-Stokes equa-
tions and Navier-Stokes equations with heat conduction under certain
assumptions. In a sense, we extend some results of P. Cerejeiras and U.
Kähler [P. Cerejeiras and U. Kähler, Elliptic boundary value problems
of fluid dynamics over unbounded domains, Mathematical Methods in
the Applied Sciences, 23(2000), 81-101].

Keywords. Clifford analysis; variable exponent; Navier-Stokes equations;
heat conduction.

1. Introduction

Since Kováčik and Rákosńık first thoroughly studied the spaces Lp(x) and
W k,p(x) in [25], Lebesgue and Sobolev variable exponent spaces have attracted
more and more attention, see for instance [7-10] for recent properties of vari-
able exponent spaces and [23] for an overview of differential equations with
variable growth. In particular, one of the reasons that forced the rapid expan-
sion of the theory of variable exponent function spaces has been the models of
electrorheological fluids introduced by Rajagopal and Růžička [28, 29], which
can be described by the boundary-value problem for the generalized Navier-
Stokes equations. Diening, Lengeler and Růžička [4] proved the existence and
uniqueness of strong and weak solutions of the Stokes system and Poisson
equations for bounded domains in the setting of variable exponent spaces. Of
course, the study of these spaces has been stimulated by problems in elas-
tic mechanics, calculus of variations and differential equations with variable
growth conditions, see [11, 12, 32, 33] and references therein.

As a powerful tool for solving elliptic boundary value problems in the
plane, the methods of complex function theory play an important role. One
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way to extend these ideas to higher dimension is to start with a generaliza-
tion of algebraic and geometrical properties of the complex numbers. In this
way, Hamilton studied the algebra of quaternion in 1843. Further generaliza-
tions were introduced by Clifford in 1878. He initiated the so-called geometric
algebras or Clifford algebras, which are generalizations of the complex num-
bers, the quaternions, and the exterior algebras, see [21]. Clifford analysis
is usually the study of Dirac equation or of a generalized Cauchy-Riemann
system, in which solutions are defined on domains in the Euclidean space
and take values in Clifford algebras, see [1, 30]. In particular, Gürlebeck and
Sprößig [16, 17] developed an operator calculus, which is analogous to the
known complex analytic approach in the plane and based on three operators:
a Cauchy-Riemann-type operator, a Teodorescu transform, and a generalized
Cauchy-type integral operator, to investigate elliptic boundary value prob-
lems of fluid dynamics over bounded and unbounded domains, especially the
Navier-Stokes equations and related equations. Of course, there are a num-
ber of unsolved basic problems involving the Navier-Stokes equations. This
is mainly due to the problem concerning the solvability of the corresponding
linear Stokes equations over domains, see [2, 18].

Our goal in this article is to investigate the existence and uniqueness
of solutions for Navier-Stokes equations in the variable exponent context.
For this purpose, an iteration method introduced by Gürlebeck and Sprößig
[16, 17, 19], which requires the solution of a Stokes-problem in every step of
iteration, is used to treat this kind of problems. Besides being of interest in
its own as a generalization of classical results, the results are of importance
in the study of fluid dynamics. Of course, the whole treatment applies to a
much larger class of elliptic problems.

This paper is organized as follows. In Section 2, we begin with a brief
summary of basic knowledge of Clifford algebras and variable exponent spaces
of Clifford-valued functions. Especially, we require the existence and unique-
ness of the Stokes equations in the context of variable exponent spaces,
which will be needed later. In Section 3, we investigate an iterative method
for the solution of the stationary Navier-Stokes equations. Using the Ba-
nach fixed-pointed theorem, we prove the existence and uniqueness of a so-
lution to the Navier-Stokes equations in W

1,p(x)
0 (Ω,C�n) × Lp(x)(Ω,R) un-

der certain hypotheses. In Section 4, with the help of the Banach fixed-
pointed theorem, we prove the existence and uniqueness of a solution in
W

1,p(x)
0 (Ω,C�n) ×W

1,p(x)
0 (Ω,C�n) × Lp(x)(Ω,R) of the Navier-Stokes prob-

lem with heat conduction under some conditions.

2. Preliminaries

2.1. Clifford algebras

We first recall some related notions and results concerning Clifford algebras.
For a detailed account we refer to [1, 5, 20, 26, 27, 30].
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Let C�n be the real universal Clifford algebras over R
n. Denote C�n by

C�n = span{e0, e1, e2, . . . , en, e1e2, . . . , en−1en, . . . , e1e2 . . . en}
where e0 = 1(the identity element in R

n), {e1, e2, . . . , en} is an orthonormal
basis of Rn with the relation eiej + ejei = −2δije0. Thus the dimension of
C�n is 2n. For I = {i1, . . . , ir} ⊂ {1, . . . , n} with 1 ≤ i1 < i2 < . . . < in ≤ n,
put eI = ei1ei2 . . . eir , while for I = ∅, e∅ = e0. For 0 ≤ r ≤ n fixed, the space
C�rn is defined by

C�rn = span{eI : |I| := card(I) = r}.
The Clifford algebras C�n is a graded algebra as

C�n =
⊕
r

C�rn.

Any element a ∈ C�n may thus be written in a unique way as

a = [a]0 + [a]1 + . . . + [a]n

where [ ]r : C�n → C�rn denotes the projection of C�n onto C�rn. In particular,
by C�2n = H we denote the algebra of real quaternion. It is customary to
identify R with C�0n and identify R

n with C�1n respectively. This means that
each element x of Rn may be represented by

x =
n∑

i=1

xiei.

For u ∈ C�n, we denotes by [u]0 the scalar part of u, that is the coefficient of
the element e0. We define the Clifford conjugation as follows:

ei1ei2 . . . eir = (−1)
r(r+1)

2 ei1ei2 . . . eir .

We denote
(A,B) =

[
AB

]
0
.

Then an inner product is thus obtained, give rising to the norm | · | on C�n
given by

|A|2 =
[
AA

]
0
.

For all what follows let Ω ⊂ R
n(n ≥ 2) be a bounded domain with a

sufficiently smooth boundary ∂Ω. A Clifford-valued function u : Ω → C�n can
be written as u = ΣIuIeI , where the coefficients uI : Ω → R are real-valued
functions.

The Dirac operator on Euclidean space used here is introduced by

D =
n∑

j=1

ej
∂

∂xj
:=

n∑
j=1

ej∂j .

If u is a real-valued function defined on a domain Ω in R
n, then Du =

∇u = (∂1u, ∂2u, . . . , ∂nu). Moreover, D2 = −Δ, where Δ is the Laplace
operator which operates only on coefficients. A function is left monogenic
if it satisfies the equation Du(x) = 0 for each x ∈ Ω. A similar definition
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can be given for right monogenic function. An important example of a left
monogenic function is the generalized Cauchy kernel

G(x) =
1
ωn

x

|x|n ,

where ωn denotes the surface area of the unit ball in R
n. This function is a

fundamental solution of the Dirac operator. Basic properties of left monogenic
functions one can refer to [14, 19, 30] and references therein.

