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ABSTRACT

We study parametric nonlinear elliptic boundary value problems driven

by the p-Laplacian with convex and concave terms. The convex term ap-

pears in the reaction and the concave in the boundary condition (source).

We study the existence and nonexistence of positive solutions as the pa-

rameter λ > 0 varies. For the semilinear problem (p = 2), we prove

a bifurcation type result. Finally, we show the existence of nodal (sign

changing) solutions.
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1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper we

study the following nonlinear parametric boundary value problem:

(Pλ)

⎧⎪⎨⎪⎩
−Δpu(z) = f(z, u(z)) in Ω, 1 < p <∞,
∂u

∂np
= λβ(z)u(z)q−1 on ∂Ω, u > 0.

In this equation, by Δp we denote the p-Laplacian differential operator defined

by

Δpu = div (|Du|p−2Du) for all u ∈W 1,p(Ω).

Also ∂u
∂np

denotes the generalized normal derivative corresponding to the

p-Laplacian and defined by ∂u
∂np

= |Du|p−2(Du, n)RN , with n(·) being the out-

ward unit normal on ∂Ω. The reaction f(z, x) is a Carathéodory function

(that is, for all x ∈ R, z �−→ f(z, x) is measurable and for almost all z ∈ Ω,

x �−→ f(z, x) is continuous), which is (p − 1)-superlinear near +∞. In the

boundary condition, λ > 0 is a parameter, β ∈ L∞(Ω)+, β �= 0 and 1 < q < p.

So, problem (Pλ) is an alternative version of the well-known “concave-convex”

problem (problem with competing nonlinearities) in which a “convex” (super-

linear) reaction f(z, x) is coupled with a “sublinear” parametric source term.

The original “concave-convex” problem had both the competing nonlinearities

in the reaction, which had the form λxq−1 + xr−1 for all x � 0, with λ > 0

being the parameter and

1 < q < p < r < p∗ =

⎧⎨⎩
Np

N − p
if p < N,

+∞ if N � p,

where p∗ is the critical Sobolev exponent.

The study of such problems was launched with the pioneering works of Garcia

Azorero and Peral [10], and Ambrosetti, Brezis and Cerami [2]. In the first

paper, among other results, the critical case is considered for small values of

the parameter. Ambrosetti, Brezis and Cerami [2] investigated the following

semilinear Dirichlet problem:

−Δu(z) = λu(z)q−1 + u(z)r−1 in Ω, u|∂Ω = 0, u > 0,

with 1 < q < 2 < r < 2∗. They proved bifurcation-type results describing

the set of positive solutions as the parameter λ > 0 varies. Their work was
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extended to equations driven by the p-Laplacian, by Garcia Azorero, Manfredi

and Peral Alonso [8] and Guo and Zhang [13]. Further extensions with more

general reactions can be found in Filippakis, Kristaly and Papageorgiou [6]

and Iannizzotto and Papageorgiou [15]. We also refer to Boccardo, Escobedo

and Peral [4], who studied the branch of minimal solutions without growth

hypotheses. Problems in which the competing nonlinearities come from both

the reaction (the convex term) and the source (the concave term) were first

considered by Garcia Azorero, Peral and Rossi [9] for semilinear problems with a

reaction of the form f(x) = xr−1 for all x � 0, where 1 < 2 < r < 2∗. Semiliear

problems with a more general reaction were studied recently by Furtado and

Ruviaro [7]. Generalizations to p-Laplacian equations with a reaction of the

form f(x) = xr−1 for all x � 0, where 1 < p < q < p∗, can be found in the work

of Sabina de Lis [21]. We stress that in all of the aforementioned works, the

differential operator (left-hand side of the equation) has the form −Δpu+ up−1

(with p = 2 in [7], [9]). This operator is coercive and this facilitates the analysis.

In contrast, in problem (Pλ) the differential operator is not coercive.

In Section 3, for problem (Pλ), we prove a theorem concerning the existence

and nonexistence of positive solutions, depending on the value of the parameter

λ > 0. We also show the existence of a minimal positive solution uλ and

investigate the properties of the map λ �−→ uλ. If p = 2 (semilinear problem),

then we prove a bifurcation result describing in a more precise way the existence

and multiplicity of positive solutions as the parameter λ > 0 varies. It is an

interesting open problem whether such a bifurcation result is also possible for

the p-Laplacian equation. In Section 4 we prove the existence of nodal (sign

changing) solutions.

In the next section, for easy reference we recall the main mathematical tools

which we will use in the sequel and fix our notation.

2. Mathematical background

In what follows X is a Banach space and X∗ is its topological dual. By 〈·, ·〉 we
denote the duality brackets for the pair (X∗, X). Let ϕ ∈ C1(X). We say that

ϕ satisfies the “C-condition” if the following is true:

“Every sequence {un}n�1 ⊆ X , such that {ϕ(un)}n�1 ⊆ R is bounded and

(1 + ||un||)ϕ′(un) → 0 in X∗ as n→ ∞,

admits a strongly convergent subsequence”.
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This is a compactness-type condition on the functional ϕ. It is needed because

the ambient space is not in general locally compact (since X in general is infinite

dimensional). With this compactness-type condition on ϕ, one can prove a

deformation theorem which leads to a minimax theory for the critical values

of ϕ. One of the main results in this theory, is the so-called “mountain pass

theorem” due to Ambrosetti and Rabinowitz [3]. Here we state it in a slightly

more general form (see Gasinski and Papageorgiou [11, p. 648]).

Theorem 1: Assume that ϕ ∈ C1(X) satisfies the C-condition, u0, u1 ∈ X ,

||u1 − u0|| < p < 0,

max{ϕ(u0), ϕ(u1)} < inf[ϕ(u) : ||u− u0|| = ρ] = mρ

and c = infγ∈Γ max0�t�1 ϕ(γ(t)), where

Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}.
Then c � mρ and c is a critical value of ϕ.

In the study of problem (Pλ), in addition to the Sobolev space W 1,p(Ω), we

will also use the Banach space C1(Ω). This is an ordered Banach space with

positive cone C+ = {u ∈ C1(Ω) : u(z) � 0 for all z ∈ Ω}. This cone has a

nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.
By || · || we denote the norm of the Sobolev space W 1,p(Ω). We recall that

||u|| = [||u||pp + ||Du||pp]1/p for all u ∈ W 1,p(Ω).

On ∂Ω we consider the (N−1)-dimensional Hausdorff (surface) measure σ(·).
With this measure, we can define the Lebesgue spaces Lp(∂Ω) (1 � p � ∞).

From the trace theorem, we know that there exists a unique continuous linear

map γ0 : W 1,p(Ω) → Lp(∂Ω), with the property that γ0(u) = u|∂Ω for all

u ∈ C1(Ω). The trace map is compact into Lq(∂Ω) with 1 � q < Np−p
N−p and we

have

im γ0 =W
1
p′ ,p(∂Ω)

(1
p
+

1

p′
= 1

)
, kerγ0 =W 1,p

0 (Ω).

In the sequel, for notational simplicity, we drop the use of the trace map γ0.

Every Sobolev function defined on ∂Ω is understood in the sense of traces.

Let f0 : Ω× R → R be a Carathéodory function such that

|f0(z, x)| � a0(z)(1 + |x|r−1) for almost all z ∈ Ω, all x ∈ R
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with a0 ∈ L∞(Ω)+ and 1 < r < p∗. We set F0(z, x) =
∫ x
0
f0(z, s)ds. Let

β ∈ L∞(∂Ω) and consider the C1-functional ϕ0 : W 1,p(Ω) → R defined by

ϕ0(u) =
1

p
||Du||pp−

1

q

∫
∂Ω

β(z)|u(z)|qdσ−
∫
Ω

F0(z, u(z))dz for all u ∈ W 1,p(Ω).

From Papageorgiou and Rădulescu [19], we have the following result.

Proposition 2: If u0 ∈ W 1,p(Ω) is a local C1(Ω)-minimizer of ϕ0, that is,

there exists ρ0 > 0 such that

ϕ0(u0) � ϕ0(u0 + h) for all h ∈ C1(Ω) with ||h||C1(Ω) � ρ0,

then u0 ∈ C1,α(Ω) for some α ∈ (0, 1) and u0 is also a local W 1,p(Ω)-minimizer

of ϕ0, that is, there exists ρ1 > 0 such that

ϕ0(u0) � ϕ0(u0 + h) for all h ∈ W 1,p(Ω) with ||h|| � ρ1.

