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Abstract. For any a> 0, we study the existence of normalized solutions and ground state solu-

tions to the following Schr\"odinger equation with L2-constraint:

\biggl\{ 
 - \Delta u+ \lambda u= b(x)f(u) x\in \BbbR 2,\int 
\BbbR 2 u

2dx= a,
where \lambda \in \BbbR is a Lagrange multiplier, the potential b \in \scrC (\BbbR 2, (0,\infty )) satisfies 0 < lim| y| \rightarrow \infty b(y) \leq 
infx\in \BbbR 2 b(x) and appears as a converse direction of the Rabinowitz-type trapping potential, and the
reaction f \in \scrC (\BbbR ,\BbbR ) enjoys critical exponential growth of Trudinger--Moser type. Under two different
kinds of assumptions on f , we prove several new existence results, which, in the context of nor-
malized solutions, can be considered as both counterparts of planar unconstrained critical problems
and extensions of unconstrained Schr\"odinger problems with Rabinowitz-type trapping potential. Es-
pecially, in this scenario, we develop some sharp estimates of energy levels and ingenious analysis
techniques to restore the compactness which are novel even for b(x) \equiv constant. We believe that
these techniques will allow not only treating other L2-constrained problems in the Trudinger--Moser
critical setting but also generalizing previous results to the case of variable potentials.

Key words. Schr\"odinger equation, normalized solution, critical exponential growth, Trudinger--
Moser inequality
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1. Introduction. This paper concerns the existence of normalized solutions to
the following nonlinear Schr\"odinger equation with critical exponential growth:\left\{    - \Delta u+ \lambda u= b(x)f(u), x\in \BbbR 2,\int 

\BbbR 2

u2dx= a,
(1.1)

where a> 0 is a given constant, \lambda \in \BbbR will arise as a Lagrange multiplier that depends
on the solution u \in H1(\BbbR 2) and is not a priori given, and b : \BbbR 2 \rightarrow \BbbR and f : \BbbR \rightarrow \BbbR 
satisfy the following basic conditions:
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7705

(B1) b\in \scrC (\BbbR 2, (0,\infty )) and 0< b\infty := lim| y| \rightarrow \infty b(y)\leq b(x) \forall x\in \BbbR 2;
(F1) f \in \scrC (\BbbR ,\BbbR ), and there exists \alpha 0 > 0 such that

lim
| t| \rightarrow \infty 

| f(t)| 
e\alpha t2

=

\Biggl\{ 
0 \forall \alpha >\alpha 0,

+\infty \forall \alpha <\alpha 0;
(1.2)

(F2) lim| t| \rightarrow 0 f(t)/t
3 = 0.

As in Adimurthi and Yadava [3] and de Figueiredo, Miyagaki, and Ruf [14], we say
that f(t) has critical exponential growth at t=\pm \infty if it satisfies (F1). It was shown by
Trudinger [30] and Moser [25] that this kind of nonlinearity has the maximal growth
that can be treated variationally in H1(\BbbR 2), which is motivated by the following
Trudinger--Moser inequality.

Lemma 1.1 [1, 9, 10].
(i) If \alpha > 0 and u\in H1(\BbbR 2), then\int 

\BbbR 2

\Bigl( 
e\alpha u

2

 - 1
\Bigr) 
dx<\infty ;

(ii) if u \in H1(\BbbR 2),\| \nabla u\| 22 \leq 1,\| u\| 2 \leq M < \infty , and \alpha < 4\pi , then there exists a
constant \scrC (M,\alpha ), which depends only on M and \alpha , such that\int 

\BbbR 2

\Bigl( 
e\alpha u

2

 - 1
\Bigr) 
dx\leq \scrC (M,\alpha ).(1.3)

The main feature of (1.1) is that the desired solutions have a priori prescribed
L2-norms, which are often referred to as normalized solutions in the literature; that
is, for given a> 0, a couple (u,\lambda )\in H1(\BbbR 2)\times \BbbR solves (1.1). From the physical point
of view, finding normalized solutions seems to be particularly meaningful because
the L2-norms of such solutions are a preserved quantity of the evolution, and their
variational characterization can help to analyze the orbital stability or instability; see,
for example, [7, 27].

It is well known that normalized solutions to (1.1) can be obtained as critical
points of the energy functional \Phi :H1(\BbbR 2)\rightarrow \BbbR defined by

\Phi (u) =
1

2

\int 
\BbbR 2

| \nabla u| 2dx - 
\int 
\BbbR 2

b(x)F (u)dx(1.4)

under the constraint

\scrS a =
\bigl\{ 
u\in H1(\BbbR 2) : \| u\| 22 = a

\bigr\} 
.(1.5)

It is standard that \Phi \in \scrC 1(H1(\BbbR 2),\BbbR ) (see section 2 below), and any critical point u
of \Phi 

\bigm| \bigm| 
\scrS a

corresponds to a solution to (1.1), with the parameter \lambda \in \BbbR appearing as a
Lagrange multiplier. We recall a solution u to be a ground state solution on \scrS a if u
minimizes the functional \Phi among all the solutions to (1.1); that is,

\Phi (u) = inf
\Bigl\{ 
\Phi (u) : \| u\| 22 = a, \Phi 

\bigm| \bigm| \prime 
\scrS a
(u) = 0

\Bigr\} 
.

When f has critical exponential growth, in sharp contrast to the unconstrained
problem with fixed \lambda > 0:

 - \Delta u+ \lambda u= f(u) in \BbbR 2,(1.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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7706 S. CHEN, V. D. R\u ADULESCU, X. TANG, AND S. YUAN

which has been widely studied in the last decades, there seems to be only one recent
paper [6] concerning normalized solutions to (1.1) in which the special case that
b(x) \equiv 1 and a \in (0,1) was considered. In the present paper, we shall focus on the
constrained problem (1.1) with critical exponential growth for all a > 0. To explain
what is at stake, let us first introduce some related results that motivate our research.