2.2. Variable exponent spaces of Clifford-valued functions

Next we recall some basic properties of variable exponent spaces of Clifford-
valued functions. Note that in what follows, we use the short notation
Lp(x)(Ω), W 1,p(x)(Ω), etc., instead of Lp(x)(Ω,R), W 1,p(x)(Ω,R), etc.

Throughout this paper we always assume (unless declare specially)

p ∈ P log(Ω) and 1 < p− := inf
x∈Ω

p(x) ≤ p(x) ≤ sup
x∈Ω

p(x) =: p+ <∞. (2.1)

where P log(Ω) is the set of exponent p satisfying the so-called log-Hölder
continuity, i.e.,

|p(x)− p(y)| ≤ C

log(e + |x− y|−1)
holds for all x, y ∈ Ω, see [4, 13]. Let P(Ω) be the set of all Lebesgue mea-
surable functions p : Ω → (1,∞). Given p ∈ P(Ω) we define the conjugate
function p′(x) ∈ P(Ω) by

p′(x) =
p(x)

p(x)− 1
for each x ∈ Ω.

The variable exponent Lebesgue space Lp(x)(Ω) is defined by

Lp(x)(Ω) = {u ∈ P(Ω) :
∫
Ω

|u|p(x)dx <∞},

with the norm

||u||Lp(x)(Ω) = inf{t > 0 :
∫
Ω

|u
t
|p(x)dx ≤ 1}.

The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},
with the norm

||u||W 1,p(x)(Ω) = ||∇u||Lp(x)(Ω) + ||u||Lp(x)(Ω). (2.2)

Denote W
1,p(x)
0 (Ω) by the completion of C∞0 (Ω) in W 1,p(x)(Ω) with respect

to the norm (2.2). The space W−1,p(x)(Ω) is defined as the dual of the space
W

1,p′(x)
0 (Ω). For more details we refer to [3, 7-10] and reference therein.

In the following, we say that u ∈ Lp(x)(Ω,C�n) can be understood co-
ordinate wisely. For example, u ∈ Lp(x)(Ω,C�n) means that {uI} ⊂ Lp(x)(Ω)
for u = ΣIuIeI ∈ C�n with the norm ||u||Lp(x)(Ω,C�n) =

∑
I ||uI ||Lp(x)(Ω). In
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this way, spaces W 1,p(x)(Ω,C�n), W 1,p(x)
0 (Ω,C�n), C∞0 (Ω,C�n), etc., can be

understood similarly. In particular, the space L2(Ω,C�n) can be converted
into a right Hilbert C�n-module by defining the following Clifford-valued in-
ner product (see [16, Definition 3.74])(

f, g
)
C�n

=
∫
Ω

f(x)g(x)dx. (2.3)

Remark 2.1. A simple calculation yields that the norm ||u||Lp(x)(Ω,C�n) is
equivalent to the norm || |u| ||Lp(x)(Ω). Furthermore, we also have that for ev-

ery u ∈ W
1,p(x)
0 (Ω,C�n), ||Du||Lp(x)(Ω,C�n) is an equivalent norm of

||u||
W

1,p(x)
0 (Ω,C�n)

(see [14]).

Lemma 2.1. (see [14]) If p(x) ∈ P(Ω), then Lp(x)(Ω,C�n) and W 1,p(x)(Ω,C�n)
are reflexive Banach spaces.

Definition 2.1. (see [16]) Let u ∈ C(Ω,C�n). The Teodorescu operator is
defined by

Tu(x) =
∫
Ω

G(x− y)u(y)dy,

where G(x) is the generalized Cauchy kernel mentioned above.

Lemma 2.2. The following operators are continuous linear operators:

(i) T : Lp(x)(Ω,C�n) →W 1,p(x)(Ω,C�n).
(ii) T̃ : W−1,p(x)(Ω,C�n) → Lp(x)(Ω,C�n).

Proof. (i) See Theorem 2.7 in [14].
(ii) In view of Proposition 12.3.2 in [3], we know that for each f ∈

W−1,p(x)(Ω), there exists fk ∈ Lp(x)(Ω), k = 0, 1, . . . , n, such that

< f, ϕ >=
n∑

k=0

∫
Ω

fk
∂ϕ

∂xk
dx, (2.4)

for all ϕ ∈ W
1,p′(x)
0 (Ω). Moreover, ‖f‖W−1,p(x)(Ω) and

∑n
k=0 ‖fk‖Lp(x)(Ω) are

equivalent. Obviously, for every f ∈W−1,p(x)(Ω,C�n) the equality (2.4) still
holds for fk ∈ Lp(x)(Ω,C�n), k = 0, 1, . . . , n. Moreover, ‖f‖W−1,p(x)(Ω,C�n) is
equivalent to

∑n
k=0 ‖fk‖Lp(x)(Ω,C�n). On the other hand, by Proposition 12.3.4

in [3], it is easy to show that C∞0 (Ω, Cln) is dense in W−1,p(x)(Ω,C�n). Thus
we may choose

uj = uj
0 +

n∑
k=1

∂uj
k

∂xk
,

where uj
0, u

j
k ∈ C∞0 (Ω,C�n), such that ‖uj−f‖W−1,p(x)(Ω,C�n) → 0 and ‖uj

k−
fk‖Lp(x)(Ω,C�n) → 0 as j → ∞, where k = 0, 1, . . . , n. Here, we are using the
fact that C∞0 (Ω,C�n) is dense in Lp(x)(Ω,C�n)(see [14]). Then we consider

Tuj =
∫
Ω

G(x− y)uj(y)dy,
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where G(x) is the above-mentioned generalized Cauchy kernel. Further, we
have

Tuj =
∫
Ω

G(x− y)
(
uj
0(y) +

n∑
k=1

∂

∂yk
uj
k(y)

)
dy

=
∫
Ω

G(x− y)uj
0(y)dy +

n∑
k=1

∫
Ω

∂

∂xk
G(x− y)uj

k(y)dy.

Since ∣∣ ∫
Ω

G(x− y)uj
0(y)dy

∣∣ ≤ ∫
Ω

1
|x− y|n−1

∣∣uj
0(y)

∣∣dy.
By Remark 2.1, Lemma 2.7 and Lemma 2.8, there exists a constant C0 > 0
such that ∣∣∣∣∣∣ ∫

Ω

G(x− y)uj
0(y)dy

∣∣∣∣∣∣
Lp(x)(Ω,Cln)

≤ C0||uj
0||Lp(x)(Ω,C�n). (2.5)

Now let us extend uj
k(x) by zero to R

n \ Ω. Then it is easy to show that
∂

∂xk
G(x − y) satisfies the conditions of Calderón-Zygmund kernel on R

n ×
R

n (see [14]). In view of Lemma 2.9, there exist positive constant Ck(k =
1, . . . , n) such that∣∣∣∣∣∣ ∫

Ω

∂

∂xk
G(x− y)uj

k(y)
∣∣∣∣∣∣
Lp(x)(Ω,C�n)

≤ Ck

∥∥uj
k

∥∥
Lp(x)(Ω,C�n)

. (2.6)

Combining (2.5) with (2.6), we have∣∣∣∣Tuj
∣∣∣∣
Lp(x)(Ω,C�n)

≤ C0

∣∣∣∣uj
0

∣∣∣∣
Lp(x)(Ω,C�n)

+
n∑

k=1

Ck

∣∣∣∣uj
k

∣∣∣∣
Lp(x)(Ω,Cln)

.

