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Abstract. We study the uniqueness and expansion properties of the positive solution of the logistic equation ∆u+au = b(x)f (u)
in a smooth bounded domain Ω, subject to the singular boundary condition u = +∞ on ∂Ω. The absorption term f is a positive
function satisfying the Keller–Osserman condition and such that the mapping f (u)/u is increasing on (0, +∞). We assume that
b is non-negative, while the values of the real parameter a are related to an appropriate semilinear eigenvalue problem. Our
analysis is based on the Karamata regular variation theory.

1. Introduction and main results

Let Ω ⊂ RN (N ! 3) be a smooth bounded domain.
Consider the semilinear elliptic equation

∆u + au = b(x)f (u) in Ω, (1.1)

where f ∈ C1[0,∞), a ∈ R is a parameter and b ∈ C0,µ(Ω) satisfies b ! 0, b $≡ 0 in Ω. Such equations
are also known as the stationary version of the Fisher equation [22] and the Kolmogoroff–Petrovsky–
Piscounoff equation [32] and they have been studied by Kazdan and Warner [30], Ouyang [44], del
Pino [18] and Du and Huang [19].

Note that if f (u) = u(N+2)/(N−2), then (1.1) originates from the Yamabe problem, which is a basic
problem in Riemannian geometry (see, e.g., [36]).

The existence of positive solutions of (1.1) subject to the Dirichlet boundary condition, u = 0 on ∂Ω,
has been intensively studied in the case f (u) = up, p > 1 (see [1,2,15,18,23] and [44]); this problem
is a basic population model (see [26]) and it is also related to some prescribed curvature problems in
Riemannian geometry (see [30] and [44]). Moreover, if b > 0 in Ω, then it is referred to as the logistic
equation and it has a unique positive solution if and only if a > λ1(Ω), where λ1(Ω) denotes the first
eigenvalue of (−∆) in H1

0 (Ω).
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In the understanding of (1.1) an important role is played by the interior of the zero set of b:

Ω0 := int
{
x ∈ Ω: b(x) = 0

}
.

We assume, throughout this paper, that Ω0 is connected (possibly empty), Ω0 ⊂ Ω and b > 0 in
Ω \ Ω0. Note that we allow b ! 0 on ∂Ω. Let ∂Ω0 satisfy an exterior cone condition and λ∞,1 be the
first Dirichlet eigenvalue of (−∆) in H1

0 (Ω0) (with λ∞,1 = ∞ if Ω0 = ∅).
By a large (or blow-up) solution of (1.1), we mean any non-negative C2(Ω)-solution of (1.1) such that

u(x) → ∞ as d(x) := dist(x, ∂Ω) → 0.
Assuming that f satisfies

f ∈ C1[0,∞) is non-negative and f (u)/u is increasing on (0,∞), (A1)

then, necessarily f (0) = 0, and by the strong maximum principle, any non-negative classical solution of
(1.1) is positive in Ω unless it is identically zero. Consequently, any large solution of (1.1) is positive.
Moreover, it is well known (see, e.g., Remark 1.1 in [12]) that in this situation, the Keller–Osserman
condition

∫ ∞

1

dt√
F (t)

< ∞, where F (t) =
∫ t

0
f (s) ds (A2)

is necessary for the existence of large solutions of (1.1).
When (A1) and (A2) hold, Theorem 1.1 in [12] shows that (1.1) possesses large solutions if and only

if a < λ∞,1. The hypothesis (A1) is inspired by [1], where it is developed an exhaustive study of positive
solutions of (1.1), subject to u = 0 on ∂Ω.

Our major goal is to advance innovative methods to study the uniqueness and asymptotic behavior
of large solutions of (1.1). We develop the research line opened up in [13] to gain insight into the two-
term asymptotic expansion of the large solution near ∂Ω. Our approach relies essentially on the regular
variation theory (see [8] and Section 2) not only in the statement but in the proof as well. This enables us
to obtain significant information about the qualitative behavior of the large solution to (1.1) in a general
framework that removes previous restrictions in the literature.

We point out that, despite a long history and intense research on the large solutions, the regular varia-
tion theory arising in probability theory has not been exploited before in this context.

Singular value problems having large solutions have been initially studied for the special case f (u) =
eu by Bieberbach [7] (if N = 2). Problems of this type arise in Riemannian geometry. More precisely,
if a Riemannian metric of the form |ds|2 = e2u(x)|dx|2 has constant Gaussian curvature −g2 then ∆u =
g2 e2u. This study was continued by Rademacher [45] (if N = 3) in connection with some concrete
questions arising in the theory of Riemann surfaces, automorphic functions and in the theory of the
electric potential in a glowing hollow metal body.

The question of large solutions was later considered in N -dimensional domains and for other classes
of nonlinearities (see [3–6,11–14,17,19,25,31,33–35,38–41,43,46]).

In higher dimensions the notion of Gaussian curvature has to be replaced by the scalar curvature. It
turns out that if a metric of the form |ds|2 = u(x)4/(N−2)|dx|2 has constant scalar curvature −g2, then
u satisfies (1.1) for f (u) = u(N+2)/(N−2), a = 0 and b(x) = [(N − 2)g2]/[4(N − 1)]. In a celebrated
paper, Loewner and Nirenberg [38] described the precise asymptotic behavior at the boundary of large
solutions to this equation and used this result in order to establish the uniqueness of the solution. Their
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main result is derived under the assumption that ∂Ω consists of the disjoint union of finitely compact
C∞ manifolds, each having codimension less than N/2 + 1. More precisely, the uniqueness of a large
solution is a consequence of the fact that every large solution u satisfies

u(x) = E
(
d(x)

)
+ o

(
E

(
d(x)

))
as d(x) → 0, (1.2)

where E is defined by

∫ ∞

E(t)

ds√
2F (s)

=
(

(N − 2)g2

4(N − 1)

)1/2

t, for all t > 0. (1.3)

Kondrat’ev and Nikishkin [33] established the uniqueness of a large solution for the case a = 0, b = 1
and f (u) = up (p ! 3), when ∂Ω is a C2-manifold and ∆ is replaced by a more general second-order
elliptic operator.

Dynkin [20] showed that there exist certain relations between hitting probabilities for some Markov
processes called superdiffusions and maximal solutions of (1.1) with a = 0, b = 1 and f (u) = up

(1 < p " 2). By means of a probabilistic representation, a uniqueness result in domains with non-
smooth boundary was established by le Gall [37] when p = 2. We point out that the case p = 2 arises
in the study of the subsonic motion of a gas. In this connection the question of uniqueness is of special
interest.

Recently, [25] gives the uniqueness and exact two-term asymptotic expansion of the large solution of
(1.1) in the special case f (u) = up (p > 1), b > 0 in Ω and b ≡ 0 on ∂Ω such that

b(x) = C0
[
d(x)

]γ + o
([

d(x)
]γ)

as d(x) → 0, for some constants C0, γ > 0. (1.4)

It was shown there that the degenerate case b ≡ 0 on ∂Ω is a natural restriction for b inherited from the
logistic equation.

To present our main results, we briefly recall some notions from Karamata’s theory (see [8] or [48]);
more details are provided in Section 2.

A positive measurable function R defined on [A,∞), for some A > 0, is called regularly varying with
index q ∈ R, written R ∈ RVq, provided that

lim
u→∞

R(λu)
R(u)

= λq, for all λ > 0.

When the index q is zero, we say that the function is slowly varying.
Clearly, if R ∈ RVq, then L(u) := R(u)/uq is a slowly varying function.
Let K denote the set of all positive, non-decreasing k ∈ C1(0, ν) that satisfy

lim
t↘0

(∫ t
0 k(s) ds

k(t)

)
:= %0 and lim

t↘0

(∫ t
0 k(s) ds

k(t)

)′
:= %1.