Problem (1.1) with b(x)\equiv 1 is a special case of the following model\left\{    - \Delta u+ \lambda u= f(u) in \BbbR N , N \geq 2,\int 
\BbbR N

u2dx= a,
(1.7)

which has been investigated extensively via the variational methods. There are many
existence results on normalized solutions and ground state solutions to (1.7) in these
last years, and these existence results depend on the behavior of the nonlinearities
at infinity, which determines whether the constrained functional is bounded from
below on the L2-constraint set. From the variational point of view, this behavior
gives rise to a new L2-critical phenomenon, that is, a new L2-critical exponent q\ast =
2 + 4/N , which comes from the Gagliardo--Nirenberg inequality (see [11, Theorem
1.3.7]). As we know, if f(u) in (1.7) grows faster than | u| q\ast  - 2u at infinity, then
the constrained functional is unbounded from below, and the problem is called L2-
supercritical; otherwise, the constrained functional is bounded from below, and the
problem is called L2-subcritical in the literature. In this sense, (1.1) is clearly L2-
supercritical. Compared with the L2-subcritical case, more efforts are always needed
in the study of the L2-supercritical case.

1.1. Previous developments and some perspectives. The first contribution
to the L2-supercritical case was made by Jeanjean in a seminal paper [18]. In [18],
a radial solution at a mountain pass value to (1.7) was found under the following
conditions:

(H0) f is odd;
(H1) f \in \scrC (\BbbR ,\BbbR ), and there exist \alpha ,\beta \in \BbbR satisfying 2N+4

N < \alpha \leq \beta < 2\ast = 2N
N - 2

such that

0<\alpha F (t)\leq f(t)t\leq \beta F (t) \forall t\in \BbbR \setminus \{ 0\} ;

the existence of ground state solutions was proved if f also satisfies
(H2) the function \~F (t) := f(t)t - 2F (t) is of class \scrC 1 and

\~F \prime (t)t >
2N + 4

N
\~F (t) \forall t\in \BbbR \setminus \{ 0\} .

Note that the first inequality of (H1) and condition (H2) play analogous roles as the
classical Ambrosetti--Rabinowitz condition (AR condition for short) and the Nehari-
type condition in the unconstrained context, respectively. Recently, Jeanjean and
Lu [21] improved the existence results on ground state solutions obtained in [18] by
relaxing (H1) and (H2) to the following conditions:

(H3) limt\rightarrow 0 f(t)/t
1+4/N = 0 and limt\rightarrow \infty F (t)/t2+4/N =+\infty ; moreover,\Biggl\{ 

limt\rightarrow \infty f(t)/t2
\ast  - 1 and f(t)t < 2N

N - 2F (t) when N \geq 3,

lim| t| \rightarrow \infty f(t)/e\alpha t
2

= 0 \forall \alpha > 0 when N = 2;
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7707

(H4) [f(t)t - 2F (t)]/| t| (N+4)/N t is increasing strictly on ( - \infty ,0) and (0,+\infty ).
When f satisfies (H1) and a weaker version of (H4),
(H4\prime ) [f(t)t - 2F (t)]/| t| (N+4)/N t is nondecreasing on ( - \infty ,0) and (0,+\infty ).

Chen and Tang [13] obtained the existence of ground state solutions to (1.7) and
also considered the nonautonomous case that f(u) is replaced by b(x)f(u) with b \in 
\scrC 1(\BbbR 2,\BbbR +) satisfying additional assumptions. We notice that three different strategies
were implemented in [18], [21], and [13]:

(a) constructing a Palais--Smale sequence (PS sequence for short) of the con-
strained functional satisfying asymptotically the L2-Pohozaev identity by in-
geniously applying the Ekeland's principle to a new auxiliary functional;

(b) constructing a minimizing sequence that is a PS sequence of the constrained
functional by subtly adapting the techniques developed by Szulkin and Weth
[28, 29];

(c) solving directly the minimization problem of the constrained functional on
the L2-Pohozaev manifold by combining some new inequalities with the de-
formation lemma.

In the latter two cases, f is not required to be of class \scrC 1 in order to find ground
state solutions. We also point out that the proofs for the compactness of PS or
minimizing sequences \{ un\} use the compact embeddings H1

r (\BbbR N ) \lhook \rightarrow Ls(\BbbR N ) and
H1

loc(\BbbR N ) \lhook \rightarrow Ls(\BbbR N ) for 2< s< 2\ast . Both of the embeddings do not work when f has
a critical growth in the Sobolev sense if N \geq 3 or a critical exponential growth in the
Trudinger--Moser sense if N = 2, where

2\ast :=

\biggl\{ 
2N/(N  - 2) if N \geq 3,
+\infty if N = 1,2.

In 2020, Soave [27] first considered the Schr\"odinger equation with Sobolev critical
growth, \left\{    - \Delta u+ \lambda u= \mu | u| q - 2u+ | u| 2

\ast  - 2u in \BbbR N , N \geq 3,\int 
\BbbR N

u2dx= a,
(1.8)

and proved that, for \mu a(1  - \gamma q)q < \alpha , (1.8) has ground state solutions in the L2-
subcritical perturbation case 2< q < 2 +N/4 and L2-supercritical perturbation case
2 + N/4 < q < 2\ast , respectively, where \alpha = \alpha (N,q) is a specific constant depending
on N,q and \gamma q := N(q  - 2)/(2q). Very recently, Wei and Wu [32] obtained the
existence of mountain pass solutions for 2 < q < 2 + N/4 and proved the existence
and nonexistence of ground state solutions for 2 + N/4 < q < 2\ast with large \mu > 0.
Moreover, they gave precisely asymptotic behaviors of ground state solutions and
mountain pass solutions as \mu goes to 0 and its upper bound; see also [19, 20] for
2 + N/4 < q < 2\ast . These results settled several open questions proposed by Soave
[27]. For the L2-supercritical perturbation case 2 + N/4 < q < 2\ast , we also refer to
[4, 5, 6], which complement the existence results obtained in [27]. In these works, the
compactness was restored successfully by the ingenious combination of the pioneering
work of Brezis and Nirenberg [8], the scaling technique introduced by Jeanjean [18],
and the concentration-compactness principle due to Lions [22]. It is worth pointing
out that these strategies can well solve the obstacles caused by Sobolev critical growth
when searching for a solution with a prescribed norm, but it is not available for the
planar case that f has critical growth in the Trudinger--Moser sense, that is, the
following equation