Letting j →∞, by means of the Continuous Linear Extension Theorem, the
operator T can be uniquely extended to a bounded linear operator T̃ such
that for all f ∈W−1,p(x)(Ω,C�n), there exists a constant C̃ > 0 such that∥∥T̃ f∥∥

Lp(x)(Ω,C�n)
≤ C

(∥∥f0∥∥Lp(x)(Ω,Cln)

+
∑n

k=1

∥∥fk∥∥Lp(x)(Ω,C�n)

)
≤ C̃

∥∥f∥∥
W−1,p(x)(Ω,C�n)

.

Now we complete the proof of the lemma 2.2. �
Lemma 2.3. The following operators are continuous linear operators:

(i) D : W 1,p(x)(Ω,C�n) → Lp(x)(Ω,C�n).
(ii) D̃ : Lp(x)(Ω,C�n) →W−1,p(x)(Ω,C�n).

Proof. (i) See Lemma 2.6 in [14].
(ii) We consider the following Dirichlet problem of the Poisson equation

with homogeneous boundary data{ −Δu = f, in Ω
u = 0, on ∂Ω (2.7)

It is easy to see that for all f ∈W−1,p(x)(Ω,C�n) the problem (2.7) still
has a unique weak solution u ∈W 1,p(x)(Ω,C�n), see L. Diening, D. Lengeler
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and M. Ružička [4]. We denote by Δ−1
0 the solution operator. On the other

hand, it is clear that the operator

Δ : W 1,p(x)(Ω,C�n) →W−1,p(x)(Ω,C�n)

is continuous, so we obtain from Lemma 2.2 that the operator D̃ = −ΔT :
Lp(x)(Ω,C�n) → W−1,p(x)(Ω,C�n) is continuous, where the operator D̃ can
be considered as a unique continuous linear extension of the operator D. �

Lemma 2.4. Let p(x) ∈ P(Ω).

(i) If u ∈ W
1,p(x)
0 (Ω,C�n), then the equation TDu(x) = u(x) holds for all

x ∈ Ω.
(ii) If u ∈ Lp(x)(Ω,C�n), then the equation DTu(x) = u(x) holds for all

x ∈ Ω.

Proof. By Remark 4.21 in [16], (i) and (ii) can be deduced from the con-
tinuous embedding W 1,p(x)(Ω,C�n) ↪→ W 1,p−(Ω,C�n) and Lp(x)(Ω,C�n) ↪→
Lp−(Ω,C�n). �
Lemma 2.5. Let p(x) satisfies (2.1).

(i) If u ∈ Lp(x)(Ω,C�n), then the equation T̃ D̃u(x) = u(x) holds for all
x ∈ Ω.

(ii) If u ∈W−1,p(x)(Ω,C�n), then the equation D̃T̃ u(x) = u(x) holds for all
x ∈ Ω.

Proof. (i) follows from Lemma 2.4 (i) and the density of W 1,p(x)
0 (Ω,C�n) in

Lp(x)(Ω,C�n).
(ii) follows from Lemma 2.4 (ii) and the density of C∞0 (Ω,C�n) in space

W−1,p(x)(Ω,C�n). �
Gürlebeck and Sprößig [16, 17] showed that the orthogonal decomposi-

tion of the space L2(Ω) holds in the hyper-complex function theory:

L2(Ω,C�n) = (kerD ∩ L2(Ω,C�n))⊕DW 1,2
0 (Ω,C�n) (2.8)

with respect to the Clifford-valued product (2.3). Note that kerD denotes
the set of all monogenic functions on Ω. This decomposition has a number
of applications, especially to the theory of partial differential equations, see
[6] for the complex case and [30] for the hyper-complex case. Kähler [24]
extended the orthogonal decomposition (2.8) to the spaces Lp(Ω) in form of
a direct decomposition in the case of Clifford analysis. Similar to the proof of
Theorem 6 in [24], we can generalize the direct decomposition into the case
of variable exponent Lebesgue spaces as follows:

Lp(x)(Ω,C�n) = (kerD̃ ∩ Lp(x)(Ω,C�n))⊕DW
1,p(x)
0 (Ω,C�n) (2.9)

with respect to the Clifford-valued product (2.3).
From this decomposition we can get the following projections

P : Lp(x)(Ω,C�n) → kerD̃ ∩ Lp(x)(Ω,C�n)

Q : Lp(x)(Ω,C�n) → DW
1,p(x)
0 (Ω,C�n).
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Moreover, we have
Q = DΔ−1

0 D̃, P = I −Q.

Lemma 2.6. Lp(x)(Ω,C�n) ∩ imQ is a closed subspace of Lp(x)(Ω,C�n).

Proof. Let u ∈ Lp(x)(Ω,C�n) ∩ imQ = DW
1,p(x)
0 (Ω,C�n). Then there exists

uk ∈ W
1,p(x)
0 (Ω,C�n) such that ||Duk − u||Lp(x)(Ω,C�n) → 0 as k → ∞. In

view of Lemma 2.1, we can extract a subsequence of {uk}( still labeled by
{uk} ), such that uk ⇀ v weakly in W

1,p(x)
0 (Ω,C�n). Since the norm in a

Banach space is weakly lower semicontinuous, we obtain from Lemma 2.3

||Dv − u||Lp(x)(Ω,C�n) ≤ lim inf
n→∞ ||Dun − u||Lp(x)(Ω,C�n) = 0.

Thus u = Dv, which completes the proof of Lemma 2.6. �

Lemma 2.7.
(
Lp(x)(Ω,C�n) ∩ imQ

)∗ = Lp′(x)(Ω,C�n) ∩ imQ. Namely, the
linear operator

Φ : DW
1,p′(x)
0 (Ω,C�n) → (

DW
1,p(x)
0 (Ω,C�n)

)∗
given by

Φ(Du)(Dϕ) = (Dϕ,Du)Sc :=
∫
Ω

[
DϕDu

]
0
dx

is a Banach space isomorphism.

Proof. In terms of Lemma 2.6, DW
1,p(x)
0 (Ω,C�n) and DW

1,p′(x)
0 (Ω,C�n) are

reflexive Banach spaces since they are closed in spaces Lp(x)(Ω,C�n) and
spaces Lp′(x)(Ω,C�n) respectively. Linearity of Φ is clear. For injectivity, sup-
pose

Φ(Du)(Dϕ) = (Dϕ,Du)Sc = 0 (2.10)

for all ϕ ∈ W
1,p(x)
0 (Ω,C�n) and some u ∈ W

1,p′(x)
0 (Ω,C�n). For any ω ∈

Lp(x)(Ω,C�n), according to (2.9), we may write ω = α + β with α ∈ kerD̃ ∩
Lp(x)(Ω,C�n) and β ∈ DW

1,p(x)
0 (Ω,C�n). Thus we obtain

(ω,Du)Sc = (α + β,Du)Sc = (α,Du)Sc + (β,Du)Sc = (β,Du)Sc.