Notice that %0 = 0 and %1 ∈ [0, 1], for every k ∈ K. Thus, K = K(01] ∪K0, where

K(01] = {k ∈ K: 0 < %1 " 1} and K0 = {k ∈ K: %1 = 0}.
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The exact characterization of K(01] and K0 will be provided in Section 3.
If H is a non-decreasing function on R, then we define the (left continuous) inverse of H by

H←(y) = inf
{
s: H(s) ! y

}
.

Our first result establishes the uniqueness of the large solution of (1.1).

Theorem 1.1. Let (A1) hold and f ∈ RVρ+1 with ρ > 0. Suppose there exists k ∈ K such that

b(x) = k2(d) + o
(
k2(d)

)
as d(x) → 0. (1.5)

Then, for any a ∈ (−∞,λ∞,1), (1.1) admits a unique large solution ua. Moreover, the asymptotic be-
havior is given by

ua(x) =
[
2(2 + %1ρ)/ρ2]1/ρ

ϕ(d) + o
(
ϕ(d)

)
as d(x) → 0, (1.6)

where ϕ is defined by

f (ϕ(t))
ϕ(t)

=
1

(∫ t
0 k(s) ds

)2 , for t > 0 small. (1.7)

Under the assumptions of Theorem 1.1, let r(t) satisfy limt↘0(
∫ t

0 k(s) ds)2r(t) = 1 and f̂ (u) be cho-
sen such that limu→∞ f̂ (u)/f (u) = 1 and j(u) = f̂ (u)/u is non-decreasing for u > 0 large. Then,
limt↘0 ϕ(t)/ϕ̂(t) = 1, where ϕ is defined by (1.7) and ϕ̂(t) = j←(r(t)) for t > 0 small.

The behavior of ϕ(t) for small t > 0 will be described in Section 3. In particular, if k ∈ K with %1 $= 0,
then ϕ(1/u) ∈ RV2/(ρ#1). In contrast, if k ∈ K with %1 = 0, then ϕ(1/u) /∈ RVq, for all q ∈ R (see
Remark 3.3).

Remark 1.1. Theorem 1.1 improves the main result in [13], where assuming that f ′ ∈ RVρ (which
yields f ∈ RVρ+1), we prove

ua(x) = ξ0h(d) + o
(
h(d)

)
as d(x) → 0, (1.8)

where ξ0 = ( 2+#1ρ
2+ρ )1/ρ and h is given by

∫ ∞

h(t)

ds√
2F (s)

=
∫ t

0
k(s) ds, for t > 0 small. (1.9)

Remark 1.2. Theorem 1.1 recovers the uniqueness results of [38] and [25]. Note that for k(t) =
[(N − 2)g2/4(N − 1)]1/2 in (1.5) and f (u) = u(N+2)/(N−2), (1.6) reduces to relation (1.2), prescribed
by Loewner and Nirenberg [38] for their problem. Moreover, if f (u) = up (with p = ρ + 1 > 1) and
k(t) =

√
C0 tγ/2 (C0, γ > 0), then we regain the uniqueness result of [25].
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The next objective is to find the two-term blow-up rate of ua when (1.5) is replaced by

b(x) = k2(d)
(
1 + c̃dθ + o

(
dθ)) as d(x) → 0, (1.10)

where θ > 0, c̃ ∈ R are constants. To simplify the exposition, we assume that f ′ ∈ RVρ (ρ > 0), which
is equivalent to f (u) being of the form

f (u) = Cuρ+1 exp
{∫ u

B

φ(t)
t

dt
}

, ∀u ! B, (1.11)

for some constants B, C > 0, where φ ∈ C[B,∞) satisfies limu→∞ φ(u) = 0. In this case, f (u)/u is
increasing on [B,∞) provided that B is large enough.

We prove that the two-term asymptotic expansion of ua near ∂Ω depends on the chosen subclass for
k ∈ K and the additional hypotheses on f (by means of φ in (1.11)).

Let −ρ− 2 < η " 0 and τ , ζ > 0. We define

Fρη =
{
f ′ ∈ RVρ (ρ > 0): either φ ∈ RVη or −φ ∈ RVη

}
,

Fρ0,τ =
{
f ∈ Fρ0: lim

u→∞
(ln u)τφ(u) = %' ∈ R

}
,

K(01],τ =
{

k ∈ K(01]: lim
t↘0

(− ln t)τ
[(∫ t

0 k(s) ds

k(t)

)′
− %1

]
:= L( ∈ R

}
,

K0,ζ =
{

k ∈ K0: lim
t↘0

1
tζ

(∫ t
0 k(s) ds

k(t)

)′
:= L' ∈ R

}
.

Further in the paper, η, τ and ζ are understood in the above range.
For the sake of comparison, we state here the following result.

Theorem 1.2. Suppose (A1), (1.10) with k ∈ K0,ζ , and one of the following growth conditions at infin-
ity:

(i) f (u) = Cuρ+1 in a neighborhood of infinity (i.e., φ ≡ 0 in (1.11));
(ii) f ∈ Fρη with η $= 0;

(iii) f ∈ Fρ0,τ1 with τ1 = ./ζ, where . = min{θ, ζ}.

Then, for any a ∈ (−∞,λ∞,1), the two-term blow-up rate of ua is

ua(x) = ξ0h(d)
(
1 + χd* + o

(
d*))

as d(x) ↘ 0, (1.12)

where h is given by (1.9), ξ0 = [2/(2 + ρ)]1/ρ and

χ =






L'

2
Heaviside(θ − ζ) − c̃

ρ
Heaviside(ζ − θ) := χ1 if (i) or (ii) holds,

χ1 −
%'

ρ

[
ρζL'

2(1 + ζ)

]τ1( 1
ρ+ 2

+ ln ξ0

)
if f obeys (iii).

Theorem 1.2 is a consequence of [14, Theorem 1] and Proposition 3.4.
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Theorem 1.3. Suppose (A1), (1.10) with k ∈ K(01],τ , and one of the following conditions:

(i) f ∈ Fρη with ηL( $= 0;
(ii) f ∈ Fρ0,τ with [%'(%1 − 1)]2 + L2

( $= 0.

Then, for any a ∈ (−∞,λ∞,1), the two-term blow-up rate of ua is

ua(x) = ξ0h(d)
[
1 + χ̃(− ln d)−τ + o

(
(− ln d)−τ )]

as d(x) ↘ 0, (1.13)

where h is given by (1.9), ξ0 = [(2 + %1ρ)/(2 + ρ)]1/ρ and

χ̃ =






L(

2 + ρ%1
:= χ2 if (i) holds,

χ2 −
%'

ρ

(
ρ%1

2

)τ[
2(1 − %1)

(ρ+ 2)(ρ%1 + 2)
+ ln ξ0

]
if f obeys (ii).

(1.14)

Remark 1.3. Note that Theorems 1.2 and 1.3 distinguish from Theorem 1 in [25], which treats the
particular case f (u) = up (p > 1), Ω0 = ∅, k(t) =

√
C0tγ (C0, γ > 0) and θ = 1 in (1.10). The second

term in the asymptotic expansion of ua near ∂Ω involves in [25] both the distance function d(x) and the
mean curvature of ∂Ω.

Theorem 1.2 admits the case f (u) = up assuming that k ∈ K0,ζ , while the alternative (ii) of Theo-
rem 1.3 includes the case k(t) =

√
C0tγ (when L( = 0) provided that f ∈ Fρ0,τ with %' $= 0. Relations

(1.12) and (1.13) show how dramatically changes the two-term asymptotic expansion of ua from the
result in [25]. Our approach is completely different from that in [3,4,25,35], as we use essentially Kara-
mata’s theory.