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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7708 S. CHEN, V. D. R\u ADULESCU, X. TANG, AND S. YUAN\left\{    - \Delta u+ \lambda u= f(u) in \BbbR 2,\int 
\BbbR 2

u2dx= a
(1.9)

with f satisfying (F1), since additional difficulties arise.
(i) One needs to reselect test functions in \BbbR 2 on the L2-constraint \scrS a to con-

trol the energy values from above so that PS sequences of the constrained
functional are compact at the energy level;

(ii) It is unknown whether the Brezis--Lieb property\int 
\BbbR 2

[f(un)un  - f(\=u)\=u - f(un  - \=u)(un  - \=u)] dx= o(1)(1.10)

holds if un \rightharpoonup \=u in H1(\BbbR 2), which plays a crucial role in restoring the com-
pactness to Sobolev critical problems.

Thus, a natural question arises:
\bullet Does (1.9) have solutions or ground state solutions when f is of critical ex-

ponential growth?
In 2020, Alves, Ji, and Miyagaki [6] gave partial answers to the above question

for a\in (0,1). To state the result, we list the conditions used in [6]:
(F2\prime ) lim| t| \rightarrow 0 | f(t)| /| t| l = 0 for some constant l > 3;
(F3\prime ) there exists a constant \mu 0 > 4 such that f(t)t\geq \mu 0F (t)> 0 \forall t\in \BbbR \setminus \{ 0\} ;
(F4\prime ) there exist constants p > 4 and \gamma > 0 such that F (t)\geq \gamma | t| p \forall t\in \BbbR ;
(F5\prime ) the function \~F (t) := f(t)t - 2F (t) is of class \scrC 1 and satisfies

\~F \prime (t)t\geq 4 \~F (t) \forall t\in \BbbR ,

where (F3\prime ) is the AR condition in the context of normalized solutions. For all a> 0,
solutions to (1.9) correspond to critical points of the functional \Phi \infty : H1(\BbbR 2) \rightarrow \BbbR 
given by

\Phi \infty (u) =
1

2

\int 
\BbbR 2

| \nabla u| 2dx - 
\int 
\BbbR 2

F (u)dx(1.11)

on the constraint \scrS a. As a consequence of the Pohozaev identity (see [18, Lemma
2.7]), any solution u of (1.9) lives in the Pohozaev manifold given by

\scrM \infty 
a = \{ u\in \scrS a : J

\infty (u) = 0\} ,(1.12)

where J\infty is called the Pohozaev functional defined by

J\infty (u) = \| \nabla u\| 22  - 
\int 
\BbbR 2

[f(u)u - 2F (u)]dx \forall u\in H1(\BbbR 2).(1.13)

Let

m\infty (a) := inf
u\in \scrM \infty 

a

\Phi \infty (u).(1.14)

Their result reads as follows in this topic.

Theorem [AJM] ([6, Theorem 1.2]). Assume that f satisfies (F1) with \alpha 0 = 4\pi 
and (F2\prime ), (F3\prime ), and (F4\prime ). If a \in (0,1), then there exists \gamma \ast (a) > 0 such that (1.9)
has a radial solution for all \gamma \geq \gamma \ast (a), where \gamma is given by (F4\prime ); moreover, this

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7709

solution can be chosen as a positive ground state solution if f also satisfies (H0) and
(F5\prime ).

The proof of Theorem [AJM] is based on the idea introduced by Jeanjean [18];
that is, working on the space H1

r (\BbbR 2) and for every a \in (0,1), construct a special PS
sequence \{ un\} \subset \scrS r

a := \scrS a \cap H1
r (\BbbR 2) such that

\Phi \infty (un)\rightarrow c\infty \gamma (a)> 0, \Phi \infty | \prime \scrS r
a
(un)\rightarrow 0, and J\infty (un)\rightarrow 0,(1.15)

where the mountain pass level c\infty \gamma (a) depends on \gamma in (F4\prime ). To derive the compactness
of \{ un\} in H1

r (\BbbR 2), with assumptions (F3\prime ) and (F4\prime ), it is obtained that the key
approximate evaluation is

limsup
n\rightarrow \infty 

\| \nabla un\| 22 \leq 
2(\mu 0  - 2)

\mu 0  - 4
c\infty \gamma (a)\rightarrow 0 as \gamma \rightarrow \infty ,(1.16)

rather than a precise upper estimate of energy levels like that in the Sobolev critical
case of higher dimensions. In fact, from (1.16), one sees that the energy level can
be controlled arbitrarily small just by taking the parameter \gamma large enough. This
perturbative way allows us to avoid the influences of critical exponential growth.
Indeed, as long as limsupn\rightarrow \infty \| \nabla un\| 22 < 1 - a, which can be deduced from (1.16) by
taking \gamma large enough, one can prove easily that

lim
n\rightarrow \infty 

\int 
\BbbR 2

| un| s
\Bigl( 
e\alpha u

2
n  - 1

\Bigr) 
dx=

\int 
\BbbR 2

| \=u| s
\Bigl( 
e\alpha \=u2

 - 1
\Bigr) 
dx(1.17)

by using the Trudinger--Moser inequality and the compact embedding H1
r (\BbbR 2) \lhook \rightarrow 

Ls(\BbbR 2) for s > 2, and thus, one can derive the Brezis--Lieb property (1.10) and the
convergence \int 

\BbbR 2

[f(un)un  - f(\=u)\=u] dx= o(1)(1.18)

if un \rightharpoonup \=u in H1(\BbbR 2) in the same way as those for functions f(u) \sim | u| q - 2u with
q > 2. With (1.10) and (1.18), some powerful tools treating constrained problems with
Sobolev critical growth in the higher dimensions are applicable for (1.9). To further
obtain a ground state solution, following the arguments of [18, 27], it is established
that c\infty \gamma (a) = m\infty (a), where m\infty (a) is given by (1.14). Note that in this argument,
besides the \scrC 1 assumption (F5\prime ), the odd assumption (H0) is required to work with
sequences of functions that are Schwartz symmetric.