Let A : W 1,p(Ω) →W 1,p(Ω)∗ be the nonlinear map defined by

〈A(u), h〉 =
∫
Ω

|Du|p−2(Du,Dh)RN dz for all u, h ∈W 1,p(Ω).

From Papageorgiou and Kyritsi [18, p. 314], we have:

Proposition 3: The map A : W 1,p(Ω) → W 1,p(Ω)∗ is continuous, strictly

monotone (hence maximal monotone too) and of type (S)+, that is, if un
w→ u

in W 1,p(Ω) and lim supn→∞〈A(un), un − u〉 � 0, then un → u in W 1,p(Ω).

Finally, let us fix our notation. For ϕ ∈ C1(X), by Kϕ we denote the set of

critical points of ϕ, that is, Kϕ = {u ∈ X : ϕ′(u) = 0}. Also, if x ∈ R, then

x± = max{0,±x}. Given u ∈ W 1,p(Ω), we set u±(·) = u(·)± and we have

u± ∈ W 1,p(Ω), u = u+ − u−, |u| = u+ + u−.

By | · |N we denote the Lebesgue measure on R
N . Also, if h : Ω× R → R is

a measurable function (for example, a Carathéodory function), then

Nh(u)(·) = h(·, u(·))
(the Nemytskii map corresponding to h). Evidently, the mapping

z �−→ Nh(u)(z) = f(z, u(z))

is measurable.



796 N. S. PAPAGEORGIOU AND V. D. RĂDULESCU Isr. J. Math.

3. Positive solutions

In this section, we study the existence and nonexistence of positive solutions for

problem (Pλ) as λ > 0 varies. We also prove the existence of a minimal positive

solution uλ and examine the properties of the map λ �−→ uλ.

The hypotheses on the reaction f(z, x) are the following:

H1: f : Ω× R → R is a Carathéodory function such that for almost all z ∈ Ω,

f(z, 0) = 0 and

(i) |f(z, x)| � a(z)(1 + xr−1) for almost all z ∈ Ω, all x � 0, with

a ∈ L∞(Ω)+, p < r < p∗;
(ii) if F (z, x) =

∫ x
0 f(z, s)ds, then there exists η > p and M > 0 such that

0 < ηF (z, x) �f(z, x)x for almost all z ∈ Ω, all x �M,

essinfF (·,M) > 0;

(iii) limx→0+
f(z,x)
xp−1 = 0 uniformly for almost all z ∈ Ω and for all τ > 0,

f(z, x) � μτ > 0 for almost all z ∈ Ω, all x � τ ;

(iv) if p = 2, then for every ρ > 0, there exists ξρ > 0 such that for almost

all z ∈ Ω, the map x �−→ f(z, x) + ξρx is nondecreasing on [0, ρ].

Remark 1: Since we are interested in positive solutions and the above hypothe-

ses concern the positive semi-axis R+ = [0,+∞), without any loss of generality,

we may assume that f(z, x) = 0 for almost all z ∈ Ω, all x � 0. Hypothesis

H1(ii) is the well-known Ambrosetti-Rabinowitz condition (AR-condition for

short) (see [3]). It implies that

(1) c1x
η � F (z, x) for almost all z ∈ Ω, all x �M, some c1 > 0

(see, for example, Papageorgiou and Kyritsi [18, p. 424]). It is an interest-

ing open problem whether we can replace the AR-condition by a more general

superlinearity condition, like the one employed by Gasinski and Papageorgiou

[12] and Iannizzotto and Papageorgiou [15]. The noncoercivity of the differential

operator together with the boundary term λβ(z)xq−1 for all (z, x) ∈ ∂Ω× R+

raise serious technical difficulties and make the use of more general superlin-

earity conditions problematic. Hypothesis H1(iv) is satisfied if, for almost all

z ∈ Ω, f(z, ·) ∈ C1(R) and f ′
x(z, x) is locally L

∞(Ω)-bounded.
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Example 1: The following functions satisfy hypotheses H1:

f1(x) =x
r−1 for all x � 0, with p < r < p∗,

f2(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < 0,

cxs−1 − xτ−1 if 0 � x � 1,

(c− 1)xη−1 if 1 < x,

with c > 1, p < s < τ and p < η < p∗,

f3(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < 0,

xτ−1 if 0 � x � 1,

xη−1 if 1 < x,

with p < τ, η and η < p∗.

The hypotheses on the boundary term are:

Ĥ : β ∈ C0,α(∂Ω) with α ∈ (0, 1], β � 0, β �= 0 and 1 < q < p.

We introduce the following Carathéodory function:

(2) f̂(z, x) =

⎧⎨⎩0 if x � 0,

f(z, x) + xp−1 if 0 < x.

Let

F̂ (z, x) =

∫ x

0

f̂(z, s)ds

and, for every λ > 0, we consider the C1-functional ϕ̂λ : W 1,p(Ω) → R defined

by

ϕ̂λ(u) =
1

p
||Du||pp +

1

p
||u||pp −

λ

q

∫
∂Ω

β(z)u+(z)qdσ−
∫
Ω

F̂ (z, u(z))dz

for all u ∈W 1,p(Ω).

Proposition 4: If hypotheses H1(i), (ii), (iii) and Ĥ hold, then the functional

ϕ̂λ satisfies the C-condition.

Proof. Let {un}n�1 ⊆W 1,p(Ω) be a sequence such that

|ϕ̂λ(un)| �M1 for some M1 > 0, all n � 1,(3)

(1 + ||un||)ϕ̂′
λ(un) → 0 in W 1,p(Ω)∗ as n→ ∞.(4)
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From (4) we have

(5)

|〈ϕ̂′
λ(un), h〉| �

εn||h||
1 + ||un|| for all h ∈W 1,p(Ω), with εn → 0+,

⇒
∣∣∣∣〈A(un), h〉+ ∫

Ω

|un|p−2unhdz

− λ

∫
∂Ω

β(z)(u+n )
q−1hdσ −

∫
Ω

f̂(z, un)hdz

∣∣∣∣
� εn||h||
1 + ||un|| for all h ∈W 1,p(Ω), all n � 1.

In (5) we choose h = −u−n ∈ W 1,p(Ω). Then

(6)

1

p
||Du−n ||pp +

1

p
||u−n ||pp � εn for all n � 1 (see (2)),

⇒u−n → 0 in W 1,p(Ω) as n→ ∞.

From (3), (6) and hypothesis H1(i), we have

(7)
||Du+n ||pp −

λp

q

∫
∂Ω

β(z)(u+n )
qdσ −

∫
Ω

pF (z, u+n )dz �M2

for some M2 > 0, all n � 1.

Also, in (5) we choose h = u+n ∈ W 1,p(Ω) and obtain

(8)
−||Du+n ||pp + λ

∫
∂Ω

β(z)(u+n )
qdσ +

∫
Ω

f(z, u+n )u
+
n dz � εn

for all n � 1 (see (4)).

Adding (7) and (8), we obtain

(9)

∫
Ω

[f(z, u+n )u
+
n−pF (z, u+n )]dz �M3+λ

(p
q
−1

)∫
∂Ω

β(z)(u+n )
qdσ

for some M3 > 0, all n � 1,

� c2(1+||u+n ||q) for some c2>0, all n�1

(use the trace theorem),

⇒
∫
Ω

[f(z, u+n )u
+
n − ηF (z, u+n )]dz + (η − p)

∫
Ω

F (z, u+n )dz

� c2(1 + ||u+n ||q) for all n � 1,

⇒ (η − p)

∫
Ω

F (z, u+n )dz � c2(1 + ||u+n ||q) for all n � 1

(see hypothesis H1(ii)).
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From (1) and hypothesis H1(i), we have

(10) c1x
η − c3 � F (z, x) for almost all z ∈ Ω, all x � 0, some c3 > 0.

Using (10) in (9), we obtain

(11)

||u+n ||pp �c4(1 + ||u+n ||q)p/η for some c4 > 0, all n � 1

�c4(1 + ||u+n ||qp/η) ( recall p < η)

�c5(1 + ||u+n ||q) for some c5 > 0, all n � 1.