We point out that the asymptotic general results stated in the above theorems do not concern the
difference or the quotient of u(x) and ψ(d(x)), as established in [4,7,35,45] for a = 0 and b = 1, where
ψ is a large solution of

ψ′′(r) = f
(
ψ(r)

)
on (0,∞).

For instance, Bieberbach [7] and Rademacher [45] proved that |u(x) − ψ(d(x))| is bounded in a
neighborhood of the boundary. Their result was improved by Bandle and Essén [3] who showed that
limd(x)→0(u(x) − ψ(d(x))) = 0.

The rest of the paper is organized as follows. In Section 2.1 we collect the notions and properties of
regularly varying functions that are invoked in our proofs. In Section 2.2 we prove some auxiliary results
including Lemmas 1 and 2 in [14], which have only been stated there. In Section 3 we characterize the
class K as well as its subclasses K0,ζ and K(01],τ that appear in Theorems 1.2 and 1.3. Sections 4 and 5
are dedicated to the proof of Theorems 1.1 and 1.3.

2. Preliminaries

2.1. Properties of regularly varying function

The theory of regular variation was instituted in 1930 by Karamata [28,29] and subsequently devel-
oped by himself and many others. Although Karamata originally introduced his theory in order to use it



F.C. Cîrstea and V. Rădulescu / Nonlinear problems with boundary blow-up 281

in Tauberian theorems, regularly varying functions have been later applied in several branches of Analy-
sis: Abelian theorems (asymptotic of series and integrals – Fourier ones in particular), analytic (entire)
functions, analytic number theory, etc. The great potential of regular variation for probability theory and
its applications was realized by Feller [21] and also stimulated by de Haan [16]. The first monograph on
regularly varying functions was written by Seneta [48], while the theory and various applications of the
subject are presented in the comprehensive treatise of Bingham, Goldie and Teugels [8].

We give here a brief account of the definitions and properties of regularly varying functions involved
in our paper (see [8] or [48] for details).

Definition 2.1. A positive measurable function Z defined on [A,∞), for some A > 0, is called regularly
varying (at infinity) with index q ∈ R, written Z ∈ RVq, provided that

lim
u→∞

Z(ξu)
Z(u)

= ξq, for all ξ > 0.

When the index q is zero, we say that the function is slowly varying.

Remark 2.1. Let Z : [A,∞) → (0,∞) be a measurable function. Then

(1) Z is regularly varying if and only if limu→∞ Z(ξu)/Z(u) is finite and positive for each ξ in a set
S ⊂ (0,∞) of positive measure (see [48, Lemma 1.6 and Theorem 1.3]).

(2) The transformation Z(u) = uqL(u) reduces regular variation to slow variation. Indeed,
limu→∞ Z(ξu)/Z(u) = uq if and only if limu→∞ L(ξu)/L(u) = 1, for every ξ > 0.

Example 2.1. Any measurable function on [A,∞) which has a positive limit at infinity is slowly vary-
ing. The logarithm log u, its iterates log log u (= log2 u), logm u (= log logm−1 u) and powers of
logm u are non-trivial examples of slowly varying functions. Non-logarithmic examples are given by
exp{(log u)α1}, where α1 ∈ (0, 1) and exp{(log u)/ log log u}.

In what follows L denotes a slowly varying function defined on [A,∞). For details on Proposi-
tions 2.1–2.5, we refer to [8].

Proposition 2.1 (Uniform Convergence Theorem). The convergence L(ξu)
L(u) → 1 as u → ∞ holds uni-

formly on each compact ξ-set in (0,∞).

Proposition 2.2 (Representation Theorem). The function L(u) is slowly varying if and only if it can be
written in the form

L(u) = M (u) exp
{∫ u

B

y(t)
t

dt
}

(u ! B) (2.1)

for some B > A, where y ∈ C[B,∞) satisfies limu→∞ y(u) = 0 and M (u) is measurable on [B,∞)
such that limu→∞ M (u) := M ∈ (0,∞).

The Karamata representation (2.1) is non-unique because we can adjust one of M (u), y(u) and modify
properly the other one. Thus, the function y may be assumed arbitrarily smooth, but the smoothness
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properties of M (u) can ultimately reach those of L(u). If M (u) is replaced by its limit at infinity M > 0,
we obtain a slowly varying function L0 ∈ C1[B,∞) of the form

L0(u) = M exp
{∫ u

B

y(t)
t

dt
}

(u ! B),

where y ∈ C[B,∞) vanishes at infinity. Such a function L0(u) is called a normalized slowly varying
function.

As an important subclass of RVq, we distinguish NRVq defined as

NRVq =
{

Z ∈ RVq:
Z(u)
uq

is a normalized slowly varying function
}

. (2.2)

Notice that L(u) given by (2.1) is asymptotic equivalent to L0(u), which has much enhanced proper-
ties. For instance, we see that y(u) = uL′

0(u)
L0(u) , for all u ! B. Conversely, any function L0 ∈ C1[B,∞)

which is positive and satisfies

lim
u→∞

uL′
0(u)

L0(u)
= 0 (2.3)

is a normalized slowly varying. More generally, if the right-hand side of (2.3) is q ∈ R, then L0 ∈ NRVq.

Proposition 2.3 (Elementary properties of slowly varying functions). If L is slowly varying, then

(1) For any α > 0, uαL(u) → ∞, u−αL(u) → 0 as u → ∞;
(2) (L(u))α varies slowly for every α ∈ R;
(3) If L1 varies slowly, so do L(u)L1(u) and L(u) + L1(u).

From Proposition 2.3(i) and Remark 2.1(ii), limu→∞ Z(u) = ∞ (resp., 0) for any function Z ∈ RVq

with q > 0 (resp., q < 0).

Remark 2.2. Note that the behavior at infinity for a slowly varying function cannot be predicted. For
instance,

L(u) = exp
{

(log u)1/3 cos
(
(log u)1/3)}

exhibits infinite oscillation in the sense that

lim inf
u→∞

L(u) = 0 and lim sup
u→∞

L(u) = ∞.

Proposition 2.4 (Karamata’s Theorem; direct half). Let Z ∈ RVq be locally bounded in [A,∞). Then

(1) for any j ! −(q + 1),

lim
u→∞

uj+1Z(u)∫ u
A xjZ(x) dx

= j + q + 1; (2.4)
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(2) for any j < −(q + 1) (and for j = −(q + 1) if
∫ ∞ x−(q+1)Z(x) dx < ∞)

lim
u→∞

uj+1Z(u)∫ ∞
u xjZ(x) dx

= −(j + q + 1). (2.5)

Proposition 2.5 (Karamata’s Theorem; converse half). Let Z be positive and locally integrable in
[A,∞).

(1) If (2.4) holds for some j > −(q + 1), then Z ∈ RVq.
(2) If (2.5) is satisfied for some j < −(q + 1), then Z ∈ RVq.

For a non-decreasing function H on R, we define the (left continuous) inverse of H by

H←(y) = inf
{
s: H(s) ! y

}
.

Proposition 2.6 (see Proposition 0.8 in [47]). We have

(1) If Z ∈ RVq, then limu→∞ log Z(u)/ log u = q.
(2) If Z1 ∈ RVq1 and Z2 ∈ RVq2 with limu→∞ Z2(u) = ∞, then

Z1 ◦ Z2 ∈ RVq1q2 .

(3) Suppose Z is non-decreasing, Z(∞) = ∞, and Z ∈ RVq, 0 < q < ∞. Then

Z← ∈ RV1/q.