1.2. Highlights of the paper and main results. Inspired by aforementioned
works, especially [6], it is very natural to pose a series of interesting questions, such
as the following:

(Q1) Alves, Ji, and Miyagaki [6] only considered the case a \in (0,1). A natural
question is whether (1.9) has solutions or ground state solutions if a\geq 1?

(Q2) As we know, for the unconstrained problem (1.6), the energy threshold of the
compactness of PS sequences is 2\pi /\alpha 0. Does the same property hold true for
the constrained problem (1.9)?

(Q3) If the energy threshold is available for (1.9) in (Q2), can we find an alternative
method to control precisely the energy value from above by the threshold
instead of approximate evaluation like (1.16), which is essential in [6]?

(Q4) If the energy threshold is available for (1.9) in (Q2), can we find an explicit
lower bound \gamma \ast (a)> 0 of \gamma , in place of the implicit expression of existence in
[6, Theorem 1.2]?

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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7710 S. CHEN, V. D. R\u ADULESCU, X. TANG, AND S. YUAN

The first purpose of this paper is to solve the above questions and establish the
existence of normalized solutions and ground state solutions to (1.9) for all a > 0.
In addition, we notice that (F5\prime ) used in [6] is the special case of (H2) by taking
N = 2, which has been used and further weakened in the literature, such as (H4) and
(H4\prime ) mentioned above. It is natural to expect that (F5\prime ) could also be weakened
accordingly for the search of ground state solutions to (1.9). Our first result will
confirm this expectation, as well as not requiring the odd assumption (H0) used in
[6]. Before stating this result, besides (F1) and (F2), we introduce the following
assumptions:

(F3) f(t)t\geq 4F (t) := 4
\int t

0
f(s)ds > 0 \forall t\in \BbbR \setminus \{ 0\} ;

(F4) lim inf | t| \rightarrow \infty 
t2F (t)

e\alpha 0t2
> 0;

(F5) there exist constants M0 > 0 and \beta 0 > 0 such that

F (t)\leq M0| f(t)| \forall | t| \geq \beta 0;

(F6) [f(t)t - 2F (t)]/| t| 3t is nondecreasing on ( - \infty ,0) and (0,+\infty ).
Obviously, (F2) and (F3) are weaker than (F2\prime ) and (F3\prime ), respectively. Assumptions
(F4) and (F5) can date back to the pioneering works of de Figueiredo, Miyagaki, and
Ruf [14] and Adimurthi [2], respectively, for the study of the planar unconstrained
critical problem (1.6), both of which are reasonable for critical exponential growth
functions satisfying (F1) since f(t) behaves like e\alpha 0t

2

at infinity, as pointed out by
Figueiredo and Severo [17]. In particular, (F4) is much weaker than the condition

\beta 0 := lim
| t| \rightarrow \infty 

tf(t)

e\alpha 0t2
=+\infty (1.19)

introduced in [2], even any relaxed versions of it in the existing literature, such as
taking \beta 0 by a smaller positive constant. This type of condition permits using clas-
sical Moser-type functions as test functions to control the energy level by 2\pi /\alpha 0 in
the unconstrained context; see [14, 15]. As pointed out by Masmoudi and Sani [24,
Remark 8.2], although (F4) and (F4\prime ) both define the behaviors of the nonlinearity at
infinity, it still seems to be difficult to compare them because the latter, performing
as a global assumption, additionally specifies the growth condition at the origin. Our
results in this direction are given in the following two statements.

Theorem 1.2. Assume that a > 0 and f satisfies (F1), (F2), (F3), (F4), and
(F5). Then (i) (1.9) has a radial solution; (ii) (1.9) has a ground state solution on \scrS a

if further (F6) holds. Moreover, for any solution, the associated Lagrange multiplier
\lambda is positive.

Set

\gamma \ast (a) :=
\scrC p

a(p - 2)

\biggl[ 
\alpha 0(p - 4)

4\pi (p - 2)

\biggr] (p - 4)/2

with \scrC p := inf
u\in H1(\BbbR 2)\setminus \{ 0\} 

\| \nabla u\| p - 2
2 \| u\| 22
\| u\| pp

,(1.20)

where p is given by (F4\prime ).

Theorem 1.3. Assume that a > 0 and that f satisfies (F1), (F2), (F3), (F4\prime )
with \gamma > \gamma \ast (a), and (F5). Then, the conclusions of Theorem 1.2 hold.

Remark 1.4.
(i) Theorems 1.2 and 1.3 give complete answers to questions (Q1), (Q2), (Q3),

and (Q4), which may be mutually noninclusive due to assumptions (F4) and
(F4\prime ).
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7711

(ii) With (F4) and (F4\prime ), we implement two kinds of sharp estimates for energy
levels, both of which differ considerably from previous works on normalized
solutions. These subtle estimates should be useful for considering other L2-
constrained equations in critical exponential settings.

(iii) Theorem 1.2 can be considered as a counterpart of planar unconstrained crit-
ical problem (1.6), originally considered by Adimurthi [2] in the context of
normalized solutions, and seems to be the first result on this topic. As in
the unconstrained context, estimates of the energy levels depend on the as-

ymptotic behavior of t2F (t)

e\alpha 0t2
at infinity. Somehow surprisingly, our hypothesis

(F4) seems to be optimal in this respect, which is much weaker than (1.19),
even any weakened versions of it in the previous works; however, it remains
open whether this optimal hypothesis works in the unconstrained context.

(iv) Theorem 1.3 improves that of [6] in the sense that we not only extend the
constrain condition a\in (0,1) used in [6] to a> 0 but also find an explicit value
\gamma \ast (a) > 0 instead of an implicit expression in [6]; besides, our assumptions
are weaker than those of [6].

