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Abstract. We establish several existence results of Hartman-Stampacchia type for hemivariational

inequalities on bounded and convex sets in a real reflexive Banach space. We also study the cases of

coercive and noncoercive variational-hemivariational inequalities.

1 Introduction

The study of variational inequality problems began around 1965 with the pioneering works of

G. Fichera, J.-L. Lions and G. Stampacchia (see [4], [7]). The connection of the theory of vari-

ational inequalities with the notion of subdifferentiability of convex analysis was achieved by

J.J. Moreau (see [8]) who introduced the notion of convex superpotential which permitted the

formulation and the solving of a wide ranging class of complicated problems in mechanics and

engineering which could not until then be treated correctly by the methods of classical bilateral

mechanics. All the inequality problems treated to the middle of the ninth decade were related

to convex energy functions and therefore were firmly bound with monotonicity; for instance,

only monotone, possibly multivalued boundary conditions and stress-strain laws could be stud-

ied. In order to overcome this limitation, P.D. Panagiotopoulos introduced in [14], [15] the

notion of nonconvex superpotential by using the generalized gradient of F.H. Clarke. Due to

the lack of convexity new types of variational expressions were obtained. These are the so-called

hemivariational inequalities and they are no longer connected with monotonicity. Generally

speaking, mechanical problems involving nonmonotone, possibly multivalued stress-strain laws

or boundary conditions derived by nonconvex superpotentials lead to hemivariational inequali-
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ties. Moreover, while in the convex case the static variational inequalities generally give rise to

minimization problems for the potential or the complementary energy, in the nonconvex case

the problem of substationarity of the potential or the complementary energy at an equilibrium

position emerges.

Throughout this paper X will denote a real reflexive Banach space, (T, µ) will be a measure

space of positive and finite measure and A : X → X? will stand for a nonlinear operator. We

also assume that there are given m ∈ N, p ≥ 1 and a compact mapping γ : X → Lp(T,Rm). We

shall denote by p′ the conjugated exponent of p. If ϕ : X → R is a locally Lipschitz functional

then ϕ0(u; v) will stand for the Clarke derivative of ϕ at u ∈ X with respect to the direction

v ∈ X, that is

ϕ0(u; v) = lim sup
w→u
λ↓0

ϕ(w + λv)− ϕ(w)

λ
.

Accordingly, Clarke’s generalized gradient ∂ϕ(u) of ϕ at u is defined by

∂ϕ(u) = {ξ ∈ X? ; 〈ξ, v〉 ≤ ϕ0(u; v), ∀v ∈ X}.

Let j : T ×Rm → R be a function such that the mapping

j(·, y) : T → R is measurable, for every y ∈ Rm . (1)

We assume that at least one of the following conditions hold: either there exists k ∈ Lp′(T,R)

such that

|j(x, y1)− j(x, y2)| ≤ k(x) |y1 − y2| , ∀x ∈ T , ∀y1, y2 ∈ Rm , (2)

or

the mapping j(x, ·) is locally Lipschitz, ∀x ∈ T , (3)

and there exists C > 0 such that

|z| ≤ C(1 + |y|p−1) , ∀x ∈ T , ∀y1, y2 ∈ Rm ,∀z ∈ ∂yj(x, y) . (4)

Let K be a nonempty closed, convex subset of X, f ∈ X? and Φ : X → R∪{+∞} a convex,

lower semicontinuous functional such that

D(Φ) ∩K 6= ∅ . (5)

Throughout this paper 〈·, ·〉 will denote the duality pairing between X? and X.
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2 The generalized Hartman-Stampacchia theorem for

variational-hemivariational inequality problems

Consider the following inequality problem:

Find u ∈ K such that

〈Au− f, v − u〉+ Φ(v)− Φ(u) +
∫

T
j0(x, γ(u(x)); γ(v(x)− u(x)))dµ ≥ 0 , ∀v ∈ K , (6)

where γ denotes the prescribed canonical mapping from X into Lp(T,Rm).

The following two situations are of particular interest in applications:

(i) T = Ω, µ = dx, X = W 1,q(Ω,Rm) and γ : X → Lp(Ω,Rm), with p < q∗, is the Sobolev

embedding operator;

(ii) T = ∂Ω, µ = dσ, X = W 1,p(Ω,Rm) and γ = i ◦ η, where η : X → W 1− 1
p
,p(∂Ω,Rm) is the

trace operator and i : W 1− 1
p
,p(∂Ω,Rm) → Lp(∂Ω,Rm) is the embedding operator.