(4) Suppose Z1, Z2 are non-decreasing and q-varying, 0 < q < ∞. Then for c ∈ (0,∞)

lim
u→∞

Z1(u)
Z2(u)

= c if and only if lim
u→∞

Z←
1 (u)

Z←
2 (u)

= c−1/q.

2.2. Auxiliary results

Based on regular variation theory, we prove here two results that have only been stated in [14].

Remark 2.3. If f ∈ RVρ+1 (ρ > 0) is continuous, then

Ξ(u) :=
√

F (u)
f (u)

∫ ∞
u [F (s)]−1/2 ds

→ ρ

2(ρ+ 2)
as u → ∞, (2.6)

where F stands for an antiderivative of f . Indeed, by Proposition 2.4, we have

lim
u→∞

F (u)
uf (u)

=
1

ρ+ 2
and lim

u→∞
u[F (u)]−1/2

∫ ∞
u [F (s)]−1/2 ds

=
ρ

2
. (2.7)

Lemma 2.1 (Properties of h). If f ∈ RVρ+1 (ρ > 0) is continuous and k ∈ K, then h defined by (1.9) is
a C2-function satisfying the following:
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(i) lim
t↘0

h′′(t)
k2(t)f (h(t)ξ)

=
2 + ρ%1

ξρ+1(2 + ρ)
, for each ξ > 0;

(ii) lim
t↘0

h(t)h′′(t)
[h′(t)]2 =

2 + ρ%1

2
and lim

t↘0

ln k(t)
ln h(t)

=
ρ(%1 − 1)

2
;

(iii) lim
t↘0

h′(t)
th′′(t)

= − ρ%1

2 + ρ%1
and lim

t↘0

h(t)
t2h′′(t)

=
ρ2%2

1

2(2 + ρ%1)
;

(iv) lim
t↘0

h(t)
th′(t)

= lim
t↘0

ln t

ln h(t)
= −ρ%1

2
;

(v) lim
t↘0

tjh(t) = ∞, for all j > 0, provided that k ∈ K0. If, in addition, k ∈ K0,ζ then

lim
t↘0

1
−ζtζ ln h(t)

= lim
t↘0

h′(t)
tζ+1h′′(t)

=
−ρL'

2(ζ + 1)
.

Proof. By (1.9), the function h ∈ C2(0, ν), for some ν > 0, and limt↘0 h(t) = ∞.
For any t ∈ (0, ν), we have h′(t) = −k(t)

√
2F (h(t)) and

h′′(t) = k2(t)f
(
h(t)

){
1 + 2Ξ

(
h(t)

)[(∫ t
0 k(s) ds

k(t)

)′
− 1

]}
. (2.8)

Using Remark 2.3 and f ∈ RVρ+1, we reach (i).
(ii) By (i) and (2.7), we get

lim
t↘0

h(t)h′′(t)
[h′(t)]2 = lim

t↘0

h′′(t)
k2(t)f (h(t))

h(t)f (h(t))
2F (h(t))

=
2 + ρ%1

2
, (2.9)

respectively

lim
t↘0

k′(t)
k(t)

h(t)
h′(t)

= lim
t↘0

h(t)f (h(t))
F (h(t))

−k′(t)
(∫ t

0 k(s) ds
)

k2(t)
Ξ

(
h(t)

)
=

ρ(%1 − 1)
2

. (2.10)

(iii) Using (i) and Remark 2.3, we find

lim
t↘0

h′(t)
th′′(t)

=
−2(2 + ρ)

2 + ρ%1
lim
t↘0

∫ t
0 k(s) ds

tk(t)
Ξ

(
h(t)

)
=

−ρ%1

2 + ρ%1
,

which, together with (2.9), implies that

lim
t↘0

h(t)
t2h′′(t)

= lim
t↘0

h(t)h′′(t)
[h′(t)]2

[
h′(t)
th′′(t)

]2

=
ρ2%2

1

2(2 + ρ%1)
.

(iv) If %1 $= 0, then by (iii), we have

lim
t↘0

h(t)
th′(t)

= lim
t↘0

h(t)
t2h′′(t)

th′′(t)
h′(t)

=
−ρ%1

2
.
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If %1 = 0, then we derive

lim
t↘0

k(t)
tk′(t)

= lim
t↘0

k2(t)
k′(t)

(∫ t
0 k(s) ds

)
∫ t

0 k(s) ds

tk(t)
= 0. (2.11)

This and (2.10) yield limt↘0
h(t)

th′(t) = 0, which concludes (iv).
(v) If k ∈ K0, then using (iv), we obtain limt↘0 ln[tjh(t)] = ∞, for all j > 0.

Suppose k ∈ K0,ζ , for some ζ > 0. Then, limt↘0

∫ t

0
k(s) ds

tζ+1k(t) = L"
ζ+1 and

L'

ζ + 1
= lim

t↘0

∫ t
0 k(s) ds

tζ+1k(t)
k2(t)

k′(t)
(∫ t

0 k(s) ds
) = lim

t↘0

k(t)
tζ+1k′(t)

=
−1
ζ

lim
t↘0

1
tζ ln k(t)

. (2.12)

By (2.9), (2.10) and (2.12), we deduce

lim
t↘0

h′(t)
tζ+1h′′(t)

= lim
t↘0

h(t)
h′(t)tζ+1 = lim

t↘0

k′(t)h(t)
k(t)h′(t)

k(t)
tζ+1k′(t)

=
−ρL'

2(ζ + 1)
.

This completes the proof of the lemma. !

Let τ > 0 be arbitrary and f be as in Remark 2.3. For u > 0 sufficiently large, we define

T1,τ (u) =
[

ρ

2(ρ+ 2)
−Ξ(u)

]
(ln u)τ and T2,τ (u) =

[
f (ξ0u)
ξ0f (u)

− ξρ0

]
(ln u)τ . (2.13)

Remark 2.4. When f (u) = Cuρ+1, we have T1,τ (u) = T2,τ (u) = 0.

Lemma 2.2. Assume that f ∈ Fρη (where −ρ− 2 < η " 0). The following hold:

(i) If f ∈ Fρ0,τ , then

lim
u→∞

T1,τ (u) =
−%'

(ρ+ 2)2 and lim
u→∞

T2,τ (u) = ξρ0 %
' ln ξ0.

(ii) If f ∈ Fρη with η $= 0, then

lim
u→∞

T1,τ (u) = lim
u→∞

T2,τ (u) = 0.

Proof. Using the second limit in (2.7), we obtain

lim
u→∞

T1,τ (u) =
ρ

2
lim

u→∞

ρ
2(ρ+2)

∫ ∞
u [F (s)]−1/2 ds −

√
F (u)

f (u)

u[F (u)]−1/2(ln u)−τ
.

By L’Hospital’s rule, we arrive at

lim
u→∞

T1,τ (u) = lim
u→∞

[
ρ+ 1
ρ+ 2

− F (u)f ′(u)
f 2(u)

]
(ln u)τ := lim

u→∞
Q1,τ (u).
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A simple calculation shows that, for u > 0 large,

Q1,τ (u) =
(ln u)τ

ρ+ 2

[
ρ+ 1 − uf ′(u)

f (u)

]
+

uf ′(u)
f (u)

[
1

ρ+ 2
− F (u)

uf (u)

]
(ln u)τ

=:
1

ρ+ 2
Q2,τ (u) +

uf ′(u)
f (u)

Q3,τ (u).

Since (1.11) holds with φ ∈ RVη or −φ ∈ RVη, we can assume B > 0 such that φ $= 0 on [B,∞). For
any u > B, we have Q2,τ (u) = −φ(u)(ln u)τ and

Q3,τ (u) = C̃
(ln u)τ

uf (u)
+

∫ u
B f (s)φ(s) ds

(ρ+ 2)uf (u)φ(u)
φ(u)(ln u)τ ,

where C̃ ∈ R is a constant. Since either fφ ∈ RVρ+η+1 or −fφ ∈ RVρ+η+1, by Proposition 2.4,

lim
u→∞

uf (u)φ(u)∫ u
B f (x)φ(x) dx

= ρ+ η + 2.