Note that the proof for the existence of a radial solution to (1.9) in Theorems 1.2
and 1.3 can also be applied to the nonautonomous equation (1.1) with radial potential
b satisfying

(Br) b\in \scrC 1(\BbbR 2,\BbbR +) is radial and bounded, infx\in \BbbR 2 b(x)> 0, and

 - \infty < inf
x\in \BbbR 2

\nabla b(x) \cdot x\leq sup
x\in \BbbR 2

\nabla b(x) \cdot x\leq 0.

We have the following corollary.

Corollary 1.5. Assume that a > 0 and that (Br), (F1), (F2), (F3), and (F5)
hold. Then, (1.1) has a radial solution if f further satisfies either (F4) or (F4\prime ) with
\gamma > \gamma \ast (a).

In the second part of this paper, we shall further study the existence of ground
state solutions to nonautonomous form (1.1) with the variable potential b(x) satisfying
(B1). This type of variable potential originates from the classic work of Ding and
Ni [16] that investigated the positive ground state solutions to the unconstrained
Schr\"odinger equation

 - \Delta u+ u= b(x)f(u), u\in H1(\BbbR N ),(1.21)

where N \geq 3, potential b satisfies (B1) replacing \BbbR 2 with \BbbR N , and nonlinearity f has
Sobolev subcritical growth. Nowadays, it has been widely used in studying various
kinds of unconstrained elliptic equations and systems in the subcritical or critical
setting, which, as mentioned by Wang and Zeng [31], can be considered as a converse
direction of the classical Rabinowitz-type trapping potential introduced by Rabinowitz
[26]. In sharp contrast to the above unconstrained case, regarding this type of variable
potential, the study of normalized solutions is almost unexplored in the literature. To
our knowledge, the first and currently the only paper in this respect is [13], where the
authors considered the Sobolev subcritical case in the dimensions N \geq 3; nevertheless,
nothing is known in the Trudinger--Moser critical setting this paper focuses on. The
present paper seems to be the first attempt to generalize the previous results in (1.21)
to a new L2-constrained scenario (1.1) in the Trudinger--Moser critical setting. A
novelty of the proof lies in the subtle combination of new strategies, which shall be
introduced in the process of treating autonomous form (1.9), and the comparison
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7712 S. CHEN, V. D. R\u ADULESCU, X. TANG, AND S. YUAN

argument in the unconstrained context developed by Rabinowitz [26] to restore the
compactness of PS sequence \{ un\} , which is more delicate because one has to deal with
the lack of both translation invariance of \Phi and the noncompactness of the embedding
H1(\BbbR 2) \lhook \rightarrow Ls(\BbbR 2) for s > 2, as well as whether \=u\in \scrS a is unknown if un\rightharpoonup \=u inH1(\BbbR 2).
To state our results in this direction, on (1.1), besides (B1), (F1), (F2), (F3), and
(F4) (or (F4\prime )), we also introduce the following conditions:

(F7) There exists a constant \theta \in [2,4] such that [f(t)t - \theta F (t)]/| t| 3t is nondecreasing
on ( - \infty ,0) and (0,+\infty );

(B2) b \in \scrC 1(\BbbR 2,\BbbR ), and t \mapsto \rightarrow (\theta  - 2)b(tx) - \nabla b(tx) \cdot (tx) is nonincreasing on (0,\infty )
for every x\in \BbbR 2;

(B3) 2b(x) + \nabla b(x) \cdot x \geq 0 \forall x \in \BbbR 2, and the inequality strictly holds for some
\Lambda \subset \BbbR 2.

Without loss of generality, we may assume that b\infty = 1. Our results are as follows.

Theorem 1.6. Assume that a > 0 and that (B1), (B2), (B3), (F1), (F2), (F3),
(F4), and (F7) hold. Then, (1.1) has a ground state solution on \scrS a, and the associated
Lagrange multiplier \lambda is positive.

Theorem 1.7. Assume that a > 0 and that (B1), (B2), (B3), (F1), (F2), (F3),
(F4\prime ) with \gamma > \gamma \ast (a), and (F7) hold. Then, the conclusions of Theorem 1.6 hold.

We recall that any solution of (1.1) lives in the L2-Pohozaev manifold given by

\scrM a =

\biggl\{ 
u\in \scrS a : J(u) :=

d

dt
\Phi (tut)

\bigm| \bigm| \bigm| 
t=1

= 0

\biggr\} 
.(1.22)

For given a> 0, we identify the suspected ground state solution energy

ma := inf
u\in \scrM a

\Phi (u).(1.23)

If a solution ua of (1.1) satisfies \Phi (ua) =ma, then it is a ground state solution.

Remark 1.8. As will be seen, to restore the compactness when searching for ground
state solutions, we need to obtain the monotonicity of a \mapsto \rightarrow m\infty (a) and a \mapsto \rightarrow m(a) (see
Lemmas 3.6 and 4.5), which turns out to be the key ingredient. As a by-product of
this study, we can further establish the following asymptotic behaviors of the ground
state energy (see Lemma 4.6 and Corollary 4.7):

lim
a\rightarrow 0+

m\infty (a) =+\infty , lim
a\rightarrow +\infty 

m\infty (a) = 0, lim
a\rightarrow 0+

m(a) =+\infty , and lim
a\rightarrow +\infty 

m(a) = 0.

Remark 1.9. Theorems 1.6 and 1.7, to some extent, can be viewed as the extension
of existence results on ground state solutions to unconstrained Schr\"odinger problems
with the Rabinowitz-type trapping potential in the context of normalized solutions.
To our knowledge, there have not been any similar results in the literature in this
respect.