A direct application of the Knaster-Kuratowski-Mazurkiewicz (KKM, in short) principle (see

[6] or [3]) leads to the following basic auxiliary result:

Lemma 1 Let K be a nonempty, bounded, closed, convex subset of X, Φ : X → R ∪ {+∞} a

convex, lower semicontinuous functional such that (5) holds. Consider a Banach space Y such

that there exists a linear and compact mapping L : X → Y and let J : Y → R be an arbitrary

locally Lipschitz function. Suppose in addition that the mapping K 3 v 7−→ 〈Av, v−u〉 is weakly

lower semicontinuous, for every u ∈ K.

Then, for every f ∈ X?, there exists u ∈ K such that

〈Au− f, v − u〉+ Φ(v)− Φ(u) + J0 (L(u), L(v − u)) ≥ 0 ,∀v ∈ K . (7)

Proof. Let us define the set-valued mapping G : K ∩D(Φ) → 2X by

G(x) = {v ∈ K ∩D(Φ); 〈Av − f, v − x〉 − J0(L(v); L(x)− L(v)) + Φ(v)− Φ(x) ≤ 0} .

We claim that the set G(x) is weakly closed. Indeed, if G(x) 3 vn ⇀ v then, by our hypotheses,

〈Av, v − x〉 ≤ lim inf
n→∞ 〈Avn, vn − x〉

and

Φ(v) ≤ lim inf
n→∞ Φ(vn) .

Moreover, L(vn) → L(v) and thus, by the upper semi-continuity of J0 (see [2]), we also obtain

lim sup
n→∞

J0 (L(vn); L(x− vn)) ≤ J0 (L(v); L(x− v)) .
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Therefore

−J0 (L(v); L(x− v)) ≤ lim inf
n→∞

(
−J0 (L(vn); L(x− vn))

)
.

So, if vn ∈ G(x) and vn ⇀ v then

〈Av − f, v − x〉 − J0 (L(v); L(x− v)) + Φ(v)− Φ(x) ≤
lim inf

{
〈Avn − f, vn − x〉 − J0 (L(vn); L(v − vn)) + Φ(vn)− Φ(x)

}
≤ 0 ,

which shows that v ∈ G(x). Since K is bounded, it follows that G(x) is weakly compact. This

implies that ⋂

x∈K∩D(Φ)

G(x) 6= ∅ ,

provided that the family {G(x); x ∈ K ∩ D(Φ)} has the finite intersection property. We may

conclude by using the KKM principle after showing that G is a KKM-mapping. Suppose by

contradiction that there exist x1, · · · , xn ∈ K ∩ D(Φ) and y0 ∈ Conv {x1, · · · , xn} such that

y0 6∈ ⋃n
i=1 G(xi). Then

〈Ay0 − f, y0 − xi〉+ Φ(y0)− Φ(xi)− J0 (L(y0); L(xi − y0)) > 0 , ∀i = 1, · · · , n .

Therefore

xi ∈ Λ := {x ∈ X; 〈Ay0 − f, y0 − x〉+ Φ(y0)− Φ(x)− J0 (L(y0); L(x− y0)) > 0} ,

for all i ∈ {1, · · · , n}. The set Λ is convex and thus y0 ∈ Λ, leading to an obvious contradiction.

So, ⋂

x∈K∩D(Φ)

G(x) 6= ∅ .

This yields an element u ∈ K ∩D(Φ) such that, for any v ∈ K ∩D(Φ),

〈Au− f, v − u〉+ Φ(v)− Φ(u) + J0 (L(u); L(v − u)) ≥ 0 .

This inequality is trivially satisfied if v 6∈ D(Φ) and the conclusion follows. 2

We may now derive a result applicable to the inequality problem (6). Indeed, suppose that

the above hypotheses are satisfied and set Y = Lp(T,Rm). Let J : Y → R be the function

defined by

J(u) =
∫

T
j(x, u(x))dµ . (8)

The conditions (2) or (3)-(4) on j ensure that J is locally Lipschitz on Y and
∫

T
j0(x, u(x); v(x))dµ ≥ J0(u; v) , ∀u, v ∈ X .
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It follows that

∫

T
j0(x, γ(u(x)); γ(v(x)))dµ ≥ J0(γ(u); γ(v)) , ∀u, v ∈ X . (9)

It results that if u ∈ K is a solution of (7) then u solves the inequality problem (6), too. The

following result follows.