From (3), (6) and hypothesis H1(i) we have

(12)

η

p
||Du+n ||pp −

λη

q

∫
∂Ω

β(z)(u+n )
qdσ −

∫
Ω

ηF (z, u+n )dz �M4

for some M4 > 0, all n � 1.

Adding (8) and (12), we obtain

(13)

(η
p
−1

)
||Du+n ||pp +

∫
Ω

[f(z, u+n )u
+
n − ηF (z, u+n )]dz

�M5 + λ(
η

q
− 1)

∫
∂Ω

β(z)(u+n )
qdσ

for some M5 > 0, all n � 1,

⇒||Du+n ||pp�c6(1 + ||u+n ||q) for some c6 > 0, all n � 1

(see hypotheses H1(i), (ii), recall that p<η and use the trace theorem)

From (11) and (13) and recalling that u �−→ ||u||η + ||Du||p is an equivalent

norm on W 1,p(Ω) (see, for example, Gasinski and Papageorgiou [11, p. 227]),

we infer that

||u+n ||p � c7(1 + ||u+n ||q) for some c7 > 0, all n � 1.

Since q < p (see hypotheses Ĥ), we conclude that

(14) {u+n }n�1 ⊆W 1,p(Ω) is bounded.

From (6) and (14) it follows that {un}n�1 ⊆ W 1,p(Ω) is bounded. Using

the Sobolev embedding theorem and the trace theorem and by passing to a

subsequence if necessary, we may assume that

(15) un
w→ u in W 1,p(Ω) and un → u in Lr(Ω) and in Lp(∂Ω) as n→ ∞.
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In (5) we choose h = un − u ∈ W 1,p(Ω), pass to the limit as n→ ∞ and use

(15). Then

lim
n→∞〈A(un),un − u〉 = 0,

⇒un → u in W 1,p(Ω) as n→ ∞ (see Proposition 3),

⇒ϕ̂λ satisfies the C-condition.

This completes the proof.

Proposition 5: If hypotheses H1(i), (ii), (iii) and Ĥ hold, then there exists

λ+ > 0 such that for every λ ∈ (0, λ+), there exists ρλ > 0 for which we have

inf[ϕ̂λ(u) : ||u|| = ρλ] = m̂λ > 0 = ϕ̂λ(0).

Proof. HypothesesH1(i), (iii) imply that given ε > 0, we can find c8 = c8(ε) > 0

such that

(16) F (z, x) � εxp + c8x
r for almost all z ∈ Ω, all x � 0.

Then for every u ∈ W 1,p(Ω), we have

(17) ϕ̂λ(u) �
1

p
||Du||pp+

1

p
||u||pp−λc9||u||q−c10||u||r−ε||u||p−

1

p
||u||p (see (2)).

Since q < p < r, we have

||u||p � λ||u||q + c11||u||r for some c11 = c11(λ) > 0.

Returning to (17) and choosing ε > 0 small, we have

(18)

ϕ̂λ(u) �c12||u||p − λc13||u||q − c14||u||r

with c12 = c12(ε) > 0, c13 = c9 +
1

p
> 0, c14 = c10 +

1

p
> 0

=[c12 − (λc13||u||q−p + c14||u||r−p)]||u||p.

Let ϑλ(t) = λc13t
q−p + c14t

r−p for all t > 0. Evidently ϑλ ∈ C1(0,+∞) and

since q < p < r, we have

ϑλ(t) → +∞ as t→ 0+ and as t→ +∞.
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So we can find t0 ∈ (0,+∞) such that

ϑλ(t0) = inf
t>0

ϑλ(t),

⇒ϑ′λ(t0) = 0,

⇒λ(p− q)c13 = (r − p)c14t
r−q
0 ,

⇒t0 = t0(λ) =
[λ(p− q)c13
(r − p)c14

] 1
r−q

.

Evidently, we have

ϑλ(t0) → 0+ as λ→ 0+.

So from (18) we see that we can find λ+ > 0 such that

ϑλ(t0) < c12 for all λ ∈ (0, λ+).

Therefore

ϕ̂λ(u) � m̂λ > 0 = ϕ̂λ(0) for all u ∈W 1,p(Ω) with ||u|| = ρλ = t0(λ).

An immediate consequence of the AR-condition (see (1)) is the following

proposition.

Proposition 6: If hypothesesH1(i), (ii), (iii) and Ĥ hold λ > 0 and u ∈ intC+,

then

ϕ̂λ(tu) → −∞ as t→ +∞.

We introduce the following sets:

L ={λ > 0 : problem (Pλ) admits a positive solution},
S(λ) = set of positive solutions for problem (Pλ).

Proposition 7: If hypotheses H1(i), (ii), (iii) and Ĥ hold, then L �= ∅ and,

for every λ > 0, S(λ) ⊆ intC+.

Proof. Let λ+ > 0 be as in Proposition 5. We fix λ ∈ (0, λ+). Then Propositions

5 and 6 imply that the functional ϕ̂λ satisfies the mountain pass geometry. This

fact, together with Proposition 4, permit the use of Theorem 1 (the mountain

pass theorem). So, we can find u0 ∈ W 1,p(Ω) such that

(19) u0 ∈ Kϕ̂λ
and ϕ̂λ(0) = 0 < m̂λ � ϕ̂λ(u0).
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From (19) we see that u0 �= 0 and

(20)

ϕ̂′
λ(u0) = 0

⇒ 〈A(u0), h〉+
∫
Ω

|u0|p−2u0hdz=λ

∫
Ω

β(z)(u+0 )
q−1hdσ+

∫
Ω

f̂(z, u0)hdz

for all h ∈ W 1,p(Ω).

In (20) we choose h = −u−0 ∈W 1,p(Ω). Using (2), we have

||Du−0 ||pp+||u−0 ||pp = 0,

⇒u0 � 0, u0 �= 0.

So, (20) becomes

(21)
〈A(u0), h〉 = λ

∫
∂Ω

β(z)uq−1
0 hdσ +

∫
Ω

f(z, u0)hdz

for all h ∈W 1,p(Ω) (see (2)).

In what follows, by 〈·, ·〉0 we denote the duality brackets for the pair

(W−1,p′(Ω) =W 1,p
0 (Ω)∗, W 1,p

0 (Ω))
(1
p
+

1

p′
= 1

)
.

From the representation theorem for the elements of the dual space

W−1,p′(Ω) =W 1,p
0 (Ω)∗

(see, for example, Gasinski and Papageorgiou [11, p. 212]), we have

Δpu0 ∈ W−1,p′(Ω).

Then integration by parts gives

(22) 〈A(u0), h〉 = 〈−Δpu0, h〉0 for all h ∈W 1,p
0 (Ω) ⊆W 1,p(Ω).

We return to (21) and use (22). Recall that ker γ0 =W 1,p
0 (Ω). So we have

(23)

〈−Δpu0, h〉0 =

∫
Ω

f(z, u0)hdz for all h ∈ W 1,p
0 (Ω)

⇒ −Δpu0(z) =f(z, u0(z)) for almost all z ∈ Ω

(recall Lr
′
(Ω) ↪→W−1,p′(Ω)).

HypothesisH1(i) implies that f(·, u0(·)) ∈ Lr
′
(Ω). SinceW 1,r

0 (Ω) ↪→W 1,p
0 (Ω)

continuously and densely (recall p < r), we have W−1,p′(Ω) ↪→W−1,r′(Ω) con-

tinuously and densely (see, for example, Gasinski and Papageorgiou [11, p. 141]).
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Then because of (23) we can apply the nonlinear Green’s identity (see, for ex-

ample, Gasinski and Papageorgiou [11, p. 210]) and have

(24)
〈A(u0), h〉+

∫
Ω

(Δpu0)hdz=
〈∂u0
∂np

, h
〉
∂Ω

for all h∈W 1,r(Ω) ↪→W 1,p(Ω)

(see (23)).

Here, by 〈·, ·〉∂Ω we denote the duality brackets for the pair

(W
− 1

p′ ,p
′
(∂Ω), W

1
p′ ,p(∂Ω)).

If we use (21) and (23) in (24), we obtain

(25)
λ

∫
∂Ω

β(z)uq−1
0 hdσ =

〈∂u0
∂np

, h
〉
∂Ω

for all h ∈W 1,p(Ω)

recall W 1,r(Ω) is dense in W 1,p(Ω)).