1.3. Sketch of the proofs. First, we treat the autonomous problem (1.9) and
give ideas of the proofs of Theorems 1.2 and 1.3. To obtain a radial solution of (1.9)
for any a > 0, following the argument developed in Jeanjean [18] and working in the
space H1

r (\BbbR 2), we first construct a special PS sequence \{ un\} \subset \scrS r
a := \scrS a \cap H1

r (\BbbR 2)
satisfying

\Phi \infty (un)\rightarrow c\infty r (a)> 0, \Phi \infty | \prime \scrS r
a
(un)\rightarrow 0, and J\infty (un)\rightarrow 0(1.24)
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7713

for every a> 0; see section 3.1. Since the Nehari manifold cannot contribute here due
to the presence of unknown Lagrange multipliers, it is the additional property related
to the Pohozaev identity J\infty (un) \rightarrow 0 that allows us to obtain the boundedness of
\{ \| un\| \} , whose proof does not require AR condition (F3\prime ) used in [6]. As noted before,
a major difficulty lies in the analysis of the convergence of \{ un\} . Indeed, due to the
simultaneous appearance of the L2-constraint and the nonlinear term with critical
exponential growth, several classical tools are not available anymore, and this forces
the implementation of new strategies and techniques to restore the compactness of
\{ un\} , which are summarized as follows.

(I) Obtain a sharp upper estimate c\infty r (a) < 2\pi /\alpha 0 instead of the approximate
evaluation like (1.16) in [6].
With (F4) and (F4\prime ), we shall propose two different strategies to get this fine
estimate. The new strategies will conquer the aforementioned difficulty (i),
which read as follows.
\bullet The case (F4) holds.

Note that the Moser-type functions used in the unconstrained context do
not work anymore since both testing functions and testing paths must
be restricted on the set \scrS a. To settle this issue, we construct a finer
path with a new sequence of testing functions in an ingenious way and
successfully control energy to make sure that it is less than the threshold
2\pi /\alpha 0 by means of (F4); see Lemmas 2.8 and 2.9.

\bullet The case (F4\prime ) holds.
Different from that of [6], we select skillfully a sequence of functions
related to the Gagliardo--Nirenberg inequality as testing functions. It
is this special choice that permits us to find an explicit lower bound
\gamma \ast (a)> 0 of \gamma to control precisely energy with (F4\prime ); see Lemma 2.10.

(II) Prove that un \rightarrow \=u in H1
r (\BbbR 2) for some \=u\in H1

r (\BbbR 2)\setminus \{ 0\} , up to a subsequence,
which conquer the aforementioned difficulty (ii).
Having at hand the above conclusion (I), we first prove that up to a sub-
sequence, \{ un\} has a nontrivial weak limit \=u \in H1(\BbbR 2) with \| \=u\| 22 \in (0, a]
provided c\infty r (a) < 2\pi /\alpha 0. However, it is not sufficient to justify that \=u
is a normalized solution of (1.9) because whether \| \=u\| 22 = a is unclear. To
verify it, we prove that there exists a Lagrange multiplier \=\lambda > 0 such that
 - \Delta \=u+ \=\lambda u = f(\=u) and conclude the compactness of \{ un\} from \=\lambda > 0. This
strategy effectively addresses the lack of the compactness on f in L1(\BbbR 2) and
the Brezis--Lieb property in H1

r (\BbbR 2).
The proof for the existence of ground state solutions to (1.9) consists of the following
steps.
Step 1. Working directly in H1(\BbbR 2) in place of H1

r (\BbbR 2) used above, we construct a
certain PS sequence \{ un\} \subset \scrS a of \Phi \infty with the additional property J\infty (un)\rightarrow 
0 at the level c\infty (a) (see (3.28) below), which is bounded in H1(\BbbR 2).

Step 2. By adapting the argument of the Nehari manifold in the unconstrained con-
text and combining some new inequalities related with \Phi \infty (u) and J\infty (u),
we prove that c\infty (a) =m\infty (a); see Lemma 3.5.

Step 3. By developing more robust arguments than before, we prove the compactness
of \{ un\} , up to translations.

Note that Step 3 turns out to be the most challenging and requires a deeper analysis
and more delicate techniques. Indeed, the proof of the compactness in the aforemen-
tioned (II) uses essentially the fact that the embedding H1

r (\BbbR 2) \lhook \rightarrow Ls(\BbbR 2) is compact
for any s > 2; it fails in H1(\BbbR 2) since there is no odd condition (H0), and we can-
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7714 S. CHEN, V. D. R\u ADULESCU, X. TANG, AND S. YUAN

not work with sequences of functions that are Schwartz symmetric, like that in the
almost all previous related works. To address this issue, we show that the ground
state energy map a \mapsto \rightarrow m\infty (a) is nonincreasing on (0,\infty ), with the help of (F6) as
noted in Remark 1.8, and, by making full use of this monotonicity, we prove that, up
to a subsequence and up to translations, there is a weak limit \=u \in H1(\BbbR 2) \setminus \{ 0\} of
\{ un\} such that \| un  - \=u\| 2 \rightarrow 0, where \=u \not = 0 can be obtained by controlling the en-
ergy level as in the above (I). It permits reducing the problem of strong convergence
to the one of showing the positivity of the Lagrange multiplier like that in the last
part of the above (II). This strategy was initially proposed by Bellazzini, Jeanjean,
and Luo [7], who studied Schr\"odinger--Poisson systems, and was further developed
by Jeanjean and Lu [21] for the study of (1.9) with Sobolev subcritical growth. One
should, however, note that the argument in [21] used essentially the convergence of
f(un)un in L1(\BbbR 2), and so it is unavailable in the critical exponential setting. It is
worth pointing out that by developing new arguments, we confirm that the above
strategy is also effective for (1.9) with critical exponential growth without (H0). Our
arguments are more robust and involved than before in the sense that they require
neither the convergence of f(un)un in L1(\BbbR 2) nor the Brezis--Lieb property (1.10) and
should be adapted to treat other L2-constrained problems with critical exponential
growth.

Finally, we deal with the more complex nonautonomous problem (1.1) and present
crucial ingredients for the proofs of Theorems 1.6 and 1.7. Our proofs are based on
the line of proofs for the search of ground state solutions to (1.9). However, special
care and extra effort are always needed due to the aforementioned unpleasant facts
in the presence of the variable potential b(x), summarized as follows.