This together with (2.10) gives (ω,Du)Sc = 0. This results in Du = 0. It fol-
lows that Φ is injective. To get surjectivity, let f ∈ (

DW
1,p(x)
0 (Ω,C�n)

)∗. By
the Hahn-Banach Theorem, there is F ∈ (

Lp(x)(Ω,C�n)
)∗ with ||F || = ||f ||

and F |
DW

1,p(x)
0 (Ω,C�n)

= f . Moreover, there exists ϕ ∈ Lp′(x)(Ω,C�n) such

that F (u) = (u, ϕ)Sc for any u ∈ Lp(x)(Ω,C�n). According to (2.9), we can
write ϕ = η+Dα, where η ∈ kerD̃∩Lp′(x)(Ω,C�n), Dα ∈ DW

1,p′(x)
0 (Ω,C�n).

For any Du ∈ DW
1,p(x)
0 (Ω,C�n), we have

f(Du) = (Du,ϕ)Sc = (Du, η)Sc + (Du,Dα)Sc = (Du,Dα)Sc = Φ(Dα)(Du).

Consequently, Φ(Dα) = f . It follows that Φ is surjective. By Theorem 3.1 in
[13] we have

|Φ(Du)(Dϕ)| = |(Dϕ,Du)Sc| ≤ C||Dϕ||Lp(x)(Ω,C�n)||Du||Lp′(x)(Ω,C�n)
.
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This means that Φ is continuous. Furthermore, it is immediate that Φ−1 is
continuous from the Inverse Function Theorem. This finishes the proof of
Lemma 2.7. �

In the following, we consider the Stokes system which consists in finding
a solution (u, π) :

−Δu +
1
μ
∇π =

ρ

μ
f in Ω, (2.11)

div u = f0 in Ω, (2.12)

u = v0 on ∂Ω. (2.13)

With
∫
Ω
f0dx =

∫
∂Ω

n · v0dx the necessary condition for the solvability
is given. Here, u is the velocity, π the hydrostatic pressure, ρ the density,
μ the viscosity, f the vector of the external forces and the scalar function
f0 a measure of the compressibility of fluid. The boundary condition (2.13)
describes the adhesion at the boundary of the domain Ω for v0 = 0. This
system describes the stationary flow of a homogeneous viscous fluid for small
Reynold’s numbers. For more details, we refer to [2, 16-18, 22].

In this paper, for f =
∑n

i=1 fiei and u =
∑n

i=1 uiei, let us consider the
following Stokes system in the hyper-complex formulation (see [16, 17]):

D̃Du +
1
μ
Dπ =

ρ

μ
f in Ω, (2.14)

[Du]0 = 0 in Ω, (2.15)

u = 0 on ∂Ω. (2.16)

Definition 2.2. We call (u, π) ∈ W
1,p(x)
0 (Ω,C�n) × Lp(x)(Ω) a solution of

(2.14)-(2.16) provided that it satisfies the system (2.14)-(2.16) for every f ∈
W−1,p(x)(Ω,C�n).

Definition 2.3. The operator ∇̃ : Lp(x)(Ω) → (W−1,p(x)(Ω))n is defined by

< ∇̃f, ϕ >= − < f, divϕ >:= −
∫
Ω

f divϕdx

for all f ∈ Lp(x)(Ω) and ϕ ∈ (C∞0 (Ω))n.

Lemma 2.8. Let Ω be a bounded domain in R
n with Lipschitz boundary ∂Ω.

Let f ∈ (W−1,p(x)(Ω))n satisfies:

< f, ϕ >=
∫
Ω

f · ϕdx = 0,

for any ϕ ∈ W (Ω) :=
{
v ∈ (W 1,p′(x)

0 (Ω))n : div v = 0
}
. Then there exists

q ∈ Lp(x)(Ω) such that f = ∇̃q.

Proof. We first show that the range space R(∇̃) is a closed subspace of
(W−1,p(x)(Ω))n. Let E1 = Lp(x)(Ω), E2 = (W−1,p(x)(Ω))n, E3 = W−1,p(x)(Ω)
A = ∇̃, B = I (the identity operator). Since the domain is bounded, the
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canonical imbedding B of E1 into E3 is compact (see [4]). On the other
hand, by means of Hölder inequality, we have for every f ∈ Lp(x)(Ω)∥∥∇̃f

∥∥
W−1,p(x)(Ω)

= sup
||g||

W
1,p′(x)
0 (Ω)

≤1

∣∣ < ∇̃f, g >
∣∣

= sup
||g||

W
1,p′(x)
0 (Ω)

≤1

∣∣∣ ∫
Ω

f divgdx
∣∣∣ ≤ C

∥∥f∥∥
Lp(x)(Ω)

.

Then it is easy to show that∥∥∇̃f
∥∥
W−1,p(x)(Ω)

+
∥∥f∥∥

W−1,p(x)(Ω)
≤ C

∥∥f∥∥
Lp(x)(Ω)

for all f ∈ Lp(x)(Ω).
(2.17)

On the other hand, by Theorem 14.3.18 in [3] we have∥∥f∥∥
Lp(x)(Ω)

≤ C
(∥∥∇̃f

∥∥
W−1,p(x)(Ω)

+
∥∥f∥∥

W−1,p(x)(Ω)

)
, (2.18)

holds for every f ∈ Lp(x)(Ω). Then (2.17) and (2.18) yield the equivalence of
the norms of both sides above. Thus, the desired conclusion follows immedi-
ately from Lemma 11.1 in [31].

Since < −∇̃u, g >=< u, div g > for every u ∈ Lp(x)(Ω) and g ∈
(W 1,p′(x)

0 (Ω))n, the operator −∇̃ ∈ L (Lp(x)(Ω), (W−1,p(x)(Ω))n) is the ad-
joint of the operator div ∈ L ((W 1,p′(x)

0 (Ω))n, Lp′(x)(Ω)). Then the Closed
Range Theorem of Banach implies that

R(∇̃) = (ker(div))⊥ := {y ∈ (W−1,p(x)(Ω))n : < y, v >= 0, ∀ v ∈ W (Ω)}.
This implies the desired conclusion. �

Theorem 2.1. Suppose f ∈W−1,p(x)(Ω,C�n). Then the Stokes system (2.14)–
(2.16) has a unique solution (u, π) ∈W

1,p(x)
0 (Ω,C�n)× Lp(x)(Ω) in the form

u +
1
μ
TQπ =

ρ

μ
TQT̃f,

with respect to the estimate

||Du||Lp(x)(Ω,C�n) +
1
μ
||Qπ||Lp(x)(Ω) ≤ C

ρ

μ
||QT̃f ||Lp(x)(Ω,C�n).

Here, C ≥ 1 is a constant and the hydrostatic pressure π is unique up to a
constant.

Proof. We first prove that if f ∈W−1,p(x)(Ω,C�n), then we have the following
representation:

TQT̃f = u + TQω.