Recall that

γ0(W
1,p(Ω)) =W

1
p′ ,p(∂Ω).

So from (25) it follows that

∂u0
∂np

= λβ(z)uq−1
0 on ∂Ω,

⇒u0 ∈ S(λ) and so (0, λ+) ⊆ L, hence L �= ∅.

From Winkert [22] we have u0 ∈ L∞(Ω) and then Theorem 2 of Lieberman

[16] implies that u0 ∈ C+\{0}.
Let ρ = ||u0||∞. Hypotheses H1(i), (iii) imply that we can find x̂ρ > 0 such

that

(26) f(z, x) + ξ̂ρx
p−1 � 0 for almost all z ∈ Ω, all x ∈ [0, ρ].

From (23) we obtain

Δpu0(z) �ξ̂ρu0(z)p−1 for almost all z ∈ Ω,

⇒u0 ∈ intC+ (by the nonlinear maximum principle, see [11, p. 738]).

The above argument shows that

S(λ) ⊆ intC+ for all λ > 0

(of course, if λ /∈ L, then S(λ) = ∅).

Next we prove a useful structural property of the set L, which shows that L
is an interval.
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Proposition 8: If hypothesesH1(i), (ii), (iii) and Ĥ hold, λ ∈ L and ν ∈ (0, λ),

then ν ∈ L.
Proof. Since λ ∈ L, we can find uλ ∈ S(λ) ⊆ intC+ (see Proposition 7). We

introduce the following Carathéodory functions:

k(z, x) =

⎧⎨⎩f(z, x) + (x+)p−1 if x � uλ(z)

f(z, uλ(z)) + uλ(z)
p−1 if uλ(z) < x

for all (z, x)∈Ω×R,(27)

γν(z, x) =

⎧⎨⎩νβ(z)(x+)q−1 if x � uλ(z)

νβ(z)uλ(z)
q−1 if uλ(z) < x

for all (z, x) ∈ ∂Ω× R.(28)

Let K(z, x) =
∫ x
0 k(z, s)ds and Γν(z, x) =

∫ x
0 γν(z, s)ds. We consider the

C1-functional ψ̂ν :W 1,p(Ω) → R defined by

ψ̂ν(u) =
1

p
||Du||pp +

1

p
||u||pp −

∫
∂Ω

Γν(z, u(z))dσ−
∫
Ω

K(z, u(z))dz

for all u ∈ W 1,p(Ω).

From (27) and (28), it is clear that ψ̂ν(·) is coercive. Also, using the Sobolev

embedding theorem and the compactness of the trace map, we have that ψ̂ν is

sequentially weakly lower semicontinuous. So the Weierstrass theorem implies

that we can find uν ∈W 1,p(Ω) such that

(29) ψ̂ν(uν) = inf[ψ̂ν(u) : u ∈W 1,p(Ω)].

Let mλ = minΩ uλ > 0 (recall that uλ ∈ intC+). Because of hypothesis

H1(iii), given ε > 0, we can find δ = δ(ε) ∈ (0,mλ) such that

(30) F (z, x) � − ε

p
xp for almost all z ∈ Ω, all x ∈ [0, δ].

Let u ∈ intC+ and choose t ∈ (0, 1) small such that tu(z) ∈ (0, δ] for all

z ∈ Ω. Then we have

(31)
ψ̂ν(tu) �

tp

p
||Du||pp −

νtq

q

∫
∂Ω

β(z)uqdσ +
εtp

p
||u||pp

(see (27), (28) and (30)).
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Since q < p, from (31) we see that by choosing t ∈ (0, 1) even smaller if

necessary, we can have

ψ̂ν(tu) < 0,

⇒ ψ̂ν(uν) < 0 = ψ̂ν(0) (see (29)), hence uν �= 0.

From (29) we have

(32)

ψ̂′
ν(uν) = 0,

⇒ 〈A(uν), h〉+
∫
Ω

|uν |p−2uνhdz =

∫
∂Ω

γν(z, uν)hdσ +

∫
Ω

k(z, uν)dz

for all h ∈ W 1,p(Ω).

In (32) first we choose h = −u−ν ∈W 1,p(Ω). We obtain

||Du−ν ||pp + ||u−ν ||pp = 0 (see (27), (28)),

⇒ uν � 0, uν �= 0.

Next in (32) we choose (uν − uλ)
+ ∈ W 1,p(Ω). We have

〈A(uν), (uν − uλ)
+〉+

∫
Ω

up−1
ν (uν − uλ)

+dz

=

∫
∂Ω

νβ(z)uq−1
λ (uν − uλ)

+dσ +

∫
Ω

f(z, uλ)(uν − uλ)
+dz

+

∫
Ω

up−1
λ (uν − uλ)

+dz (see (27),(28))

�
∫
∂Ω

λβ(z)uq−1
λ (uν − uλ)

+dσ +

∫
Ω

f(z, uλ)(uν − uλ)
+dz

+

∫
Ω

up−1
λ (uν − uλ)

+dz (since ν < λ and see Ĥ)

=〈A(uλ), (uν − uλ)
+〉+

∫
Ω

up−1
λ (uν − uλ)

+dz,

⇒ 〈A(uν)−A(uλ), (uν − uλ)
+〉+

∫
Ω

(up−1
ν −up−1

λ )(uν−uλ)+dz�0,

⇒ |{uν > uλ}|N = 0, hence uν � uλ.

So we have proved that

uν ∈ [0, uλ] = {u ∈ W 1,p(Ω) : 0 � u(z) � uλ(z) for almost all z ∈ Ω}.
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Using (27) and (28), equation (32) becomes

〈A(uν), h〉 = ν

∫
∂Ω

β(z)uq−1
ν hdσ +

∫
Ω

f(z, uν)hdz,

⇒ uν ∈ S(ν) ⊆ intC+ (see the proof of Proposition 7),

⇒ ν ∈ L and so (0, λ] ⊆ L.
The proof is now complete.

Remark 2: As a consequence of Proposition 8, we see that L is an interval.

An interesting byproduct of the above proof is the following corollary.

Corollary 9: If hypotheses H1(i), (ii), (iii) and Ĥ hold,

λ ∈ L, uλ ∈ S(λ) ⊆ intC+ and ν ∈ (0, λ),

then there exists uν ∈ S(ν) ⊆ intC+ such that uν � uλ.

In the semilinear case (p = 2), we can improve the above corollary by bringing

into play hypothesis H1(iv). We will need this result in order to produce a

second positive solution for problem (Pλ) when λ ∈ (0, λ∗ = supL).
Proposition 10: If p = 2 (semilinear problem), hypotheses H1 and Ĥ hold,

λ ∈ L, uλ ∈ S(λ) ⊆ intC+ and ν ∈ (0, λ), then there exists uν ∈ S(ν) ⊆ intC+

such that uλ − uν ∈ intC+.

Proof. From Corollary 9, we already have a solution uν ∈ S(ν) ⊆ intC+ such

that

(33) uν � uλ.

Let ρ = ||uλ||∞ and let ξρ > 0 be as postulated by hypothesis H1(iv). Then

−Δpuν(z) + ξρuν(z) =f(z, uν(z)) + ξρuν(z)

�f(z, uλ(z)) + ξρuλ(z) (see (33) and hypothesis H1(iv))

=−Δuλ(z)+ξρuλ(z) for almost all z∈Ω (since uλ∈S(λ)),
⇒ Δ(uλ − uν)(z) �ξρ(uλ − uν)(z) for almost all z ∈ Ω,

⇒ uλ − uν ∈ intC+ (from the maximum principle, see [11, p. 738]).

Remark 3: In the nonlinear case (p ∈ (1,∞)), it is this strong comparison

result that we are missing in order to have a bifurcation-type theorem. It is an

interesting open problem whether Proposition 10 is still valid when 1 < p <∞.
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Such a result will lead to a bifurcation-type theorem for the general nonlinear

problem (Pλ).

Let λ∗ = supL. We will show that λ∗ < ∞. To this end we will need

some preparation. Note that hypotheses H1(i), (ii), (iii) imply that there exists

c15 > 0 such that

(34) f(z, x) � −c15xp−1 for almost all z ∈ Ω, all x � 0.