\bullet Derive that the obtained mountain pass level equals the ground state energy
like those of Step 1 and Step 2 in (1.1).
For this, we have to carefully analyze the behaviors of both t \mapsto \rightarrow b(tx) and
t \mapsto \rightarrow \nabla b(tx) \cdot tx for any x\in \BbbR 2 and develop more technical arguments so that
key inequalities on the energy functional and the Pohozaev functional of (1.9)
can be extended to the nonautonomous case (1.1), where a slightly stronger
monotonicity condition (F6) compared to (F5) is required.

\bullet Prove the nontriviality of the weak limit of the obtained PS sequence \{ un\} ,
up to a subsequence.
Note that for this, the argument treating (1.9) before is invalid because the
corresponding energy no longer has translation invariance. To overcome this
lack, we first compare ground state energies between the nonautonomous
problem (1.1) and its ``limit problem"" (1.9) and conclude thatm(a)<m\infty (a),
then prove that either a weak limit of \{ un\} is nontrivial or that m(a) \geq 
m\infty (a); thus, this contradiction ends the proof. Although this idea comes
from Rabinowitz [26] and has been used in many other contexts, the related
proofs explored in the previous works fail to work because they require the
concentration-compactness principle due to Lions [23] and the Brezis--Lieb
property like (1.10). This forces us to develop more robust arguments to
complete the proof.

1.4. Organization of the paper. In section 2, we present some preliminary
results for (1.1), which will be used in the rest of the paper. In section 3, we study
the existence of radial solutions and ground state solutions for autonomous equation
(1.9) and complete the proof of Theorem 1.2. Section 4 is devoted to the study of the
existence of ground state solutions for (1.1) and finishing the proof of Theorem 1.6,
where the proofs of Theorems 1.3 and 1.6 are given in Remark 4.10.
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7715

Throughout the paper, we make use of the following notations:
\bullet H1(\BbbR 2) denotes the usual Sobolev space equipped with the inner product and

norm

(u, v) =

\int 
\BbbR 2

(\nabla u \cdot \nabla v+ uv)dx, \| u\| = (u,u)1/2 \forall u, v \in H1(\BbbR 2);

\bullet H1
r (\BbbR 2) denotes the space of spherically symmetric functions belonging to

H1(\BbbR 2):

H1
r (\BbbR 2) := \{ u\in H1(\BbbR 2)

\bigm| \bigm| u(x) = u(| x| ) a.e. in \BbbR 2\} ;

\bullet Ls(\BbbR 2)(1 \leq s < \infty ) denotes the Lebesgue space with the norm \| u\| s
= (
\int 
\BbbR 2 | u| sdx)1/s;
\bullet For any u\in H1(\BbbR 2) \setminus \{ 0\} , ut(x) := u(tx) for t > 0;
\bullet For any x\in \Omega and r > 0, Br(x) := \{ y \in \Omega : | y - x| < r\} and Br =Br(0);
\bullet C1,C2, . . . denote positive constants possibly different in different places, which

are dependent on a> 0.

2. Preliminary results. Under assumptions (F1) and (F2), fixing \alpha > \alpha 0, we
know that, for any \varepsilon > 0 and any q\geq 1, there exists C\alpha ,\varepsilon ,q > 0 such that

| f(t)| \leq \varepsilon | t| 3 +C\alpha ,\varepsilon ,qe
\alpha t2 | t| q \forall t\in \BbbR ;(2.1)

moreover, using (2.1), we deduce that for any \varepsilon > 0, there exists C\alpha ,\varepsilon > 0 such that

| F (t)| \leq \varepsilon | t| 4 +C\alpha ,\varepsilon e
\alpha t2 | t| 4 \forall t\in \BbbR .(2.2)

In this section, we always assume b \in \scrC 1(\BbbR 2,\BbbR +) \cap L\infty (\BbbR 2,\BbbR +) with infx\in \BbbR 2 b(x)\geq 1
and  - \infty < infx\in \BbbR 2 \nabla b(x) \cdot x \leq supx\in \BbbR 2 \nabla b(x) \cdot x \leq 0. By Lemma 1.1 and (2.2), we
have \Phi \in \scrC 1(H1(\BbbR 2),\BbbR ).

Noting that (F1) and (F2) imply that \Phi is no longer bounded from below on \scrS a,
we shall look for a critical point satisfying a minimax characterization. For this, we
give the following definition.

Definition 2.1. For given a > 0, we say that \Phi possesses a mountain pass
geometry on \scrS a if there exists \rho a > 0 such that

c(a) := inf
g\in \Gamma a

max
\tau \in [0,1]

\Phi (g(\tau ))>max
g\in \Gamma a

max\{ \Phi (g(0)),\Phi (g(1))\} ,(2.3)

where \Gamma a := \{ g \in \scrC ([0,1],\scrS a) : \| \nabla g(0)\| 22 \leq \rho a,\Phi (g(1))< 0\} .
We want to prove that for any a> 0, there exist PS sequences for \Phi restricted to

\scrS a at the level c(a). To derive the boundedness of PS sequences, we manage to look
for more information related to the L2-Pohozaev identity, which will be obtained in
the following subsection. From now on, we always let a> 0.

2.1. A special PS sequence with the extra property. In this subsection,
we shall find a special PS sequence \{ un\} of \Phi restricted on \scrS a with the extra property
J(un)\rightarrow 0, where

\Phi (tut) =
t2

2
\| \nabla u\| 22  - 

1

t2

\int 
\BbbR 2

b(x/t)F (tu)dx \forall t > 0, u\in H1(\BbbR 2)(2.4)
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7716 S. CHEN, V. D. R\u ADULESCU, X. TANG, AND S. YUAN

and

J(u) =
d

dt
\Phi (tut)

\bigm| \bigm| \bigm| 
t=1

(2.5)

= \| \nabla u\| 22 +
\int 
\BbbR 2

[2b(x) +\nabla b(x) \cdot x]F (u)dx - 
\int 
\BbbR 2

b(x)f(u)udx \forall u\in H1(\BbbR 2).

To this end, we first prove that \Phi has a mountain pass geometry on the constraint
\scrS a; this reads as follows.