If (i) holds, then limu→∞ Q2,τ (u) = −%' and limu→∞ Q3,τ (u) = %'(ρ+ 2)−2. Thus,

lim
u→∞

T1,τ (u) = lim
u→∞

Q1,τ (u) = −%'/(ρ+ 2)2.

If (ii) holds, then by Proposition 2.3, we have limu→∞(ln u)τφ(u) = 0. It follows that

lim
u→∞

Q2,τ (u) = lim
u→∞

Q3,τ (u) = 0

which yields limu→∞ T1,τ (u) = 0. Note that the proof is finished if ξ0 = 1, since T2,τ (u) = 0 for each
u > 0.

Arguing by contradiction, let us suppose that ξ0 $= 1. Then, by (1.11),

T2,τ (u) = ξρ0

[
exp

{∫ ξ0u

u

φ(t)
t

dt
}
− 1

]
(ln u)τ , ∀u > B/ξ0.

But, limu→∞ φ(us)/s = 0, uniformly with respect to s ∈ [ξ0, 1]. So

lim
u→∞

∫ ξ0u

u

φ(t)
t

dt = lim
u→∞

∫ ξ0

1

φ(su)
s

ds = 0

which leads to

lim
u→∞

T2,τ (u) = ξρ0 lim
u→∞

(∫ ξ0u

u

φ(t)
t

dt
)

(ln u)τ .

If (i) occurs, then by Proposition 2.1, we have

lim
u→∞

T2,τ (u) = ξρ0 lim
u→∞

(ln u)τφ(u)
∫ ξ0

1

φ(tu)
φ(u)

dt

t
= ξρ0 %

' ln ξ0.
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If (ii) occurs, then by Proposition 2.3, we infer that

lim
u→∞

T2,τ (u) =
−ξρ0
τ

lim
u→∞

[
φ(ξ0u) − φ(u)

]
(ln u)τ+1 = 0.

The proof of Lemma 2.2 is now complete. !

Lemma 2.3. If k ∈ K(01],τ and f satisfies either (i) or (ii) of Theorem 1.3, then

H(t) := (− ln t)τ
(

1 − k2(t)f (ξ0h(t))
ξ0h′′(t)

)
→ ρχ̃ as t ↘ 0, (2.14)

where χ̃ is defined by (1.14).

Proof. Using (2.8), we write H(t) = k2(t)f (h(t))
h′′(t)

∑3
i=1 Hi(t), for t > 0 small, where






H1(t) := 2Ξ
(
h(t)

)
(− ln t)τ

[(∫ t
0 k(s) ds

k(t)

)′
− %1

]
,

H2(t) := 2(1 − %1)
( − ln t

ln h(t)

)τ

T1,τ
(
h(t)

)
and H3(t) := −

( − ln t

ln h(t)

)τ

T2,τ
(
h(t)

)
.

By Remark 2.3, we find limt↘0 H1(t) = ρL(/(ρ+ 2).
Case (i) (that is, f ∈ Fρη with ηL( $= 0). By Lemmas 2.1 and 2.2, it turns out that

lim
t↘0

H2(t) = lim
t↘0

H3(t) = 0 and lim
t↘0

H(t) =
ρL(

2 + ρ%1
=: ρχ̃.

Case (ii) (that is, f ∈ Fρ0,τ with [%'(%1 − 1)]2 + L2
( $= 0). By Lemmas 2.1 and 2.2, we get

lim
t↘0

H2(t) =
−2(1 − %1)%'

(ρ+ 2)2

(
ρ%1

2

)τ

and lim
t↘0

H3(t) =
−%'(2 + ρ%1)

(2 + ρ)

(
ρ%1

2

)τ

ln ξ0.

Thus, we arrive at

lim
t↘0

H(t) =
ρL(

2 + ρ%1
− %'

(
ρ%1

2

)τ[
2(1 − %1)

(ρ+ 2)(2 + ρ%1)
+ ln ξ0

]
=: ρχ̃.

This finishes the proof. !

3. Characterization of K and its subclasses

Definition 2.1 extends to regular variation at the origin. We say that Z is regularly varying (on the
right) at the origin with index q (and write, Z ∈ RVq(0+)) if Z(1/u) ∈ RV−q. Moreover, by Z ∈
NRVq(0+) we mean that Z(1/u) ∈ NRV−q. The meaning of NRVq is given by (2.2).
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Proposition 3.1. We have k ∈ K(01] if and only if k is non-decreasing near the origin and k belongs to
NRVα(0+) for some α ! 0 (where α = 1/%1 − 1).

Proof. If k ∈ K(01], then from the definition

lim
t→0+

∫ t
0 k(s) ds

k(t)

/
t = lim

t→0+

(∫ t
0 k(s) ds

k(t)

)′
= %1,

which implies that

lim
u→∞

u d
duk(1/u)
k(1/u)

= lim
t→0+

−tk′(t)
k(t)

=
%1 − 1
%1

.

Thus k(1/u) belongs to NRV1−1/#1
. Conversely, if k belongs to NRVα(0+) with α ! 0, then k is a

positive C1-function on some interval (0, ν) and

lim
t→0+

tk′(t)
k(t)

= α. (3.1)

By Proposition 2.4, we deduce

lim
t→0+

∫ t
0 k(s) ds

tk(t)
= lim

u→∞

∫ ∞
u x−2k(1/x) dx

u−1k(1/u)
=

1
1 + α

. (3.2)

Combining (3.1) and (3.2), we get limt→0+(
∫ t

0 k(s) ds/k(t))′ = 1/(1 + α). If, in addition, k is non-
decreasing near 0, then k ∈ K with %1 = 1/(1 + α). Note that by (3.1), k is increasing near the origin
if α > 0; however, when k is slowly varying at 0, then we cannot draw any conclusion about the
monotonicity of k near the origin (see Remark 2.2). !

Remark 3.1. By Propositions 3.1 and 2.1, we deduce k ∈ K(01] if and only k is of the form

k(t) = c0t
α exp

{∫ c1

t

E(y)
y

dy
}

(0 < t < c1), for some 0 " α (= 1/%1 − 1), (3.3)

where c0, c1 > 0 are constants, E ∈ C[0, c1) with E(0) = 0 and (only for %1 = 1) E(t) " α.

Proposition 3.2. We have k ∈ K(01],τ if and only if k is of the form (3.3) where, in addition,

lim
t↘0

(− ln t)τE(t) = %( ∈ R with %( = (1 + α)2L(. (3.4)

Proof. Suppose k satisfies (3.3) and (3.4). A simple calculation leads to

lim
t↘0

(− ln t)τ
[

1 − %1

%1
− tk′(t)

k(t)

]
= lim

t↘0
(− ln t)τE(t) = %(. (3.5)
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By L’Hospital’s rule, we find

lim
t↘0

(− ln t)τ
[
%1 −

∫ t
0 k(s) ds

tk(t)

]
= lim

t↘0

(%1 − 1) + %1tk′(t)/k(t)

(− ln t)−τ
[
1 + tk′(t)

k(t) − τ
ln t

]

= −%2
1 lim

t↘0
(− ln t)τ

[
1 − %1

%1
− tk′(t)

k(t)

]
=

−%(
(α+ 1)2 . (3.6)

We see that, for each t > 0 small,

(∫ t
0 k(s) ds

k(t)

)′
− %1 =

tk′(t)
k(t)

[
%1 −

∫ t
0 k(s) ds

tk(t)

]
+ %1

[
1 − %1

%1
− tk′(t)

k(t)

]
. (3.7)

By (3.5)–(3.7), we infer that k ∈ K(01],τ with L( = %(/(1 + α)2.
Conversely, if k ∈ K(01],τ , then k is of the form (3.3). Moreover, we have

lim
t↘0

(− ln t)τ
(∫ t

0 k(s) ds

tk(t)
− %1

)
= lim

t↘0

(∫ t
0 k(s) ds/k(t)

)′ − %1

(− ln t)−τ
(
1 − τ

ln t

) = L(. (3.8)

By (3.7) and (3.8), we deduce

L( = −αL( +
1

α+ 1
lim
t↘0

(− ln t)τE(t).