We consider the following auxiliary parameter nonlinear problem:

{ −Δpu(z) + c15u(z)
p−1 = 0 in Ω, 1 < p <∞,

∂u

∂np
= λβ(z)u(z)q−1 on ∂Ω, u > 0.

}
(35)

For this problem we have the following existence and uniqueness result (see

also Sabina de Lis [21, p. 472]).

Proposition 11: If hypotheses Ĥ hold, then for every λ > 0 problem (35)

admits a unique solution ũλ ∈ intC+,

ũλ = λ
1

p−q ũ1, ũλ → 0 in C1(Ω) as λ→ 0+ and ũλ � u for all u ∈ S(λ) ⊆ intC+.

Proof. Let ψλ :W 1,p(Ω) → R be the C1-functional defined by

ψλ(u) =
1

p
||Du||pp +

c15
p

||u||pp −
λ

q

∫
∂Ω

β(z)u+(z)qdσ for all u ∈W 1,p(Ω).

Since q < p, the functional ψλ is coercive. Also, it is sequentially weakly

lower semicontinuous. So we can find (ũ)λ ∈W 1,p(Ω) such that

(36) ψλ(ũλ) = inf[ψλ(u) : u ∈W 1,p(Ω)].

Let u ∈ intC+ and t > 0. We have

(37)

ψλ(tu) =
tp

p
||Du||pp +

c15t
p

p
||u||pp −

λ

q
tq
∫
∂Ω

β(z)u(z)dσ

=
tp

p
[||Du||pp + c15||u||pp]− tq

λ

q
c16
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where c16 = c16(u) =
∫
∂Ω
β(z)u(z)dσ > 0 (see hypotheses Ĥ). Since q < p,

choosing t ∈ (0, 1) small, from (37) we have

ψλ(tu) < 0,

⇒ ψλ(ũλ) < 0 = ψλ(0),

⇒ ũλ �= 0.

From (36) we have

(38)

ψ′
λ(ũλ) = 0,

⇒ 〈A(ũλ), h〉+ c15

∫
Ω

|ũλ|p−2ũλhdz = λ

∫
∂Ω

β(z)(ũ+λ )
q−1hdσ

for all h ∈W 1,p(Ω).

In (38) we choose h = −ũ−λ ∈W 1,p(Ω). Then

||Dũ−λ ||pp + c15||ũ−λ ||pp = 0,

⇒ ũλ � 0, ũλ �= 0.

Therefore ũλ is a positive solution of problem (35) (see the proof of Proposi-

tion 7) and, as before, the nonlinear regularity theory (see Lieberman [16]) and

the nonlinear maximum principle (see [11, p. 738]) imply ũλ ∈ intC+.

Next we prove the uniqueness of this positive solution. So we consider the

integral functional Jλ : L1(Ω) → R defined by

Jλ(u) =

⎧⎨⎩
1

p
||Du1/p||pp −

λ

q

∫
∂Ω

β(z)u(z)q/pdσ if u � 0, u1/p ∈ W 1,p(Ω),

+∞ otherwise.

Let u1, u2 ∈ dom Jλ = {u ∈ W 1,p(Ω) : Jλ(u) < ∞}. From Lemma 1 of Diaz

and Saa [5] we see that u �−→ 1
p ||Du||1/p||pp is convex. Since q < p, the map

u �−→ −λ
q

∫
∂Ω

β(z)uq/pdσ

is convex. Therefore Jλ is convex and by Fatou’s lemma it is also lower semi-

continuous.

Suppose ũλ, ṽλ are two positive solutions of (35). From the first part of the

proof we have ũλ, ṽλ ∈ intC+. Hence ũ
p
λ, ṽ

p
λ ∈ dom Jλ. Also, if h ∈ C1(Ω), then

for all t ∈ (−1, 1) with |t| small we have

ũpλ + th ∈ dom Jλ and ṽpλ + th ∈ domJλ.



Vol. 212, 2016 PARAMETRIC NONLINEAR ELLIPTIC PROBLEMS 809

Moreover, via the chain rule and Green’s identity, we have

J ′
λ(ũ

p
λ)(h) =

1

p

∫
Ω

−Δpũλ

ũp−1
λ

hdz,

J ′
λ(ṽ

p
λ)(h) =

1

p

∫
Ω

−Δpṽλ

ṽp−1
λ

hdz for all h ∈ C1(Ω).

The convexity of Jλ implies the monotonicity of J ′
λ. Hence

0 �
∫
Ω

(−Δpũλ

ũp−1
λ

+
Δpṽλ

ṽp−1
λ

)
(ũp−1
λ − ṽp−1

λ )dz

=

∫
Ω

c15(ṽλ − ũλ)(ũ
p−1
λ − ṽp−1

λ )dz (see (35)),

⇒ ũλ = ṽλ.

This proves the uniqueness of the positive solution ũλ ∈ intC+ of problem

(35).

Clearly ũλ = λ
1

p−q ũ1 for all λ > 0.

Let λn → 0+ and let ũn = ũλn ∈ intC+ be the corresponding positive

solution of (35). Then from Lieberman [16, Theorem 2] we can find α ∈ (0, 1)

and c16 > 0 such that

(39) ũn ∈ C1,α(Ω) and ||ũn||C1,α(Ω) � c16 for all n � 1.

Exploiting the compact embedding of C1,α(Ω) into C1(Ω), we obtain

(40) ũn → ũ in C1(Ω).

We have

〈A(ũn), h〉+ c15

∫
Ω

ũp−1
n dz =λn

∫
∂Ω

β(z)ũq−1
n hdσ

for all h ∈W 1,p(Ω), all n � 1,

⇒ 〈A(ũ), h〉+ c15

∫
Ω

ũp−1hdz =0 (see (40)).

Let h = ũ ∈ W 1,p(Ω). Then

||Dũ||pp + c15||ũ||pp = 0,

⇒ ũ = 0.

So we conclude that ũλ → 0 in C1(Ω) as λ→ 0+.
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Finally, let u ∈ S(λ) and consider the following Carathéodory functions:

(41)

e(z, x) =

⎧⎨⎩(c15 − 1)(x+)p−1 if x � u(z),

(c15 − 1)u(z)p−1 if u(z) < x,

and

dλ(z, x) =

⎧⎨⎩λβ(z)(x+)q−1 if x � u(z),

λβ(z)u(z)q−1 if u(z) < x.

We set E(z, x) =
∫ x
0
e(z, s)ds and Dλ(z, x) =

∫ x
0
dλ(z, s)ds and consider the

C1-functional ψλ :W 1,p(Ω) → R defined by

ψλ(u) =
1

p
||Du||pp +

1

p
||u||pp +

∫
Ω

E(z, u(z))dz −
∫
∂Ω

Dλ(z, u(z))dσ

for all u ∈W 1,p(Ω).

It is clear from (41) that ψλ is coercive. Also, it is sequentially weakly lower

semicontinuous. So we can find ũ ∈ W 1,p(Ω) such that

(42) ψλ(ũ) = inf[ψλ(u) : u ∈ W 1,p(Ω)].

Since q < p, as before we have that ψλ(ũ) < 0 = ψλ(0), hence ũ �= 0. From

(42) we have

ψ′
λ(ũ) =0,

⇒ 〈A(ũ), h〉+
∫
Ω

|ũ|p−2ũhdz +

∫
Ω

e(z, ũ)hdz =

∫
∂Ω

λβ(z)ũq−1hdσ

for all h ∈W 1,p(Ω).

Choosing h = −ũ− ∈ W 1,p(Ω) and h = (ũ − u)+ ∈ W 1,p(Ω), using (34) and

reasoning as in the proof of Proposition 8, we show that

ũ ∈ [0, u], ũ �= 0

⇒ ũ ∈ intC+ is a positive solution of (35),

⇒ ũ = ũλ � u.

Now let â ∈ L∞(Ω) with essinfΩâ > 0 and b̂ ∈ L∞(∂Ω). We consider the

following nonlinear eigenvalue problem:

(43)

{ −Δpu(z) = ϑâ(z)|u(z)|p−2u(z) in Ω,
∂u

∂np
= b̂(z)|u(z)|p−2u(z) on ∂Ω.