Indeed, let ϕn ∈ W
1,p(x)
0 (Ω,C�n) with ϕn → ϕ in Lp(x)(Ω,C�n). By Lemma

2.4, we have
TQT (Dϕn) = TQϕn.
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Since W
1,p(x)
0 (Ω,C�n) is dense in Lp(x)(Ω,C�n), it follows that TQT̃ D̃ϕ =

TQϕ. Thus, for u ∈W
1,p(x)
0 (Ω,C�n) and π ∈ Lp(x)(Ω) we obtain

TQT̃ (
ρ

μ
f) = TQT̃ (D̃Du +

1
μ
D̃π) = u +

1
μ
TQπ.

This implies that our system (2.14)-(2.15) is equivalent to the system

u +
1
μ
QTQπ =

ρ

μ
TQT̃f, (2.19)

[Qπ]0 = [QT̃f ]0. (2.20)

Obviously, the equality (2.14) is equivalent to the following equality

Du +
1
μ
Qπ =

ρ

μ
QT̃f. (2.21)

Now we need to show that for each f ∈W−1,p(x)(Ω,C�1n), the function
QTf can be decomposed into two functions Du and Qπ. Suppose Du+Qπ =
0 for u ∈ W

1,p(x)
0 (Ω,C�1n) ∩ ker div and π ∈ Lp(x)(Ω). Then (2.15) gives

[Qπ]0 = 0. Thus, Qπ = 0. Hence, Du = Qπ = 0. This means that Du + Qπ
is a direct sum, which is a subset of imQ.

Next we have to ask about the existence of functional F with F(Du) = 0
and F(Qπ) = 0 but F(QT̃f) = 0, here F ∈ (Lp(x)(Ω,C�1n) ∩ imQ)∗. This
is equivalent to ask if there exists g ∈ W−1,p′(x)(Ω,C�1n), such that for all
u ∈W

1,p(x)
0 (Ω,C�1n) ∩ ker div and ω ∈ Lp(x)(Ω)

(Du,QT̃g)Sc = 0, (2.22)

(Qπ,QT̃g)Sc = 0, (2.23)

but (QT̃f,QT̃ g)Sc = 0. Here, Lemma 2.7 is used.
Thus, let us consider (2.22) and (2.23) with g ∈ W−1,p′(x)(Ω,C�1n).

Notice that, with the help of Lemma 2.5, (2.22) yields

(Du,QT̃g)Sc = (u, D̃QT̃ g)Sc = (u, D̃T̃ g − D̃P T̃ g)Sc = (u, g)Sc = 0,

which implies g = ∇̃h = D̃h with h ∈ Lp′(x)(Ω) because of Lemma 2.8. Thus
we obtain from (2.23) and Lemma 2.7

(Qπ,QT̃g)Sc = (Qπ,QT̃ D̃h)Sc = (Qπ,Qh)Sc = 0

holds for each π ∈ Lp(x)(Ω). Hence, Qπ = |Qh|p′(x)−2Qh gives Qh = 0. Then
we obtain

g = D̃h = D̃Qh + D̃Ph = 0.
Furthermore, we get

(QT̃f,QT̃ g)Sc = 0, ∀f ∈W−1,p(x)(Ω,C�1n).

Finally, (2.21) yields

||Du||Lp(x)(Ω,C�n) +
1
μ
||Qπ||Lp(x)(Ω) ≥

ρ

μ
||QT̃f ||Lp(x)(Ω,C�n).
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By the Norm Equivalence Theorem, we obtain

||Du||Lp(x)(Ω,C�n) +
1
μ
||Qπ||Lp(x)(Ω) ≤ C

ρ

μ
||QT̃f ||Lp(x)(Ω,C�n).

By Remark 2.1, Lemma 2.2 and the boundedness of the operator Q, we get

||u||
W

1,p(x)
0 (Ω,C�n)

+
1
μ
||Qπ||Lp(x)(Ω) ≤ C

ρ

μ
||f ||W−1,p(x)(Ω,C�n). (2.24)

From (2.24) the uniqueness of the solution follows. Notice that Qπ = 0 implies
π ∈ kerD̃. Therefore, π is unique up to a constant. Now we complete the proof
of Theorem 2.1. �

3. The Steady Navier-Stokes Equations

Our aim in this section is to seek after an iterative method for the solution
of the time-independent Navier-Stokes equations:

−Δu +
ρ

μ
(u · ∇)u +

1
μ
∇π =

ρ

μ
f in Ω, (3.1)

divu = f0 in Ω, (3.2)

u = v0 on ∂Ω. (3.3)

In addition to the case of the Stokes system, the main difference from
the above-mentioned Stokes equations is the appearance of the non-linear
convection term (u · ∇)u. In 1928, Oseen showed that one can get relatively
good results if the convection term (u · ∇)u is replaced by (v · ∇)u , where v
is a solution of the corresponding Stokes equations. In 1965, Finn [15] proved
the existence of solutions for small external forces with a spatial decreasing
to infinity of order |x|−1 for the case of n = 3, and used the Banach fixed-
pointed theorem. Gürlebeck and Sprößig [16, 17, 19] solved this system by
a reduction to a sequence of Stokes problems provided the external force f
belongs to Lp(Ω,H) for a bounded domain Ω and 6

5 < p < 3
2 . Cerejeiras and

Kähler [7] obtained the similar results provided the external force f belongs
to W−1,p(Ω,C�n) for an unbounded domain Ω and n

2 ≤ p <∞. Our interest
in this section is to extend these results to the setting of variable exponent
spaces.

In this paper, for f =
∑n

i=1 fiei , u =
∑n

i=1 uiei, let us consider the
following steady Navier-Stokes equations in the hyper-complex notation:

D̃Du +
1
μ
Dπ =

ρ

μ
F (u) in Ω, (3.4)[

Du
]
0

= 0 in Ω, (3.5)

u = 0 on ∂Ω, (3.6)

with the non-linear part F (u) = f − [
uD

]
0
u.

We first give the following lemma, which is crucial to the convergence
of the iteration method.
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Lemma 3.1. Let p(x) satisfy (2.1) and n
2 ≤ p− ≤ p(x) ≤ p+ < ∞. Then the

operator F : W 1,p(x)
0 (Ω,C�1n) → W−1,p(x)(Ω,C�1n) is a continuous operator

and we have ∥∥[uD]
0
u
∥∥
W−1,p(x)(Ω,C�n)

≤ C1

∥∥u∥∥2
W

1,p(x)
0 (Ω,C�n)

,

where C1 = C1(n, p,Ω) is a positive constant.

Proof. Let u =
∑n

i=1 uiei ∈W
1,p(x)
0 (Ω,C�1n). Then∥∥∥[uD]

0
u
∥∥∥
W−1,p(x)(Ω,C�n)

=
∥∥∥ n∑

j=1

(
n∑

i=1

ui∂iuj)ej
∥∥∥
W−1,p(x)(Ω,C�n)

≤
n∑

i,j=1

∥∥∥ui∂iuj

∥∥∥
W−1,p(x)(Ω)

.