Consequently, limt↘0(− ln t)τE(t) = (1 + α)2L(. Hence, (3.4) holds. !

Proposition 3.3. We have k ∈ K0 if and only if k is of the form

k(t) = d0

(
exp

{
−

∫ d1

t

dx

xW(x)

})′
(0 < t < d1), (3.9)

where d0, d1 > 0 are constants and 0 < W ∈ C1(0, d1) satisfies limt↘0 W(t) = limt↘0 tW ′(t) = 0.

Proof. If k ∈ K0, then we set

W(t) =
∫ t

0 k(s) ds

tk(t)
, for t ∈ (0, d1). (3.10)

Hence, limt↘0 W(t) = 0 and, for t > 0 small,

tW ′(t) =
(∫ t

0 k(s) ds

k(t)

)′
−

∫ t
0 k(s) ds

tk(t)
.

It follows that limt↘0 tW ′(t) = 0. By (3.10), we find

∫ d1

t

dx

xW(x)
= ln

(∫ d1

0
k(s) ds

)
− ln

(∫ t

0
k(s) ds

)
, t ∈ (0, d1),
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so that (3.9) is fulfilled. Conversely, if (3.9) holds, then limt→0
∫ d1
t

dx
xW(x) = ∞ and

∫ t

0
k(s) ds = d0 exp

{
−

∫ d1

t

dx

xW(x)

}
= tk(t)W(t), t ∈ (0, d1). (3.11)

This, together with the properties of W , shows that k ∈ K0. !

Proposition 3.4. We have k ∈ K0,ζ if and only if k is of the form (3.9) where, in addition,

lim
t↘0

t1−ζW ′(t) = −%' with −%' = ζL'/(1 + ζ). (3.12)

Proof. If k ∈ K0,ζ , then (3.9) and (3.11) are fulfilled. Therefore,

L' = lim
t↘0

(tW(t))′

tζ
= lim

t↘0

W(t) + tW ′(t)
tζ

and
L'

ζ + 1
= lim

t↘0

∫ t
0 k(s) ds

k(t)tζ+1 = lim
t↘0

W(t)
tζ

,

from which (3.12) follows. Conversely, if (3.9) and (3.12) hold, then limt↘0 W(t)/tζ = −%'/ζ. By
(3.11), we infer that

1
tζ

(∫ t
0 k(s) ds

k(t)

)′
=

1
tζ

(
W(t) + tW ′(t)

)
→ −%'(ζ + 1)

ζ
as t ↘ 0.

Thus, k ∈ K0,ζ with L' = −%'(ζ + 1)/ζ. !

Remark 3.2. If k ∈ K0 or k ∈ K(01],τ with (1 − %1)2 + L2
( $= 0, then

lim
t↘0

k′(t)
k(t)tθ−1 = ∞, for every θ > 0. (3.13)

Indeed, if k ∈ K0, then limt↘0
tk′(t)
k(t) = ∞. Assuming that k ∈ K(01],τ , we deduce (3.13) from (3.1) when

%1 $= 1, otherwise from (3.4) when L( $= 0 since

lim
t↘0

k′(t)
k(t)tθ−1 = lim

t↘0
−E(t)t−θ = −L( lim

t↘0

t−θ

(− ln t)τ
= ∞.

Definition 3.1 (see [47]). A non-decreasing function U is Γ -varying at ∞ if U is defined on an interval
(A,∞), limx→∞ U (x) = ∞ and there is g : (A,∞) → (0,∞) such that

lim
y→∞

U (y + λg(y))
U (y)

= eλ, ∀λ ∈ R.

The function g is called an auxiliary function and is unique up to asymptotic equivalence.

Remark 3.3. Under the assumptions of Theorem 1.1, we have
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(a) Suppose limt↘0(
∫ t

0 k(s) ds)2r(t) = 1 and let f̂ (u) be such that limu→∞ f̂ (u)/f (u) = 1 and
j(u) := f̂ (u)/u is non-decreasing for u > 0 large. Then limt↘0 ϕ̂(t)/ϕ(t) = 1, where ϕ(t) is
given by (1.7) and ϕ̂(t) = j←(r(t)) for t > 0 small.

(b) If k ∈ K with %1 $= 0, then ϕ(1/u) ∈ RV2/(ρ#1).

(c) If k ∈ K0, then ϕ(1/u) is Γ -varying at u = ∞ with auxiliary function
ρu2

∫ 1/u

0
k(s) ds

2k(1/u) .

(d) limt↘0 ϕ(t)/h(t) = [2(ρ+ 2)/ρ2]−1/ρ, where h(t) is given by (1.9).

Indeed, by Proposition 2.6 we find (f (u)/u)← ∈ RV1/ρ and limu→∞(f (u)/u)←/j←(u) = 1. Then,

by Proposition 2.1 we deduce (a). We see that (b) follows by Proposition 2.6 since (
∫ 1/u

0 k(s) ds)−2 ∈
RV2/#1 (cf. Proposition 3.1) and f (u)/u ∈ RVρ. If k ∈ K0, then by Proposition 3.3 and [47, p. 106],

we get (
∫ 1/u

0 k(s) ds)−2 is Γ -varying at u = ∞ with auxiliary function uW(1/u)/2. By [47, p. 36], we
conclude (c). Notice that Y (u) := (1/

∫ ∞
u [2F (s)]−1/2 ds)2 ∈ RVρ and Y (h(t)) = (

∫ t
0 k(s) ds)−2 for

t > 0 small. We have limu→∞ f (u)/[uY (u)] = 2(ρ + 2)/ρ2 (cf. Remark 2.3). By Proposition 2.6, we
achieve (d).

4. Proof of Theorem 1.1

Fix a ∈ (−∞,λ∞,1). By [12, Theorem 1.1], Eq. (1.1) has at least a large solution.
In what follows, we will prove that (1.6) holds for any large solution. Hence, a standard argument

leads to the uniqueness (see, for instance, [25] or [12]).
By virtue of Remark 3.3(d), it is enough to demonstrate (1.8). Let ua denote an arbitrary large solution

of (1.1). Fix ε ∈ (0, 1/2) and choose δ > 0 such that

(i) d(x) is a C2 function on the set {x ∈ Ω: d(x) < δ};
(ii) k is non-decreasing on (0, δ);

(iii) 1 − ε < b(x)/k2(d(x)) < 1 + ε, ∀x ∈ Ω with 0 < d(x) < δ (since (1.5) holds);
(iv) h′(t) < 0 and h′′(t) > 0 for each t ∈ (0, δ) (cf. Lemma 2.1).

Define ξ± = [ 2+#1ρ
(1∓2ε)(2+ρ) ]

1/ρ and u±(x) = ξ±h(d(x)), for any x with d(x) ∈ (0, δ).
The proof of (1.8) will be divided into three steps:
Step 1. There exists δ1 ∈ (0, δ) small such that

{
∆u+ + au+ − (1 − ε)k2(d)f

(
u+

) " 0, ∀x with d(x) ∈ (0, δ1),
∆u− + au− − (1 + ε)k2(d)f (u−) ! 0, ∀x with d(x) ∈ (0, δ1).