}
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Proposition 12: Problem (43) has a similar eigenvalue θ1 with positive eigen-

functions. No other eigenvalue has positive eigenfunctions and θ1 is simple (that

is, if u1, u2 are both eigenfunctions for ϑ1, then u1 = ξu2 with ξ ∈ R\{0}).
Proof. Let M = {u ∈ W 1,p(Ω) :

∫
Ω
â(z)|u(z)|pdσ = 1}. The Sobolev embed-

ding theorem implies that M is weakly closed in W 1,p(Ω).

Let j :W 1,p(Ω) → R be the C1-functional defined by

(44) j(u) =
1

p
||Du||pp −

1

p

∫
∂Ω

b̂(z)|u(z)|pdσ for all u ∈W 1,p(Ω).

From Ehrling’s inequality (see [18, p. 695] and [21]), we have that, given

ε > 0, we can find cε > 0 such that

(45)

∫
∂Ω

|u|pdσ � ε||Du||pp + cε||u||pp.

Also note that, if m̂ = essinfΩâ > 0, then

(46) 1 =

∫
Ω

â(z)|u|pdz � m̂||u||pp for all u ∈M.

From (44), (45) and (46) it follows that j|M is coercive. Also, by the Sobolev

embedding theorem and the compactness of the trace map, we see that j(·) is
sequentially weakly lower semicontinuous. Since M is weakly closed, we can

find û1 ∈M such that

ϑ1 = j(û1) = inf[j(u) : u ∈M ].

Replacing û1 by |û1| ∈ M , we see that j(|û1|) = θ1 and so, without any loss

of generality, we may assume that û1 � 0 and of course û1 �= 0 since û1 ∈M .

From the Lagrangemultiplier rule (see, for example, Papageorgiou and Kyritsi

[18, p. 361]), we have

〈A(û1), h〉 −
∫
∂Ω

b̂(z)ûp−1
1 hdσ = η1

∫
Ω

â(z)ûp−1
1 hdz for all h ∈W 1,p(Ω)

⇒ −Δpû1(z) = η1â(z)û1(z)
p−1 for almost all z ∈ Ω,

∂û1
∂np

= b̂(z)ûp−1
1 on ∂Ω

(see the proof of Proposition 7).

As before, the nonlinear regularity theory and the nonlinear maximum prin-

ciple imply û1 ∈ intC+.
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That every other eigenvalue ϑ > ϑ1 has nodal (sign changing) eigenfunctions

and that ϑ1 is simple, follows exactly as in Gasinski and Papageorgiou [11,

pp. 741, 743].

Now we are ready to show the finiteness of λ∗ = supL.
Proposition 13: If hypotheses H1(i), (ii), (iii) and Ĥ hold, then λ∗ <∞.

Proof. Let λ ∈ L. We show that we can find uλ ∈ S(λ) ⊆ intC+ (see Proposi-

tion 7). From Proposition 11, we know that

(47) ũλ � uλ.

We have

(48)

{ −Δpuλ(z)=f(z, uλ(z))=
f(z, uλ(z))

uλ(z)p−1
uλ(z)

p−1 for almost all z∈Ω,

∂uλ
∂np

= λβ(z)uq−1
λ = λβ(z)uq−pλ up−1

λ on ∂Ω.

}

We set â(z) = f(z,uλ(z))
uλ(z)p−1 and b̂(z) = λβ(z)uλ(z)

q−p. Then

â ∈L∞(Ω) and essinfΩâ � μτλ
||uλ||p−1∞

with τλ = min
Ω
uλ > 0

(recall uλ ∈ intC+ and see H1(iii)),

b̂ ∈L∞(Ω) (see hypotheses Ĥ and recall uλ ∈ intC+).

So problem (48) has the form of problem (43). Since uλ ∈ intC+ solves

problem (48), according to Proposition 12 we must have ϑ1 = 1. Moreover,

from the proof of Proposition 12 we have

(49) 1 �
||Du||pp −

∫
∂Ω
b̂(z)|u|pdσ∫

Ω
â(z)|u|pdz for all u ∈ W 1,p(Ω).

From (1) and hypotheses H1(ii), (iii) we see that we can find c17 > 0 such

that

(50)
f(z, x) � c17x

η−1 for almost all z ∈ Ω, all z � τλ > 0

(recall that τλ = min
Ω
uλ and that uλ ∈ intC+).
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Then we have

(51)

â(z) =
f(z, uλ(z))

uλ(z)p−1
�c17uλ(z)η−p (see (50))

�c17ũλ(z)η−p (see (47))

�λ
η−p
p−q c17ũλ(z)

η−p

for almost all z ∈ Ω (see Proposition 11).

We return to (49) and use (51). Then since b̂ � 0, we have

(52)
λ

η−p
p−q �

||Du||pp + ||u||pp∫
Ω
c17ũ

η−p
1 |u|pdz for all u ∈ W 1,p(Ω),

⇒ λ
η−p
p−q �γ1,

where γ1 > 0 is the principle eigenvalue of{ −Δpu(z) + |u(z)|p−2u(z) = γc17ũ1(z)
η−p|u(z)|p−2u(z) in Ω

∂u

∂np
= 0.

}

(see Mugnai and Papageorgiou [17]). Since λ ∈ L is arbitrary, from (52) we

conclude that λ∗ <∞.

Proposition 14: If hypotheses H1(i), (ii), (iii) and Ĥ hold, then λ∗ ∈ L and

so L = (0, λ∗].

Proof. Let {λn}n�1 ⊆ L such that λn ↑ λ∗ and let un ∈ S(λn) ⊆ intC+. From

the proof of Proposition 8 and Corollary 9, we know that we can assume that

{un}n�1 is increasing (that is, un � un+1 for all n � 1) and

(53) ϕ̂λn(un) < 0 for all n � 1.

We have

(54)
〈A(un), h〉 =

∫
Ω

f(z, un)hdz+λn

∫
∂Ω

β(z)uq−1
n hdσ

for all h ∈W 1,p(Ω), all n � 1.

Using (53) and (54) and reasoning as in the proof of Proposition 4, we can

show that {un}n�1 ⊆ W 1,p(Ω) is bounded. So by passing to a subsequence if

necessary, we may assume that

(55) un
w→ u∗ in W 1,p(Ω) and un → u∗ in Lr(Ω) and in Lp(∂Ω).
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In (54) we choose h = un − u∗ ∈ W 1,p(Ω), pass to the limit as n → ∞ and

use (55). Then

(56)
lim
n→∞〈A(un), un − u∗〉 = 0,

⇒ un → u∗ in W 1,p(Ω) (see Proposition 3).

Evidently u∗ (recall {un}n�1 ⊆ intC+) is increasing.

If in (54) we pass to the limit as n→ ∞ and use (56), then

〈A(u∗),h〉 =
∫
Ω

f(z, u∗)hdz + λ∗
∫
∂Ω

β(z)uq−1
∗ hdz for all h ∈W 1,p(Ω),

⇒ u∗ ∈ S(λ∗) ⊆ intC+ (see the proof of Proposition 7) and so λ∗ ∈ L.
Therefore by virtue of Proposition 8 and 13, we have L = (0, λ∗].

Next, we show that for every λ ∈ L problem (Pλ) admits a minimal positive

solution.

Proposition 15: If hypothesesH1(i), (ii), (iii) and Ĥ hold and λ ∈ L = (0, λ∗],
then problem (Pλ) admits a smallest positive solution uλ ∈ intC+.

Proof. From Filippakis, Kristaly and Papageorgiou [6], we have that S(λ) is

downward directed, that is, if u1, u2 ∈ S(λ), then we can find u ∈ S(λ) such

that u � u1, u � u2. Since we are looking for the smallest positive solution of

S(λ), without any loss of generality, we may assume that

(57) ||u||∞ � c18 for some c18 > 0 all u ∈ S(λ).

From Hu and Papageorgiou [14, p. 178], we know that there exist

{un}n�1 ⊆ S(λ)

such that

(58) inf S(λ) = inf
n�1

un and ũλ � un for all n � 1 (see Proposition 11).

We have

(59) 〈A(un), h〉 =
∫
Ω

f(z, un)hdz + λ

∫
∂Ω

β(z)uq−1
n hdσ for all h ∈W 1,p(Ω).