In view of the continuous embedding Ls(x)(Ω) ↪→ W−1,p(x)(Ω) for s(x) =
np(x)
n+p(x) (see [3]), we have∥∥ui∂iuj

∥∥
W−1,p(x)(Ω)

≤ C(n, p,Ω)
∥∥ui∂iuj

∥∥
Ls(x)(Ω)

.

According to Theorem 2.3 in [25] and Hölder’s inequality, we obtain∥∥ui∂iuj

∥∥
Ls(x)(Ω)

≤ C sup
||ϕj ||

Ls′(x)(Ω)
≤1

∫
Ω

∣∣ui∂iuj

∣∣∣∣ϕj

∣∣dx
≤ C

∥∥ui

∥∥
Ln(Ω)

∥∥∂iuj

∥∥
Lp(x)(Ω)

∥∥ϕj

∥∥
Ls′(x)(Ω)

≤ C
∥∥ui

∥∥
Ln(Ω)

∥∥uj

∥∥
W

1,p(x)
0 (Ω)

.

In terms of the continuous embedding W
1,p(x)
0 (Ω) ↪→ Ln(Ω) for n

2 ≤ p− ≤
p(x) ≤ p+ <∞ (see [3]), we get∥∥∥ui∂iuj

∥∥∥
Ls(x)(Ω)

≤ C(n, p,Ω)
∥∥ui

∥∥
W

1,p(x)
0 (Ω)

∥∥uj

∥∥
W

1,p(x)
0 (Ω)

.

Finally, it is immediate to get the desired estimate from inequalities men-
tioned above. Hence, it is easy to get the continuity of the operator F from
F (u) = f − [uD]0u. �

Remark 3.1. Actually, n
2 ≤ p− means p− ∈ (1,+∞) for n = 2 while p− ∈

[n2 ,+∞) for n > 2. Obviously, Lemma 3.1 is a direct generalization of Lemma
4.1 in [2] to the variable exponent context.

We are now in position to show our main result in this section as follows.

Theorem 3.1. Let p(x) satisfy (2.1) and n
2 ≤ p− ≤ p(x) ≤ p+ < ∞.

Then the system (3.4)–(3.6) has a unique solution (u, π) ∈W
1,p(x)
0 (Ω,C�n)×

Lp(x)(Ω,R) (π is unique up to a real constant) if the right-hand side f satisfies
the condition

‖f‖W−1,p(x)(Ω,C�n) <
ν2

4C1C2
4

, (3.7)
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with ν = μ
ρ , C4 = C2(1 + C3), where C3 ≥ 1 indicated in (3.11) and

C2 = ‖T‖
[Lp(x)∩imQ,W

1,p(x)
0 ]

‖Q‖[Lp(x),Lp(x)∩imQ]‖T̃‖[W−1,p(x),Lp(x)∩imQ].

For any function u0 ∈W
1,p(x)
0 (Ω,C�n) with

||u0||W 1,p(x)
0 (Ω,C�n)

≤ ν

2C1C2
−W , (3.8)

here, W =
√

ν2

4C2
1C

2
4
− 1

C1
||f ||W−1,p(x)(Ω,C�n) , the iteration procedure

uk +
1
μ
TQπk =

ρ

μ
TQT̃F (uk−1), k = 1, 2, . . . (3.9)

1
μ

[
Qπk

]
0

=
ρ

μ

[
QT̃F (uk−1)

]
0
, (3.10)

converges in W
1,p(x)
0 (Ω,C�n)× Lp(x)(Ω,R).

Proof. The proof is similar to the theorem 4.6.8 in [17], and for the reader’s
convenience, here we will give the full details of the proof. Replacing f by
F (uk−1) in the proof of Theorem 2.1 we obtain the unique solvability of the
Stokes equations (3.9)-(3.10) which we have to solve in each step. Moreover,
we have the following estimate:∥∥Duk

∥∥
Lp(x)(Ω,C�n)

+
1
μ

∥∥Qπk

∥∥
Lp(x)(Ω)

≤ C3
ρ

μ

∥∥QT̃F (uk−1)
∥∥
Lp(x)(Ω,C�n)

(3.11)
where C3 ≥ 1 is a constant. The only remaining problem is the convergence
of our iteration procedure. From Theorem 2.1 we know

Duk +
1
μ
Qπk =

ρ

μ
QT̃F (uk−1).

Then we deduce from (3.11)

1
μ

∥∥Q(πk − πk−1)
∥∥
Lp(x)(Ω)

≤ C3

ν

∥∥QT̃ (F (uk−1)− F (uk−2))
∥∥
Lp(x)(Ω,C�n)

.

Hence we have∥∥uk − uk−1

∥∥
W

1,p(x)
0 (Ω,C�n)

≤ 1
μ

∥∥TQ(πk − πk−1)
∥∥
W

1,p(x)
0 (Ω,C�n)

+
ρ

μ

∥∥TQT̃ (F (uk−1)

−F (uk−2))||W 1,p(x)
0 (Ω,C�n)

≤C2(1 + C3)
ν

∥∥F (uk−1)− F (uk−2)
∥∥
W−1,p(x)(Ω,C�n)

.
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By means of Lemma 3.1 we deduce∥∥F (uk−1)− F (uk−2)
∥∥
W−1,p(x)(Ω,C�n)

=
∥∥[uk−1D]0uk−1 − [uk−2D]0uk−2

∥∥
W−1,p(x)(Ω,C�n)

=
∥∥((uk−1 − uk−2) · ∇)uk−1

∥∥
W−1,p(x)(Ω,C�n)

+
∥∥(uk−2 · ∇)(uk−1 − uk−2)

∥∥
W−1,p(x)(Ω,C�n)

≤C1

∥∥uk−1 − uk−2

∥∥
W

1,p(x)
0 (Ω,C�n)

(
∥∥uk−1

∥∥
W

1,p(x)
0 (Ω,C�n)

+
∥∥uk−2

∥∥
W

1,p(x)
0 (Ω,C�n)

).

Let Lk = C1C4

ν (
∥∥uk−1

∥∥
W

1,p(x)
0 (Ω,C�n)

+
∥∥uk−1

∥∥
W

1,p(x)
0 (Ω,C�n)

) with C4 = C2(1+
C3). Then we obtain∥∥uk − uk−1

∥∥
W

1,p(x)
0 (Ω,C�n)

≤ Lk

∥∥uk−1 − uk−2

∥∥
W

1,p(x)
0 (Ω,C�n)

. (3.12)

On the other hand, by (3.11) and Lemma 3.1, we have∥∥uk

∥∥
W

1,p(x)
0 (Ω,C�n)

≤ 1
μ

∥∥TQπk

∥∥
W

1,p(x)
0 (Ω,C�n)

+
ρ

μ

∥∥TQT̃F (uk−1)
∥∥
W

1,p(x)
0 (Ω,C�n)

≤ C1C4

ν

∥∥uk−1

∥∥2
W

1,p(x)
0 (Ω,C�n)

+
C4

ν

∥∥f∥∥
W−1,p(x)(Ω,C�n)

.