Theorem 1 Assume that the hypotheses of Lemma 1 are fulfilled for Y = Lp(T,Rm) and L = γ.

Then the problem (6) has at least a solution.

In order to establish a variant of Lemma 1 for monotone and hemicontinuous operators we

need the following result which is due to Mosco (see [9]):

Mosco’s Theorem. Let K be a nonempty convex and compact subset of a topological vector

space X. Let Φ : X → R ∪ {+∞} be a proper, convex and lower semicontinuous function such

that D(Φ) ∩K 6= ∅. Let f, g : X ×X → R be two functions such that

(i) g(x, y) ≤ f(x, y), for every x, y ∈ X;

(ii) the mapping f(·, y) is concave, for any y ∈ X;

(iii) the mapping g(x, ·) is lower semicontinuous, for every x ∈ X.

Let λ be an arbitrary real number. Then the following alternative holds: either

- there exists y0 ∈ D(Φ) ∩K such that g(x, y0) + Φ(y0)− Φ(x) ≤ λ, for any x ∈ X,

or

- there exists x0 ∈ X such that f(x0, x0) > λ.

We notice that two particular cases of interest for the above result are if λ = 0 or f(x, x) ≤ 0,

for every x ∈ X.

Lemma 2 Let K be a nonempty, bounded, closed subset of the real reflexive Banach space X,

and Φ : X → R ∪ {+∞} a convex and lower semicontinuous function such that (5) holds.

Consider a linear subspace Y of X? such that there exists a linear and compact mapping L :

X → Y . Let J : Y → R be a locally Lipschitz function. Suppose in addition that the operator

A : X → X? is monotone and hemicontinuous.

Then for each f ∈ X?, the inequality problem (7) has at least a solution .

Proof. Set

g(x, y) = 〈Ax− f, y − x〉 − J0(L(y); L(x)− L(y))

and

f(x, y) = 〈Ay − f, y − x〉 − J0(L(y); L(x)− L(y)) .
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The monotonicity of A implies that

g(x, y) ≤ f(x, y) , ∀x, y ∈ X .

The mapping x 7−→ f(x, y) is concave while the mapping y 7−→ g(x, y) is weakly lower semi-

continuous. Applying Mosco’s Theorem with λ = 0, we obtain the existence of u ∈ K ∩D(Φ)

satisfying

g(w, u) + Φ(u)− Φ(w) ≤ 0 , ∀w ∈ K ,

that is

〈Aw − f, w − u〉+ Φ(w)− Φ(u) + J0(L(u); L(w − u)) ≥ 0 , ∀w ∈ K . (10)

We use in what follows an argument which is in the same spirit as that used in the proof of

Minty’s Lemma (see [5, Lemma III.1.5]). Fix v ∈ K and set w = u+λ(v−u) ∈ K, for λ ∈ [0, 1).

So, by (10),

λ 〈A(u + λ(v − u))− f, v − u〉+ Φ(λv + (1− λ)u))− Φ(u) + J0(L(u); λL(v − u)) ≥ 0 .

Using the convexity of Φ, the fact that J0(u; ·) is positive homogeneous (see [1], p. 103) and

dividing then by λ > 0 we find

〈A(λv + (1− λ)u)− f, v − u〉+ Φ(v)− Φ(u) + J0(L(u); L(v − u)) ≥ 0 .

Now, taking λ → 0 and using the hemicontinuity of A we find that u solves (7). 2

The analogue of Theorem 1 for monotone and hemicontinuous operators can now be stated

as follows:

Theorem 2 Assume that the hypotheses of Lemma 2 are fulfilled for Y = Lp(T,Rm) and L = γ.

Then the inequality problem (6) admits at least a solution.

3 Coercive variational-hemivariational inequalities

We observe that if j satisfies conditions (1) and (2) then, by the Cauchy-Schwarz Inequality,

|
∫

T
j0(x, γ(u(x)); γ(v(x)))dµ| ≤

∫

T
k(x)|γ(v(x))|dµ ≤ |k|p′ · |γ(v)|p ≤ C |k|p′ ‖v‖ , (11)

where | · |p denotes the norm in the space Lp(T,Rm) and ‖ · ‖ stands for the norm in X. On the

other hand, if j satisfies conditions (1), (3) and (4) then

|j0(x, γ(u(x)); γ(v(x)))| ≤ C (1 + |γ(u(x))|p−1) |γ(v(x))|
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and thus

|
∫

T
j0(x, γ(u(x)); γ(v(x)))dµ| ≤ C (|γ(v)|1 + |γ(u)|pp−1|γ(v)|p) ≤ C1 ‖v‖+ C2 ‖u‖p−1‖v‖ , (12)

for some suitable constants C1, C2 > 0. We discuss in this framework the solvability of coercive

variational-hemivariational inequalities.