In (59) we choose h = un ∈W 1,p(Ω). Then using (57) and hypotheses Ĥ , we

have

(60) ||Dun||pp � c19(1 + ||un||q) for some c19 > 0, all n � 1.
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From (57) and (60) it follows that {un}n�1 ⊆ W 1,p(Ω) is bounded. Hence,

we may assume that

(61) un
w→ uλin W

1,p(Ω) and un → uλ in Lr(Ω) and in Lp(∂Ω).

If in (59) we choose h = un − uλ ∈ W 1,p(Ω), pass to the limit as n→ ∞ and

use (61), then

(62)
lim
n→∞〈A(un), un − uλ〉 = 0,

⇒un → uλ in W 1,p(Ω) (see Proposition 3) and ũλ � uλ (see (58)).

So if in (59) we pass to the limit as (59), then

〈A(uλ), h〉 =
∫
Ω

f(z, uλ)hdz + λ

∫
∂Ω

β(z)uq−1
λ hdσ for all h ∈ W 1,p(Ω),

⇒ uλ ∈ S(λ) ⊆ intC+ (see (62)) and uλ = inf S(λ).

We examine the map λ �−→ uλ.

Proposition 16: If hypotheses H1(i), (ii), (iii) and Ĥ hold, then the map

λ→ uλ from L = (0, λ∗] into C1(Ω) is

• increasing (that is, if ν < λ, then uν � uλ),

• left continuous.

Proof. Let λ, ν ∈ [0, λ∗] with ν < λ. From Corollary 9 we know that there exist

uν ∈ S(ν) such that

uν �uλ,
⇒ uν � uλ,

⇒ λ �−→ uλ is increasing.

Next, let {λn}n�1 ⊆ L such that λn ↑ λ ∈ L. We can find un ∈ S(λn) n � 1

such that

(63) {un}n�1 ⊆ intC+ is increasing and ϕ̂λn(un) < 0 for all n � 1

(see the proof of Proposition 7). We have

(64)
〈A(un), h〉 =

∫
Ω

f(z, un)hdz+λn

∫
∂Ω

β(z)uq−1
n hdσ

for all h ∈W 1,p(Ω), all n � 1.
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Using (63) and (64) and reasoning as in the proof of Proposition 4, we have

{un}n�1 ⊆W 1,p(Ω) is bounded.

From Lieberman [16], we know that there exist α ∈ (0, 1) and c20 > 0 such

that

un ∈ C1,α(Ω) and ||un||C1,α(Ω) � c20 for all n � 1.

Because of the compact embedding of C1,α(Ω) into C1(Ω) and since

{un}n� ⊆ intC+

is increasing (we have already established that λ→ uλ is increasing), we have

(65) un → ũ in C1(Ω) as n→ ∞.

By passing to the limit as n → ∞ in (64), we see that ũ ∈ S(λ). Suppose

ũ �= uλ. Then we can find z0 ∈ Ω such that

uλ(z0) < ũ(z0)

⇒ uλ(z0) < un(z0) for all n � n0 (see (65)),

which contradicts the monotonicity of λ → uλ established in the first part of

the proof. This proves the left continuity of λ → uλ from L = (0, λ∗] into
C1(Ω).

In the semilinear case (p = 2) and λ ∈ (0, λ∗), we can prove a multiplicity

result for the positive solutions of (Pλ).

Proposition 17: If p = 2, hypotheses H1 and Ĥ hold and λ ∈ (0, λ∗), then
problem (Pλ) has at least two positive solutions,

un, û ∈ intC+ and u0 �= û.

Proof. Let ν < λ < μ < λ∗. From Proposition 8 we know that ν, λ, μ ∈ L.
Also, from Proposition 10, we know that we can find uν ∈ S(ν) ⊆ intC+,

u0 ∈ S(λ) ⊆ intC+ and uμ ∈ S(μ) ⊆ intC+ such that

(66) u0 ∈ intC1(Ω)[uν , uμ].

From the proof of Proposition 8, we know that if we consider the truncated

functional ψ̂μ ∈ C1(H1(Ω)) (see (27), (28) with uλ replaced by uμ and ν by λ),

then

(67) u0 is a minimizer of ψ̂μ.
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We consider the following Carathéodory functions

g(z, x) =

⎧⎨⎩f(z, uν(z)) + uν(z) if x � uν(z)

f(z, x) + x if uν(z) < x
for all (z, x) ∈ Ω× R,(68)

wλ(z, x) =

⎧⎨⎩λβ(z)uν(z)q−1 if x � uν(z)

λβ(z)xq−1 if uν(z) < x
for all (z, x) ∈ ∂Ω× R.(69)

We set

G(z, x) =

∫ x

0

g(z, s)ds and Wλ(z, s) =

∫ x

0

wλ(z, s)ds

and introduce the C1-functional σ̂λ : H1(Ω) → R defined by

σ̂λ(u) =
1

2
||Du||22 +

1

2
||u||22 −

∫
Ω

G(z, u(z))dz−
∫
∂Ω

Wλ(z, u(z))dσ

for all u ∈ H1(Ω).

From (68) and (69), we have

(70) σ̂λ = ϕ̂λ + ξ̂∗λ with ξ̂∗λ ∈ R for all u � uν .

From (70) it follows that

• σ̂λ satisfies the C-condition (see Proposition 4);(71)

• for all u ∈ intC+, σ̂λ(tu) → −∞ as t→ +∞(see Proposition 6).(72)

Moreover, note that

(73)

σ̂λ|[uν ,uμ] =ϕ̂λ|[uν ,uμ] (see (68), (69) and the proof of Proposition 8),

⇒ u0 is a local C1(Ω)-minimizer of σ̂λ

(see (68), (69) and the proof of Proposition 8),

⇒ u0 is a local H1(Ω)-minimizer of σ̂λ (see Proposition 2).

Let

[uν) = {u ∈ H1(Ω) : uν(z) � u(z) for almost all z ∈ Ω}.
We can easily check that

(74) Kσ̂λ
⊆ [uν).
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We may assume that Kσ̂λ
is finite, or otherwise we already have infinitely

many distinct positive solutions (see (68), (69), (74)). Then because of (73), we

can find ρ ∈ [0, 1) small such that

(75) σ̂λ(u0) < inf[σ̂λ(u) : ||u− u0|| = ρ] = m̂λ

(see Aizicovici, Papageorgiou and Staicu [1] (proof of Proposition 29)). Then

(71), (72) and (75) permit the use of Theorem 1 (the mountain pass theorem).

So we can find û ∈W 1,p(Ω) such that

(76) û ∈ Kσ̂λ
and m̂λ � σ̂λ(û).

From (68), (69), (74) and (76), we see that

û ∈ S(λ) ⊆ intC+,

while from (75) and (76) it follows that û �= u0.

We can summarize our investigation of the positive solutions for problem (Pλ)

with two theorems. The first concerns the nonlinear equation (1 < p <∞).

Theorem 18: If hypotheses H1(i), (ii), (iii) and Ĥ hold, then there exists

λ∗ ∈ (0,+∞) such that for every λ ∈ (0, λ∗], problem (Pλ) has a positive

solution, in fact it has a smallest positive solution uλ ∈ intC+ and the map

λ → uλ from L = (0, λ∗] into C1(Ω) is increasing and left continuous. For

λ > λ∗ problem (Pλ) has no positive solution.

For the semilinear equation (p ≡ 2), we have a bifurcation-type result.