(4.1)

Indeed, for every x ∈ Ω with 0 < d(x) < δ, we have

∆u± + au± − (1 ∓ ε)k2(d)f
(
u±)

= ξ±h′′(d)
(

1 + a
h(d)
h′′(d)

+ ∆d
h′(d)
h′′(d)

− (1 ∓ ε)
k2(d)f (u±)
ξ±h′′(d)

)
=: ξ±h′′(d)B±(d). (4.2)

By Lemma 2.1, we deduce limd↘0 B±(d) = ∓ε/(1 ∓ 2ε), which proves (4.1).
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Step 2. There exists M+, δ+ > 0 such that

ua(x) " u+(x) + M+, ∀x ∈ Ω with 0 < d < δ+.

For x ∈ Ω with d(x) ∈ (0, δ1), we define Ψx(u) = au − b(x)f (u) for each u > 0. By Lemma 2.1,

lim
d(x)↘0

b(x)f (u+(x))
u+(x)

= lim
d↘0

k2(d)f (u+)
ξ+h′′(d)

h′′(d)
h(d)

= ∞. (4.3)

From this and (A1), we infer that there exists δ2 ∈ (0, δ1) such that, for any x with 0 < d(x) < δ2,

u /→ Ψx(u) is decreasing on some interval (ux,∞) with 0 < ux < u+(x).

Hence, for each M > 0, we have

Ψx
(
u+(x) + M

) " Ψx
(
u+(x)

)
, ∀x ∈ Ω with 0 < d(x) < δ2. (4.4)

Fix σ ∈ (0, δ2/4) and set Nσ := {x ∈ Ω: σ < d(x) < δ2/2}.
We define u∗

σ(x) = u+(d − σ, s) + M+, where (d, s) are the local coordinates of x ∈ Nσ. We choose
M+ > 0 large enough such that

u∗
σ(δ2/2, s) = u+(δ2/2 − σ, s) + M+ ! ua(δ2/2, s), ∀σ ∈ (0, δ2/4) and ∀s ∈ ∂Ω.

By (ii), (iii), (4.1) and (4.4), we obtain

−∆u∗
σ(x) ! au+(d − σ, s) − (1 − ε)k2(d − σ)f

(
u+(d − σ, s)

)

! au+(d − σ, s) − b(x)f
(
u+(d − σ, s)

)

! a
(
u+(d − σ, s) + M+)

− b(x)f
(
u+(d − σ, s) + M+)

= au∗
σ(x) − b(x)f

(
u∗
σ(x)

)
in Nσ.

So, uniformly with respect to σ, we have

∆u∗
σ(x) + au∗

σ(x) " b(x)f
(
u∗
σ(x)

)
in Nσ. (4.5)

Since u∗
σ(x) → ∞ as d ↘ σ, from [12, Lemma 2.1], we get ua " u∗

σ in Nσ, for every σ ∈ (0, δ2/4).
Letting σ ↘ 0, we achieve the assertion of Step 2 (with δ+ ∈ (0, δ2/2) arbitrarily chosen).

Step 3. There exists M−, δ− > 0 such that

ua(x) ! u−(x) − M−, ∀x = (d, s) ∈ Ω with 0 < d < δ−. (4.6)

For every r ∈ (0, δ), define Ωr = {x ∈ Ω: 0 < d(x) < r}.
Fix σ ∈ (0, δ2/4). We define v∗σ(x) = λu−(d+σ, s) for x = (d, s) ∈ Ωδ2/2, where λ ∈ (0, 1) is chosen

small enough such that

v∗σ(δ2/4, s) = λu−(δ2/4 + σ, s) " ua(δ2/4, s), ∀σ ∈ (0, δ2/4), ∀s ∈ ∂Ω. (4.7)
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Notice that lim supd↘0(v∗σ − ua)(x) = −∞. By (ii), (iii), (4.1) and (A1), we have

∆v∗σ(x) + av∗σ(x) = λ
(
∆u−(d + σ, s) + au−(d + σ, s)

)

! λ(1 + ε)k2(d + σ)f
(
u−(d + σ, s)

) ! (1 + ε)k2(d)f
(
λu−(d + σ, s)

)

! b(x)f
(
v∗σ(x)

)
, ∀x = (d, s) ∈ Ωδ2/4.

Using [12, Lemma 2.1], we derive v∗σ " ua in Ωδ2/4. Letting σ ↘ 0, we get

λu−(x) " ua(x), ∀x ∈ Ωδ2/4. (4.8)

By Lemma 2.1, limd↘0 k2(d)f (λ2u−)/u− = ∞. Thus, there exists δ̃ ∈ (0, δ2/4) such that

k2(d)f
(
λ2u−)

/u− ! λ2|a|, ∀x ∈ Ω with 0 < d " δ̃. (4.9)

Choose δ∗ ∈ (0, δ̃), sufficiently close to δ̃, such that

h(δ∗)/h(δ̃) < 1 + λ. (4.10)

For each σ ∈ (0, δ̃− δ∗), we define zσ(x) = u−(d +σ, s)− (1−λ)u−(δ∗, s), where x = (d, s) ∈ Ωδ∗ .
We prove that zσ is positive in Ωδ∗ and

∆zσ + azσ ! b(x)f (zσ) in Ωδ∗ . (4.11)

By (iv), u−(x) decreases with d when d < δ̃. This and (4.10) imply that

1 + λ >
u−(δ∗, s)

u−(δ̃, s)
! u−(δ∗, s)

u−(d + σ, s)
, ∀x = (d, s) ∈ Ωδ∗ . (4.12)

Hence,

zσ(x) = u−(d + σ, s)
(

1 − (1 − λ)u−(δ∗, s)
u−(d + σ, s)

)
! λ2u−(d + σ, s) > 0, ∀x ∈ Ωδ∗ . (4.13)

By (4.1), (ii) and (iii), we see that (4.11) follows if

(1 + ε)k2(d + σ)
[
f
(
u−(d + σ, s)

)
− f

(
zσ(d, s)

)] ! a(1 − λ)u−(δ∗, s), ∀(d, s) ∈ Ωδ∗ . (4.14)

The Lagrange mean value theorem and (A1) show that

f
(
u−(d + σ, s)

)
− f

(
zσ(d, s)

) ! (1 − λ)u−(δ∗, s)f
(
zσ(x)

)
/zσ(x) (4.15)

which, combined with (4.9) and (4.13), proves (4.14).
Notice that lim supd↘0(zσ − ua)(x) = −∞. By (4.8), we have

zσ(x) = u−(δ∗ + σ, s) − (1 − λ)u−(δ∗, s) " λu−(δ∗, s) " ua(x), ∀x = (δ∗, s) ∈ Ω.

By [12, Lemma 2.1], zσ " ua in Ωδ∗ , for every σ ∈ (0, δ̃ − δ∗). Letting σ ↘ 0, we conclude Step 3.
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Thus, by Steps 2 and 3, we have

ξ− " lim inf
d(x)↘0

ua(x)
h(d(x))

" lim sup
d(x)↘0

ua(x)
h(d(x))

" ξ+.

Taking ε → 0, we obtain (1.8). This finishes the proof of Theorem 1.1.

5. Proof of Theorem 1.3

Fix a < λ∞,1 and denote by ua the unique large solution of (1.1).
Let ε ∈ (0, 1/2) be arbitrary and δ > 0 be such that (i), (ii), (iv) from Section 4 are satisfied.
By (1.10) and Remark 3.2, we can diminish δ > 0 such that

{
1 + (c̃ − ε)dθ < b(x)/k2(d) < 1 + (c̃ + ε)dθ, ∀x ∈ Ω with d ∈ (0, δ),
k2(t)

[
1 + (c̃ − ε)tθ

]
is increasing on (0, δ).