Now we have to ensure that
∥∥uk

∥∥
W

1,p(x)
0 (Ω,C�n)

≤ ∥∥uk−1

∥∥
W

1,p(x)
0 (Ω,C�n)

. For
this we notice that
C1C4

ν

∥∥uk−1

∥∥2
W

1,p(x)
0 (Ω,C�n)

+
C4

ν

∥∥f∥∥
W−1,p(x)(Ω,C�n)

≤ ∥∥uk−1

∥∥
W

1,p(x)
0 (Ω,C�n)

,

which is equivalent to∥∥uk−1

∥∥2
W

1,p(x)
0 (Ω,C�n)

− ν

C1C4

∥∥uk−1

∥∥
W

1,p(x)
0 (Ω,Cln)

+
1
C1

∥∥f∥∥
W−1,p(x)(Ω,C�n)

≤ 0,

which is equivalent to

(
∥∥uk−1

∥∥
W

1,p(x)
0 (Ω,C�n)

− ν

2C1C4
)2 ≤ ν2

(2C1C4)2
− 1

C1

∥∥f∥∥
W−1,p(x)(Ω,C�n)

.

According to the assumption (3.7), we have∣∣∣∥∥uk−1

∥∥
W

1,p(x)
0 (Ω,C�n)

− ν

2C1C4

∣∣∣ ≤ W
with W =

√
ν2

4C2
1C

2
4
− 1

C1

∥∥f∥∥
W−1,p(x)(Ω,C�n)

. This leads to the following con-

dition for
∥∥uk−1

∥∥
W

1,p(x)
0 (Ω,C�n)

ν

2C1C4
−W ≤ ∥∥uk−1

∥∥
W

1,p(x)
0 (Ω,C�n)

≤ ν

2C1C4
+W.
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Now assume
∥∥uk−1

∥∥
W

1,p(x)
0 (Ω,C�n)

≤ ν
2C1C4

−W . Then it follows

∥∥uk

∥∥
W

1,p(x)
0 (Ω,C�n)

≤ 1
μ

∥∥TQπk

∥∥
W

1,p(x)
0 (Ω,C�n)

+
ρ

μ

∥∥TQT̃F (uk−1)
∥∥
W

1,p(x)
0 (Ω,C�n)

≤ C1C4

ν

∥∥uk−1

∥∥2
W

1,p(x)
0 (Ω,C�n)

+
C4

ν

∥∥f∥∥
W−1,p(x)(Ω,C�n)

≤ C1C4

ν
(

ν

2C1C4
−W)2 +

C4

ν

∥∥f∥∥
W−1,p(x)(Ω,C�n)

≤ ν

2C1C4
−W.

Consequently, using the inequality
∥∥uk−2

∥∥
W

1,p(x)
0 (Ω,C�n)

≤ ν
2C1C4

− W and
(3.12) we have∥∥uk − uk−1

∥∥
W

1,p(x)
0 (Ω,C�n)

≤2C1C4

ν
(

ν

2C1C4
−W)

∥∥uk−1 − uk−2

∥∥
W

1,p(x)
0 (Ω,C�n)

≤(1− 2C1C4

ν
W)

∥∥uk − uk−1

∥∥
W

1,p(x)
0 (Ω,C�n)

.

And

Lk ≤ 1− 2C1C4

ν
W := L < 1.

In the case one has∥∥uk − uk−1

∥∥
W

1,p(x)
0 (Ω,C�n)

≤ L
∥∥uk−1 − uk−2

∥∥
W

1,p(x)
0 (Ω,C�n)

(3.13)

with 0 < L < 1 and fixed. The convergence of the sequence {uk} is therefore
obtained by making use of the Banach fixed-point theorem, and hence the
convergence of the sequence {πk} immediately follows from (3.9). �

Remark 3.2. Here, ν is the kinematic viscosity of the fluid. Theorem 3.1 states
that under certain smallness condition of the external force, there exists a
unique solution to the stationary Navier-Stokes equations.

Corollary 3.1. Under the same hypotheses as in Theorem 3.1, we have the
a-priori estimate ∥∥u∥∥

W
1,p(x)
0 (Ω,C�n)

≤ ν

2C1C4
−W. (3.14)

An a-priori estimate for the term
∥∥Qπ

∥∥
Lp(x)(Ω)

is easy to obtain.

Proof. (3.14) immediately follows from
∥∥uk−1

∥∥
W

1,p(x)
0 (Ω,C�n)

≤ ν
2C1C4

− W.

It is easy to obtain the estimate for
∥∥Qπ

∥∥
Lp(x)(Ω)

from (3.11), (3.14) and
Lemma 3.1. �
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Now it is immediate to obtain the following result from (3.13).

Corollary 3.2. There exists the error estimate∥∥uk − u
∥∥
W

1,p(x)
0 (Ω,C�n)

≤ Lk

1− L

∥∥u0 − u
∥∥
W

1,p(x)
0 (Ω,C�n)

.

In the case of u0 = 0 we have∥∥uk − u
∥∥
W

1,p(x)
0 (Ω,Cln)

≤ Lk

1− L

( ν

2C1C4
−W

)
.

4. The Steady Navier-Stokes Equations with Heat Conduction

In this section we will consider the flow of a viscous fluid under the influence
of temperature. Similar to [17] the above used method for treating the steady
Navier-Stokes equations can be applied to more complicated problems. More
precisely, we consider the following problem:

−Δu +
ρ

μ
(u · ∇)u +

1
μ
∇π +

γ

μ
gw = −f in Ω, (4.1)

−Δw +
m

κ
(u · ∇)w =

1
κ
h in Ω, (4.2)

divu = 0 in Ω, (4.3)

u,w = 0 on ∂Ω. (4.4)

In addition to the case of Navier-Stokes equations, w denotes the tem-
perature, γ the Grasshof number, m the Prandtl number, κ the number of
temperature conductivity and g the vector (0, 0, . . . ,−1)T , where only the
nth component is different from zero.

Remark 4.1. The detailed account for the Grasshof number, the Prandtl num-
ber and the Reynolds number we refer to [18].

Remark 4.2. In the case of Ω a bounded domain and space W k,2
0 (Ω,H) the

problem (4.1)-(4.4) was already studied by Gürlebeck and Sprößig [18]. In
the case of Ω a unbounded domain and space W 1,p

0 (Ω,C�n) the problem
(4.1)-(4.4) was already investigated by Cerejeiras and Kähler [2].