Theorem 3 Let K be a nonempty closed convex subset of X, Φ : X → R ∪ {+∞} a proper,

convex and lower semicontinuous function such that K∩D(Φ) 6= ∅ an A : X → X? and operator

such that the mapping v 7−→ 〈Av, v − x〉 is weakly lower semicontinuous, for all x ∈ K. The

following hold

(i) If j satisfies conditions (1) and (2), and if there exists x0 ∈ K ∩D(Φ) such that

〈Aw, w − x0〉+ Φ(w)

‖w‖ → +∞ , as ‖w‖ → +∞ (13)

then for each f ∈ X?, there exists u ∈ K such that

〈Au− f, v − u〉+ Φ(v)− Φ(u) +
∫

T
j0(x, γ(u(x)); γ(v(x))− γ(u(x)))dµ ≥ 0 , ∀v ∈ K . (14)

(ii) If j satisfies conditions (1), (3) and (4) and if there exist x0 ∈ K ∩D(Φ) and θ ≥ p such

that 〈Aw, w − x0〉
‖w‖θ

→ +∞ , as ‖w‖ → +∞ (15)

then for each f ∈ X?, there exists u ∈ K satisfying (14).

Proof. There exists a positive integer n0 such that

x0 ∈ Kn := {x ∈ K; ‖x‖ ≤ n} , ∀n ≥ n0 .

Applying Lemma 1 with J as defined in (8) we find some un ∈ Kn such that, for every n ≥ n0

and any v ∈ Kn,

〈Aun − f, v − un〉+ Φ(v)− Φ(un) + J0(γ(un); γ(v)− γ(un)) ≥ 0 . (16)

We claim that the sequence (un) is bounded. Suppose by contradiction that ‖un‖ → +∞. Then,

passing eventually to a subsequence, we may assume that

vn :=
un

‖un‖ ⇀ v .
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Setting v = x0 in (16) and using (9), we obtain

〈Aun, un − x0〉+ Φ(un) ≤ Φ(x0) + 〈f, un − x0〉+ J0(γ(un); γ(x0)− un)) ≤
Φ(x0) + 〈f, un − x0〉+ |

∫

T
j0(x, γ(un); γ(x0 − un))dµ| .

(17)

Case (i). Using (11) we obtain

〈Aun, un − x0〉+ Φ(un) ≤ Φ(x0) + 〈f, un − x0〉+ c|k|p′ ‖un − x0‖

and thus

〈Aun, un − x0〉+ Φ(un)

‖un‖ ≤ Φ(x0)

‖un‖ + 〈f, vn − x0‖un‖−1〉+ c|k|p′ ‖vn − x0‖un‖−1‖ . (18)

Passing to the limit as n → ∞ we observe that the left-hand term in (18) tends to +∞ while

the right-hand term remains bounded which yields a contradiction.

Case (ii). The function Φ being convex and lower semicontinuous, we may apply the Hahn-

Banach separation theorem to find that

Φ(x) ≥ 〈α, x〉+ β , ∀x ∈ X ,

for some α ∈ X? and β ∈ R. This means that

Φ(x) ≥ −‖α‖? ‖x‖+ β , ∀x ∈ X .

From (17) and (12) we deduce that

〈Aun, un − x0〉 ≤ Φ(x0) + ‖α‖? ‖un‖ − β + 〈f, un − x0〉+ C1 ‖un − x0‖+ C2 ‖un‖p−1‖un − x0‖ .

Thus

〈Aun, un − x0〉
‖un‖θ

≤ ‖α‖? ‖un‖1−θ + (Φ(x0)− β)‖un‖−θ + 〈f, vn‖un‖1−θ − x0‖un‖−θ〉+

C1‖vn‖un‖1−θ − x0‖un‖−θ‖+ C2‖vn − x0‖un‖−1‖ · ‖un‖p−θ

and taking the limit as n →∞ we obtain a contradiction, since θ ≥ p ≥ 1.