Theorem 19: If p = 2 and hypotheses H1 and Ĥ hold, then there exists

λ∗ ∈ (0,+∞) such that

(a) for every λ ∈ (0, λ∗) problem (Pλ) has at least two positive solutions,

u0, û ∈ intC+, u0 �= û;

(b) for λ = λ∗ problem (Pλ∗) has at least one positive solution, u∗ ∈ intC+;

(c) for λ > λ∗ problem (Pλ) has no positive solution;

(d) for every λ ∈ L = (0, λ∗] problem (Pλ) has a smallest positive solution,

uλ ∈ intC+, and the map λ → uλ from L = (0, λ∗] into C1(Ω) is

increasing and left-continuous.
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4. Nodal Solutions

In this section we produce nodal (sign changing) solutions, by imposing bilateral

conditions on f(z, ·).
The new conditions on the reaction f(z, x) are the following:

H2: f : Ω× R → R is a Carathéodory function such that for almost all z ∈ Ω,

f(z, 0) = 0 and

(i) |f(z, x)| � a(z)(1 + |x|r−1) for almost all z ∈ Ω, all z ∈ R, with

z ∈ L∞(Ω)+, p < r < p∗;
(ii) if

F (z, x) =

∫ x

0

f(z, s)ds

then there exist η > p and M > 0 such that

0 < ηF (z, x) �f(z.x)x for almost all z ∈ Ω, all |x| �M,

essinfΩ F (·,±M) > 0;

(iii) limx→0
f(z,x)
|x|p−2x = 0 uniformly for almost all z ∈ Ω and for all τ > 0,

f(z, x)x � μτ > 0

for almost all z ∈ Ω, all |x| � τ ;

(iv) if p = 2, then for every ρ > 0 there exists ξρ > 0 such that for almost

all z ∈ Ω, the function

x �−→ f(z, x) + ξρx

is increasing on [−ρ, ρ].
Arguing as in Section 3, this time on the negative semi-axis (−∞, 0], we can

produce a critical parameter value λ̂∗ > 0 such that for all λ ∈ (0, λ̂∗] problem
(Pλ) has a maximal negative solution v̄λ ∈ − intC+. So for λ ∈ (0, λ∗] with
λ∗0 = min{λ∗, λ̂∗}, problem (Pλ) admits extremal constant sign solutions

uλ ∈ intC+ and v̄λ ∈ − intC+.

Using them, we can generate a nodal solution.

Proposition 20: If hypotheses H2(i), (ii), (iii) hold and λ ∈ (0, λ∗0], then

problem (Pλ) admits a nodal solution yλ ∈ [v̄λ, uλ] ∩C1(Ω).
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Proof. Let uλ ∈ intC+ and v̄λ ∈ − intC+ be the two extremal constant sign

solutions. We introduce the following Carathéodory functions:

j(z, x) =

⎧⎪⎪⎨⎪⎪⎩
f(z, v̄λ(z)) + |v̄λ(z)|p−2v̄λ(z) if x < v̄λ(z)

f(z, x) + |x|p−2x if v̄λ(z) � x � uλ(z)

f(z, uλ(z)) + uλ(z)
p−1 if uλ(z) < x

(77)

for all (z, x) ∈ Ω× R,

τλ(z, x) =

⎧⎪⎪⎨⎪⎪⎩
λβ(z)|v̄λ(z)|q−2v̄λ(z) if x < v̄λ(z)

λβ(z)|x|q−2x if v̄λ(z) � x � uλ(z)

λβ(z)uλ(z)
q−1 if uλ(z) < x

(78)

for all (z, x) ∈ ∂Ω× R.

We set

J(z, x) =

∫ x

0

j(z, s)ds and Tλ(z, x) =

∫ x

0

τλ(z, s)ds

and consider the C1-functional ψλ :W 1,p(Ω) → R defined by

ψλ(u) =
1

p
||Du||pp +

1

p
||u||pp −

∫
Ω

J(z, u(z))dz−
∫
∂Ω

Tλ(z, u(z))dσ

for all u ∈ W 1,p(Ω).

Also, we consider the positive and negative truncations of j(z, ·), τλ(z, ·),
namely the Carathéodory functions

j±(z, x) = j(z,±x±) and τ±λ (z, x) = τλ(z,±x±).
We set

J±(z, x) =
∫ x

0

j±(z, s)ds and T±
λ (z, x) =

∫ x

0

τ±λ (z, s)

and introduce the C1-functionals ψ±
λ :W 1,p(Ω) → R defined by

ψ±
λ (u) =

1

p
||Du||pp +

1

p
||u||pp −

∫
Ω

J±(z, u(z))dz−
∫
∂Ω

T±
λ (z, u(z))dσ

for all u ∈W 1,p(Ω).

As in the proof of Proposition 8, we can see that

Kψλ
⊆ [v̄λ, uλ], Kψ+

λ
⊆ [0, uλ], Kψ−

λ
⊆ [v̄λ, 0] (see (77) and (78)).
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The extremality of v̄λ and uλ, implies that

(79) Kψλ
⊆ [v̄λ, uλ], Kψ+

λ
= {0, uλ}, Kψλ

= {0, v̄λ}.
Claim 1: v̄λ ∈ − intC+ and uλ ∈ intC+ are both local minimizers of ψλ.

Note that (77) and (78) imply that ψ+
λ is coercive. Also, it is sequentially

weakly lower semicontinuous. So we can find ũλ ∈ W 1,p(Ω) such that

ψ+
λ (ũλ) = inf[ψ+

λ (u) : u ∈W 1,p(Ω)].

As in the proof of Proposition 8 and since q < p, we show that

ψ+
λ (ũλ) <0 = ψ+

λ (0),

⇒ ũλ �= 0.

Since ũλ ∈ Kψ+
λ
, from (79) we have ũλ = uλ ∈ intC+. But

ψλ|C+ = ψ+
λ |C+ ,

⇒ uλ ∈ intC+ is a local C1(Ω)-minimizer of ψλ,

⇒ uλ ∈ intC+ is a local W 1,p(Ω)-minimizer of ψλ (see Proposition 2).

Similarly for v̄λ ∈ − intC+, using this time the functional ψ−
λ . This proves

Claim 1.

Without any loss of generality, we may assume that

ψλ(v̄λ) � ψλ(uλ)

(the reasoning is similar, if the opposite inequality holds). By virtue of Claim

1, we can find ρ ∈ (0, 1) small such that

(80) ψλ(v̄λ) � ψλ(uλ) < inf[ψλ(u) : ||u− uλ|| = ρ] = mλ, ||v̄λ − uλ|| > ρ

(see [1]). Since ψλ is coercive (see (77) and (78)), we have

(81) ϕλ satisfies the C-condition.

Then (80) and (81) permit the use of Theorem 1 (the mountain pass theorem).

So we can find yλ ∈ W 1,p(Ω) such that

(82) yλ ∈ Kψλ
and mλ � ψλ(yλ).

From (79), (80) and (82) it follows that

yλ /∈ {v̄λ, uλ} and yλ is a solution of (Pλ).
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Note that yλ is a critical point of mountain pass type for ψλ . If

ϕ̂λ(u) =
1

p
||Du||pp −

∫
Ω

F (z, u(z))dz − 1

q

∫
∂Ω

β(z)|u(z)|qdσ

for all u ∈ W 1,p(Ω), then

ψλ|[v̄λ,uλ]
= ϕ̂λ|[v̄λ,uλ]

(see (77), (78)).

Since v̄λ ∈ − intC+, uλ ∈ intC+ and C1(Ω) is dense in W 1,p(Ω), we see

that yλ is a critical point of mountain pass type for ϕ̂λ too (see Gasinski and

Papageorgiou [11, p. 645]). On the other hand, since q < p, u=0 cannot be a

critical point mountain pass type for ϕ̂λ. Therefore yλ �=0 and, since yλ∈ [v̄λ, uλ]

(see (79)), the extremality of v̄λ and uλ implies that yλ is nodal. Finally, the

nonlinear regularity theory of Lieberman [16] implies yλ ∈ C1(Ω).

So we can state two multiplicity theorems for problem (Pλ). First the non-

linear case (1 < p <∞).

Theorem 21: If hypotheses H2(i), (ii), (iii) and Ĥ hold, then there exists

λ∗0 > 0 such that for all λ ∈ (0, λ∗0] problem (Pλ) has at least three nontrivial

solutions:

u0 ∈ intC+, v0 ∈ − intC+, y0 ∈ [v0, u0] ∩ C1(Ω) nodal.

In the semilinear case (p = 2), we can improve this multiplicity result.

Theorem 22: If p = 2 and hypotheses H1 and Ĥ hold, then there exists λ∗0 > 0

such that for all λ ∈ (0, λ∗0) problem (Pλ) has at least five nontrivial solutions:

u0, û ∈ intC+, u0 � û, u0 �= û,

u0, v̂ ∈ − intC+, v̂ � v0, v0 �= v̂,

and

y0 ∈ intC1(Ω)[v0, u0] nodal.

Remark 4: An interesting open problem is whether we can extend the work

of this paper to equations driven by the more general nonlinear, nonhomoge-

neous differential operators used by Papageorgiou and Rădulescu [20]. Such an

extension will require new methods and techniques.
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équations elliptiques quasilinéaires, Comptes Rendus de l’Académie des Sciences. Série
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