In analogy to the case of the Navier-Stokes equations, we consider the
following equivalent hyper-complex problem:

u +
1
μ
TQπ = −TQT̃ (F (u)− γ

μ
enw) in Ω, (4.5)

1
μ

[
Qπ

]
0

=
[
QT̃ (F (u)− γ

μ
enw)

]
0

in Ω, (4.6)

w = −m

κ
TQT̃

[
uD

]
0
w +

1
κ
TQT̃h in Ω, (4.7)
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with F (u) := f + ρ
μ

[
uD

]
0
u. Then the problem can be solved by the following

iteration procedure:

uk +
1
μ
TQπk = −TQT̃ (F (uk−1)− γ

μ
enwk−1) in Ω, (4.8)

1
μ

[
Qπk

]
0

=
[
QT̃ (F (uk−1)− γ

μ
enwk−1)

]
0

in Ω, (4.9)

wk = −m

κ
TQT̃

[
ukD

]
0
wk +

1
κ
TQT̃h in Ω. (4.10)

The equations (4.8) and (4.9) represent an iteration similar to the case
of the Navier-Stokes equations. Therefore we have to study the solvability of
equation (4.10). For this purpose, in analogy to [17], we propose the following
“inner” iteration:

wi
k = −m

κ
TQT̃ (uk · ∇)wi−1

k +
1
κ
TQT̃h. (4.11)

Theorem 4.1. Let uk ∈ W
1,p(x)
0 (Ω,C�n), where p(x) satisfies (2.1) and n

2 ≤
p− ≤ p(x) ≤ p+ <∞. Furthermore, suppose

(i)
∥∥uk

∥∥
W

1,p(x)
0 (Ω,C�n)

< κ/mC1C2;

(ii) mν < 2κ(1 + C3).

Then the iteration procedure (4.11) converges in W
1,p(x)
0 (Ω,C�n) to a unique

solution of (4.10) and we have a-priori estimate∥∥wk

∥∥
W

1,p(x)
0 (Ω,C�n)

≤ 2(1 + C3)C2

2κ(1 + C3)−mν

∥∥h∥∥
W−1,p(x)(Ω,C�n)

. (4.12)

Proof. The proof is similar to the Theorem 4.7.1 in [17], for the reader’s
convenience we sketch the key steps of the proof. From the assumption (i),
(4.10) and Lemma 3.1 it follows

∥∥wi
k

∥∥
W

1,p(x)
0 (Ω,C�n)

≤
C2

∥∥h∥∥
W−1,p(x)(Ω,C�n)

κ−mC1C2

∥∥uk

∥∥
W

1,p(x)
0 (Ω,C�n)

for each i ∈ N. Thus, the sequence {wi
k}i∈N is bounded in W

1,p(x)
0 (Ω,C�n).

In view of Lemma 3.1 we get∥∥wi
k − wi−1

k

∥∥
W

1,p(x)
0 (Ω,C�n)

=
∥∥m
κ
TQT̃ (uk · ∇)(wi−1

k − wi−2
k )

∥∥
W

1,p(x)
0 (Ω,C�n)

≤m

κ
C1C2

∥∥uk

∥∥
W

1,p(x)
0 (Ω,C�n)

∥∥wi
k − wi−1

k

∥∥
W

1,p(x)
0 (Ω,C�n)

.

Therefore, if m
κ C1C2

∥∥uk

∥∥
W

1,p(x)
0 (Ω,C�n)

< 1, then we obtain the convergence

of the sequence {wi
k}i∈N in W

1,p(x)
0 (Ω,C�n). Similar to the proof of Theorem
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3.1, from (4.8) we can obtain∥∥uk

∥∥
W

1,p(x)
0 (Ω,C�n)

≤ ν

2C1C4
−
√

ν2

4C2
1C

2
4

− ν

C1
‖ f ‖W−1,p(x)(Ω,C�n) −

γ

μC1
‖ wk−1 ‖W 1,p(x)

0 (Ω,C�n)

≤ ν

2C1C4
. (4.13)

This implies that the condition (ii) is a sufficient convergence condition. �

Theorem 4.2. Let f ∈ W−1,p(x)(Ω,C�n), h ∈ W−1,p(x)(Ω,C�n), where p(x)
satisfies (2.1) and n

2 ≤ p− ≤ p(x) ≤ p+ <∞ . Furthermore, assume

(a) ν ‖ f ‖W−1,p(x)(Ω,C�n) +C5 ‖ h ‖W−1,p(x)(Ω,C�n)< C6;

(b) ‖ h ‖W−1,p(x)(Ω,C�n)< C7;

(c) mν < 2κ(1 + C3),

where

C5 =
2γ(1 + C3)C2

μ(2κ(1 + C3)−mν)
, C6 =

3ν2

16C1C2
4

, C7 =
μ(2κ(1 + C3)−mν)2

8γmC1C3
2 (1 + C3)3

.

Then the boundary value problem (4.5)–(4.7) has a solution (u,w, π) in spaces

W
1,p(x)
0 (Ω,C�n)×W

1,p(x)
0 (Ω,C�n)×Lp(x)(Ω,R), where u and w are uniquely

defined and π uniquely up to a constant. Our iteration procedure (4.8)–(4.10)
converges to the solution of (4.5)–(4.7.

Proof. The proof is similar to the theorem 4.7.4 in [17], here we sketch the
key steps of the proof for the reader’s convenience. It is immediate to get the
following estimate from the assumption (a)

ν

C1
‖ f ‖W−1,p(x)(Ω,C�n) +

C5

C1
‖ h ‖W−1,p(x)(Ω,C�n)<

ν2

4C2
1C

2
4

.

In virtue of the a-priori estimate (4.12), Similar to the proof of Theorem 3.1,
we obtain the following a-priori estimate

‖ uk ‖W 1,p(x)
0 (Ω,C�n)

≤ ν

2C1C4
−M (4.14)

with

M =

√
ν2

4C2
1C

2
4

− ν

C1
‖ f ‖W−1,p(x)(Ω,C�n) −

C5

C1
‖ h ‖W−1,p(x)(Ω,C�n).

So the sequence {uk}k∈N and {wk}k∈N are bounded in W
1,p(x)
0 (Ω,C�n). Now

(4.10) yields

‖ wk − wk−1 ‖W 1,p(x)
0 (Ω,C�n)

≤m

κ
C2 ‖ (uk · ∇)(wk − wk−1) + ((uk − uk−1) · ∇)wk−1 ‖W−1,p(x)(Ω,C�n) .
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Then Lemma 3.1, (4.12) and (4.13) give

‖ wk − wk−1 ‖W 1,p(x)
0 (Ω,C�n)

≤ μ

2γC4C7
‖ h ‖W−1,p(x)(Ω,C�n)‖ uk − uk−1 ‖W 1,p(x)

0 (Ω,C�n)
.

Consequently, we obtain from (4.8)

‖ uk − uk−1 ‖W 1,p(x)
0 (Ω,C�n)

≤ Lk‖uk−1 − uk−2‖W 1,p(x)
0 (Ω,C�n)

,

with

Lk =
C1C4

ν

( ‖ uk−1 ‖W 1,p(x)
0 (Ω,C�n)

+ ‖ uk−2 ‖W 1,p(x)
0 (Ω,C�n)

)
+

1
2C7

‖ h ‖W−1,p(x)(Ω,C�n) .

Obviously, we can get from the conditions (a), (b) and (4.14)

Lk ≤ L < 1,

where 0 < L < 1 is a constant independent of k. Now we can apply the
Banach fixed-pointed theorem. The proof is thus completed. �
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Spaces with Variable Exponents, Springe-Verlag, Berlin, 2011.

[4] L. Diening, D. Lengeler, and M. Růžička, The Stokes and Poisson problem in
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[30] J. Ryan and W. Sprößig (eds.), Clifford Algebras and Their Applications in
Mathematical Physics: Volume 2: Clifford Analysis, Birkhäuser, Boston, 2000.
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