Thus in both cases (i) and (ii), the sequence {un} is bounded. This implies that, up to a

subsequence, un ⇀ u ∈ K. Let v ∈ K be given. For all n large enough we have v ∈ Kn and

thus by (16),

〈Aun − f, un − v〉+ Φ(un)− Φ(v)− J0(γ(un); γ(v)− γ(un)) ≤ 0. (19)
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Passing to the limit as n →∞ we obtain

〈Au− f, u− v〉 ≤ lim inf
n→∞ 〈Aun − f, un − v〉

Φ(u) ≤ lim inf
n→∞ Φ(un)

γ(u) = lim
n→∞ γ(un)

and

−J0(γ(u); γ(v)− γ(u)) ≤ lim inf
n→∞

(
−J0(γ(un); γ(v)− γ(un))

)
.

Taking the inferior limit in (19) we obtain

〈Au− f, u− v〉+ Φ(u)− Φ(v)− J0(γ(u); γ(v)− γ(u)) ≤ 0.

Since v has been chosen arbitrarily we obtain

〈Au− f, v − u〉+ Φ(v)− Φ(u) + J0(γ(u); γ(v)− γ(u)) ≥ 0, ∀v ∈ K.

Using now again (9) we conclude that u solves (14). 2

The following result gives a corresponding variant for monotone hemicontinuous operators.

Theorem 4 Let K be a nonempty closed convex subset of X, Φ : X → R ∪ {+∞} a proper

convex and lower semicontinuous function such that D(Φ) ∩ K 6= ∅. Let A : X → X? be

a monotone and hemicontinuous operator. Assume (13) or (15) as in Theorem 3. Then the

conclusions of Theorem 3 hold true.

Proof. Using Lemma 2 we find a sequence un ∈ Kn such that

〈Aun − f, v − un〉+ Φ(v)− Φ(un) + J0(γ(un); γ(v)− γ(un)) ≥ 0, ∀v ∈ Kn. (20)

As in the proof of Theorem 3 we justify that {un} is bounded and thus, up to a subsequence,

we may assume that un ⇀ u. By (20) and the monotonicity of A we deduce that

〈Av − f, v − un〉+ Φ(v)− Φ(un) + J0(γ(un); γ(v)− γ(un)) ≥ 0.

Let v ∈ K be given. For n large enough we obtain

〈Av − f, un − v〉+ Φ(un)− Φ(v)− J0(γ(un); γ(v)− γ(un)) ≤ 0
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and taking the inferior limit we obtain

〈Av − f, u− v〉+ Φ(u)− Φ(v)− J0(γ(u); γ(v)− γ(u)) ≤ 0.

Since v has been chosen arbitrarily it follows that

〈Av − f, v − u〉+ Φ(v)− Φ(u) + J0(γ(u); γ(v)− γ(u)) ≥ 0, ∀v ∈ K.

Using now the same argument as in the proof of Lemma 2 we obtain that

〈Au− f, v − u〉+ Φ(v)− Φ(u) + J0(γ(u); γ(v)− γ(u)) ≥ 0, ∀v ∈ K

and the conclusion follows now by (9). 2

4 Noncoercive variational-hemivariational inequalities

In order to treat noncoercive cases we use in this Section a minimax approach for studying the

inequality problem (7) (in particular, (6)). To this end we present the necessary background of

nonsmooth critical point theory developed in Motreanu-Panagiotopoulos ([10], Chapter III).

Definition 1 (Definition 3.1 in Motreanu-Panagiotopoulos [10]). Let X be a real Banach space,

let F : X → R be a locally Lipschitz function and let G : X → R ∪ {+∞} be a proper (i.e.,

6≡ +∞), convex and lower semicontinuous function. An element u ∈ X is called a critical point

of the functional I = F + G : X → R ∪ {+∞} if the inequality below holds

F 0(u; v − u) + G(v)−G(u) ≥ 0, ∀ v ∈ X.

Definition 2 (Definition 3.2 in Motreanu-Panagiotopoulos [10]). The functional I = F + G :

X → R∪{+∞} as in Definition 1 is said to satisfy the Palais - Smale condition if every sequence

{un} ⊂ X for which I(un) is bounded and

F 0(un; v − un) + G(v)−G(un) ≥ −εn‖v − un‖, ∀v ∈ X,

for a sequence {εn} ⊂ R+ with εn → 0, contains a strongly convergent subsequence in X.