(5.1)

Define u±(x) = ξ0h(d)[1 + χ±
ε (− ln d)−τ ] for x ∈ Ω with d ∈ (0, δ), where χ±

ε = χ̃± ε.
We can assume u±(x) > 0 for every x ∈ Ω with d(x) ∈ (0, δ).
By the Lagrange mean value theorem, we obtain

f
(
u±(x)

)
= f

(
ξ0h(d)

)
+ ξ0χ

±
ε

h(d)
(− ln d)τ

f ′(Ψ±(d)
)
,

where Ψ±(d) = ξ0h(d)[1 + χ±
ε λ

±(d)(− ln d)−τ ], for some λ±(d) ∈ [0, 1].
Since f (u)/uρ+1 is slowly varying, by Proposition 2.1 we find

lim
d↘0

f (Ψ±(d))
f (ξ0h(d))

= lim
d↘0

f (u±(d))
f (ξ0h(d))

= 1. (5.2)

Step 1. There exists δ1 ∈ (0, δ) so that
{

∆u+ + au+ − k2(d)
[
1 + (c̃ − ε)dθ

]
f
(
u+

) " 0, ∀x ∈ Ω with d < δ1,
∆u− + au− − k2(d)

[
1 + (c̃ + ε)dθ

]
f (u−) ! 0, ∀x ∈ Ω with d < δ1.

(5.3)

For every x ∈ Ω with d ∈ (0, δ), we have

∆u± + au± − k2(d)
[
1 + (c̃ ∓ ε)dθ]f

(
u±)

= ξ0
h′′(d)

(− ln d)τ
J ±(d), (5.4)

where

J ±(d) :=
[
χ±
ε ∆d

h′(d)
h′′(d)

+
h′(d)

dh′′(d)

(
d(− ln d)τ∆d − 2τχ±

ε

ln d

)
+ a

h(d)
h′′(d)

(
χ±
ε + (− ln d)τ

)

+
τχ±

ε h(d)
d2h′′(d) ln d

(
1 +

τ + 1
ln d

− d∆d
)

+ (−c̃ ± ε)dθ(− ln d)τ
k2(d)f (ξ0h(d))

ξ0h′′(d)

+ (−c̃ ± ε)χ±
ε dθ k2(d)h(d)f ′(Ψ±(d))

h′′(d)
+ H(d) + J ±

1 (d)
]
.
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Here H is defined by (2.14), while

J ±
1 (d) := χ±

ε

(
1 − k2(d)h(d)f ′(Ψ±(d))

h′′(d)

)
.

By Lemma 2.1 and (5.2), we infer that

lim
d↘0

k2(d)h(d)f ′(Ψ±(d))
h′′(d)

= lim
d↘0

Ψ±(d)f ′(Ψ±(d))
f (Ψ±(d))

k2(d)f (ξ0h(d))
ξ0h′′(d)

= ρ+ 1.

Hence, limd↘0 J ±
1 (d) = −ρχ±

ε := −ρ(χ̃± ε). Using Lemmas 2.1 and 2.3, we find

lim
d↘0

J +(d) = −ρε < 0 and lim
d↘0

J −(d) = ρε > 0.

Therefore, by (5.4) we conclude (5.3).
Step 2. There exists M+, δ+ > 0 such that

ua(x) " u+(x) + M+, ∀x ∈ Ω with 0 < d < δ+.

We only recover (4.5), the rest being similar to the proof of Step 2 in Theorem 1.1. Indeed, by (5.3),
(5.1) and (4.4), we obtain

−∆u∗
σ(x) ! au+(d − σ, s) −

[
1 + (c̃ − ε)(d − σ)θ

]
k2(d − σ)f

(
u+(d − σ, s)

)

! au+(d − σ, s) −
[
1 + (c̃ − ε)dθ]k2(d)f

(
u+(d − σ, s)

)

! au+(d − σ, s) − b(x)f
(
u+(d − σ, s)

)

! a
(
u+(d − σ, s) + M+)

− b(x)f
(
u+(d − σ, s) + M+)

= au∗
σ(x) − b(x)f

(
u∗
σ(x)

)
in Nσ.

Step 3. There exists M−, δ− > 0 such that

ua(x) ! u−(x) − M−, ∀x ∈ Ω with 0 < d < δ−.

We proceed in the same way as for proving (4.6). To recover (4.8) (with λ given by (4.7)), we show that
∆v∗σ + av∗σ ! b(x)f (v∗σ) in Ωδ2/4. Indeed, using (5.1), (5.3) and (A1), we find

∆v∗σ(x) + av∗σ(x) = λ
(
∆u−(d + σ, s) + au−(d + σ, s)

)

! λk2(d + σ)
[
1 + (c̃ + ε)(d + σ)θ

]
f
(
u−(d + σ, s)

)

! k2(d)
[
1 + (c̃ + ε)dθ]f

(
λu−(d + σ, s)

)

! b(x)f
(
v∗σ(x)

)
, ∀x = (d, s) ∈ Ωδ2/4.

Since limd↘0 k2(d)f (λ2u−(x))/u−(x) = ∞, there exists δ̃ ∈ (0, δ2/4) such that

k2(d)
[
1 + (c̃ + ε)dθ]f

(
λ2u−)

/u− ! λ2|a|, ∀x ∈ Ω with 0 < d " δ̃. (5.5)



296 F.C. Cîrstea and V. Rădulescu / Nonlinear problems with boundary blow-up

By Lemma 2.1, we infer that u−(x) decreases with d when d ∈ (0, δ̃) (if necessary, δ̃ > 0 is diminished).
Choose δ∗ ∈ (0, δ̃) close enough to δ̃ such that

h(δ∗)(1 + χ−
ε (− ln δ∗)−τ )

h(δ̃)(1 + χ−
ε (− ln δ̃)−τ )

< 1 + λ. (5.6)

Hence, we regain (4.12), (4.13) and (4.15).
By (5.1) and (5.3), we see that (4.11) follows if

k2(d + σ)
[
1 + (c̃ + ε)(d + σ)θ

][
f
(
u−(d + σ, s)

)
− f

(
zσ(d, s)

)] ! a(1 − λ)u−(δ∗, s) (5.7)

for each (d, s) ∈ Ωδ∗ . Using (4.15), together with (5.5) and (4.13), we arrive at (5.7). From now on, the
argument is the same as before. This proves the claim of Step 3.

By Steps 2 and 3, it follows that






χ+
ε !

[
−1 +

ua(x)
ξ0h(d)

]
(− ln d)τ − M+(− ln d)τ

ξ0h(d)
, ∀x ∈ Ω with d < δ+,

χ−
ε "

[
−1 +

ua(x)
ξ0h(d)

]
(− ln d)τ +

M−(− ln d)τ

ξ0h(d)
, ∀x ∈ Ω with d < δ−.

(5.8)

Using Lemma 2.1, we have

lim
t↘0

(− ln t)τ

h(t)
= lim

t↘0

( − ln t

ln h(t)

)τ (ln h(t))τ

h(t)
=

(
ρ%1

2

)τ

lim
u→∞

(ln u)τ

u
= 0.

Passing to the limit d ↘ 0 in (5.8), we obtain

χ−
ε " lim inf

d↘0

[
−1 +

ua(x)
ξ0h(d)

]
(− ln d)τ " lim sup

d↘0

[
−1 +

ua(x)
ξ0h(d)

]
(− ln d)τ " χ+

ε .

By sending ε to 0, the proof of Theorem 1.3 is finished.
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