Remark. Definitions 1 and 2 extend and unify the nonsmooth critical point theories due to

Chang [1] and Szulkin [19]. Precisely, if G = 0 Definitions 1 and 2 reduce to the corresponding

definitions of Chang [1], while if F ∈ C1(X,R) Definitions 1 and 2 coincide with those in Szulkin

[19].
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Mountain Pass Theorem. (Corollary 3.2 in Motreanu-Panagiotopoulos [10]) Let I = F +G :

X → R ∪ {+∞} be a functional as in Definition 1 which satisfies the Palais-Smale condition

in the sense of Definition 2. Assume that there exist a number ρ > 0 and a point e ∈ X with

‖e‖X > ρ such that

inf
‖u‖X=ρ

I > max{I(0), I(e)}.

Then the number

c = inf{ sup
t∈[0,1]

I(f(t)) : f ∈ C([0, 1], X), f(0) = 0, f(1) = e} ≥ inf
‖u‖X=ρ

I

is a critical value of I, i.e., there exists u ∈ X such that I(u) = c and u is a critical point of I

in the sense of Definition 1.

Let us describe now the abstract functional framework of our variational approach in studying

the inequality problem (7) without the assumptions of boundedness for set K or of coerciveness

as in Theorem 3. Let X and Y be Banach spaces, with X reflexive, and let L : X → Y

be a linear compact operator. Consider the functionals E ∈ C1(X,R) (in (7) we will take

A := E ′ : X → X∗), Φ : X → R convex, lower semicontinuous, Gâteaux differentiable and

J : Y → R locally Lipschitz. Given a closed convex cone K of X, with 0 ∈ K, let IK denote

the indicator function of K. We apply the aforementioned nonsmooth version of Mountain Pass

Theorem for the following choices: F := E + J ◦ L, G := Φ + IK and thus I = F + G.

The following result follows readily from Definition 1.

Lemma 3 Every critical point u ∈ X of the functional I in the sense of Definition 1 is a solution

to problem (7) with A = E ′.

Lemma 4 Assume in addition that the following hypotheses are satisfied:

(H1) There exist positive constants a0, a1, α with α < a0 such that

E(v) + Φ(v) + J(Lv)− α(〈E ′(v) + Φ′(v), v〉+ J0(Lv; Lv))

≥ a0‖v‖ − a1, ∀ u ∈ K,

and

(H2) If {un} is a sequence in K provided un ⇀ u in X and lim supn→∞〈E ′(un), un − u〉 ≤ 0 for

some u ∈ X, then {un} contains a subsequence denoted again by {un} with un → u in X.

Then the functional I satisfies the Palais-Smale condition in the sense of Definition 2.
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Proof. Let {un} be a sequence in X with the properties required in Definition 1. In particular,

we know that {un} ⊂ K and there exist a constant M > 0 and a sequence {εn} ⊂ R+ with

εn → 0 such that

|I(un)| ≤ M, ∀n ≥ 1,

and

〈E ′(un), v − un〉+ J0(Lun; Lv − Lun) + Φ(v)− Φ(un) ≥ −εn‖v − un‖, ∀v ∈ K.

Using the convexity and the Gâteaux differentiabiliy of Φ, setting v = (1 + t)un, with t > 0, in

the inequality above and then letting t → 0 one obtains that

〈E ′(un) + Φ′(un), un〉+ J0(Lun; Lun) ≥ −εn‖un‖, ∀n ≥ 1.

The inequalities above ensure that for n sufficiently large (so that εn ≤ 1) one has

M + α‖un‖
≥ E(un) + Φ(un) + J(Lun)− α[〈E ′(un) + Φ′(un), un〉+ J0(Lun; Lun)].

Here α denotes the positive constant entering assumption (H1). Then on the basis of condition

(H1) we deduce that the sequence {un} is bounded in X.

Consequently, the sequence {un} contains a subsequence again denoted by {un} such that

un ⇀ u in X and Lun → Lu in Y for some u ∈ K. On the other hand if we set v = u, we derive

that

〈E ′(un), u− un〉+ J0(Lun; Lu− Lun) + Φ(u)− Φ(un) ≥ −εn‖u− un‖.
Since J0 is upper semicontinuous and Φ is lower semicontinuous, this yields that

lim sup
n→∞

〈E ′(un), un − u〉 ≤ 0.

Assumption (H2) completes the proof. 2

The main result of this Section is stated below.

Theorem 5 Assume (H1), (H2),

(H3) There exist an element u ∈ K \ {0} satisfying ‖u‖ > a1/a0, for the constants a0, a1 in

(H1), and E(u) + Φ(u) + J(u) ≤ 0,

and

(H4) There exist a constant ρ > 0 such that

inf
‖v‖=ρ

(E(v) + Φ(v) + J(v)) > E(0) + Φ(0) + J(0).

Then problem (7) with A = E ′ admits at least a solution u ∈ K \ {0}.
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Proof. Let us apply the nonsmooth version of Mountain Pass Theorem to our functional I.

Lemma 4 establishes that I satisfies the Palais-Smale condition in the sense of Definition 2.

The calculus with generalized gradients (see Clarke [2]) shows that

∂t(t
− 1

α (E + Φ)(tu) + t−
1
α J(tLu))

⊂ − 1

α
t−

1
α
−1(E + Φ)(tu) + t−

1
α 〈(E ′ + Φ′)(tu), u〉

− 1

α
t−

1
α
−1J(tLu) + t−

1
α ∂J(tLu)u, ∀t > 0, ∀u ∈ X,

where the notation ∂t stands for the generalized gradient with respect to t. Lebourg’s mean

value theorem allows to find some τ = τ(u) ∈ (1, t) such that

t−
1
α (E(tu) + Φ(tu) + J(tLu))− (E(u) + Φ(u) + J(u))

∈ 1

α
τ−

1
α
−1[α(〈E ′(τu) + Φ′(τu), τu〉+ ∂J(τu)τu)

−(E(τu) + Φ(τu) + J(τu))](t− 1), ∀t > 1, ∀u ∈ X.

Combining with assumption (H1) it follows that

t−
1
α (E(tu) + Φ(tu) + J(tLu))− (E(u) + Φ(u) + J(u))

≤ 1

α
τ−

1
α
−1(−a0τ‖u‖+ a1)(t− 1), ∀t > 1, ∀u ∈ K.

It is then clear from assumption (H3) that one can write

I(tu) = E(tu) + Φ(tu) + J(tu) ≤ t
1
α [E(u) + Φ(u)) + J(u)], ∀t > 1.

This fact in conjunction with assumption (H3) leads to the conclusion that

lim
t→+∞ I(tu) = −∞.

Then assumption (H4) enables us to apply the nonsmooth version of Mountain Pass Theorem

for e = tu, with a sufficiently large positive number t. According to Mountain Pass Theorem

the functional I possesses a nontrivial critical point u ∈ X in the sense of Definition 1. Finally,

Lemma 3 shows that u is a (nontrivial) solution of problem (7) with A = E ′. The proof of

Theorem 5 is thus complete. 2

We end this Section with an example of application of Theorem 5 in the case of variational-

hemivariational inequality (6). For the sake of simplicity we consider a uniformly convex Banach

13



space X, a convex closed cone K in X with 0 ∈ K, f = 0, Φ = 0 and a self-adjoint linear

continuous operator A : X → X∗ satisfying 〈Av, v〉 ≥ c0‖v‖2, for all v ∈ X, with a constant

c0 > 0.

Assume that the function j : T ×Rm → R verifies the conditions (1), (3), (4) with p > 2, as

well as the following assumptions of Ambrosetti–Rabinowitz type:

(i) there exist constants 0 < α < 1/2 and c ∈ R such that

j(x, y) ≥ αj0
y(x, y; y) + c, for a.e. x ∈ T, ∀y ∈ Rm;

(ii) lim inf
y→0

1

|y|2 j(x, y) ≥ 0 uniformly with respect to x ∈ T , and j(x, 0) = 0 a.e. x ∈ T ;

(iii) there exists an element u0 ∈ K \ {0} such that

lim inf
t→∞

[
1

2
〈Au0, u0〉t2 +

∫

T
j(x, tu0(x))dx

]
< 0.

Let us apply Theorem 5 for the functional J given by (8) and E(v) = (1/2)〈Av, v〉, ∀v ∈ X.

We see that hypotheses (i) and (ii) imply (H1) and (H4), respectively. Taking u = tu0 for

t > 0 sufficiently large, we get (H3) from (iii). It is straightforward to check that condition

(H2) holds true. Therefore Theorem 5 yields a nontrivial solution of variational-hemivariational

inequality (6) in our setting.
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