Lemma 2.2. Assume that (F1), (F2), and (F3) hold. Then,
(i) there exists K(a) > 0 small enough that \Phi (u) > 0 and J(u) > 0 if u \in A2K

and

0< sup
u\in AK

\Phi (u)< inf
\bigl\{ 
\Phi (u) : u\in \scrS a,\| \nabla u\| 22 = 2K(a)

\bigr\} 
,(2.6)

where

AK =
\bigl\{ 
u\in \scrS a : \| \nabla u\| 22 \leq K(a)

\bigr\} 
and A2K =

\bigl\{ 
u\in \scrS a : \| \nabla u\| 22 \leq 2K(a)

\bigr\} 
;

(2.7)

(ii) \Gamma a = \{ g \in \scrC ([0,1],\scrS a) : \| \nabla g(0)\| 22 \leq K(a),\Phi (g(1))< 0\} \not = \emptyset and

c(a) = inf
g\in \Gamma a

max
t\in [0,1]

\Phi (g(t))\geq inf
\bigl\{ 
\Phi (u) : u\in \scrS a,\| \nabla u\| 22 = 2K(a)

\bigr\} 
>max

g\in \Gamma a

max\{ \Phi (g(0)),\Phi (g(1))\} .(2.8)

Proof. (i) By the Gagliardo--Nirenberg inequality, we have

\| u\| ss \leq \scrC  - 1
s \| u\| 22\| \nabla u\| s - 2

2 for s > 2,(2.9)

where \scrC s > 0 is a constant determined by s. Using (ii) of Lemma 1.1, we have\int 
\BbbR 2

\Bigl( 
e2\alpha u

2

 - 1
\Bigr) 
dx=

\int 
\BbbR 2

\Bigl( 
e2\alpha \| \nabla u\| 2

2(u/\| \nabla u\| 2)
2

 - 1
\Bigr) 
dx

\leq C1 \forall u\in \scrS a,\| \nabla u\| 2 \leq 
\sqrt{} 
\pi /\alpha .(2.10)

By (2.1), (2.2), (2.9), and (2.10), we have\int 
\BbbR 2

b(x)F (u)dx+

\int 
\BbbR 2

b(x)[f(u)u - 2F (u)]dx+

\int 
\BbbR 2

| \nabla b(x) \cdot x| F (u)dx

\leq \varepsilon \| u\| 44 +C\varepsilon 

\int 
\BbbR 2

\Bigl( 
e\alpha u

2

 - 1
\Bigr) 
| u| 4dx

\leq \varepsilon \scrC  - 1
4 a\| \nabla u\| 22 +C\varepsilon 

\biggl[ \int 
\BbbR 2

\Bigl( 
e2\alpha u

2

 - 1
\Bigr) 
dx

\biggr] 1/2
\| u\| 48

\leq \varepsilon \scrC  - 1
4 a\| \nabla u\| 22 +C\varepsilon C

1/2
1 \scrC  - 1/2

8

\surd 
a\| \nabla u\| 32 \forall u\in \scrS a,\| \nabla u\| 2 \leq 

\sqrt{} 
\pi /\alpha .(2.11)

Now, let 0<K < \pi /\alpha be arbitrary but fixed, and suppose that u,u0, v, v0 \in \scrS a such
that \| \nabla u\| 22 \leq K, \| \nabla v\| 22 \leq 2K, \| \nabla u0\| 22 =K/2, and \| \nabla v0\| 22 = 2K. From (1.4), (2.5),
and (2.11), by setting \varepsilon = \scrC 4/(8a) in (2.11), we deduce that, for small enough K > 0,
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7717

\Phi (v) =
1

2
\| \nabla v\| 22  - 

\int 
\BbbR 2

b(x)F (v)dx

\geq 1

2
\| \nabla v\| 22  - 2a\varepsilon \scrC  - 1

4 \| \nabla v\| 22  - C\varepsilon C
1/2
1 \scrC  - 1/2

8

\surd 
a(\| \nabla v\| 22)3/2

=
1

4
\| \nabla v\| 22  - C\varepsilon C

1/2
1 \scrC  - 1/2

8

\surd 
a(\| \nabla v\| 22)3/2 > 0,(2.12)

J(v) = \| \nabla v\| 22 +
\int 
\BbbR 2

[2b(x) +\nabla b(x) \cdot x]F (v)dx - 
\int 
\BbbR 2

b(x)f(v)vdx

\geq 1

2
\| \nabla v\| 22  - 2a\varepsilon \scrC  - 1

4 \| \nabla v\| 22  - C\varepsilon C
1/2
1 \scrC  - 1/2

8

\surd 
a(\| \nabla v\| 22)3/2

=
1

4
\| \nabla v\| 22  - C\varepsilon C

1/2
1 \scrC  - 1/2

8

\surd 
a(\| \nabla v\| 22)3/2 > 0,(2.13)

\Phi (v0) - \Phi (u) =
1

2
\| \nabla v0\| 22  - 

\int 
\BbbR 2

b(x)F (v0)dx - 
1

2
\| \nabla u\| 22 +

\int 
\BbbR 2

b(x)F (u)dx

\geq 1

2
K  - 2a\varepsilon \scrC  - 1

4 K  - C\varepsilon C
1/2
1 \scrC  - 1/2

8

\surd 
a(2K)3/2

=
1

4
K  - C\varepsilon C

1/2
1 \scrC  - 1/2

8

\surd 
a(2K)3/2 \geq 1

8
K,(2.14)

and

\Phi (u0) =
1

2
\| \nabla u0\| 22  - 

\int 
\BbbR 2

b(x)F (u0)dx

\geq 1

4
K  - a\varepsilon \scrC  - 1

4 K/2 - C\varepsilon C
1/2
1 \scrC  - 1/2

8

\surd 
a(K/2)3/2 \geq 1

8
K.(2.15)

Using (2.12), (2.13), (2.14), and (2.15), we know that there exists K = K(a) > 0
sufficiently small that \Phi (u)> 0 and J(u)> 0 if u\in A2K , and (2.6) holds.

(ii) We first prove that \Gamma a \not = \emptyset . Using (F1) and (F3), it is easy to see that

lim
| t| \rightarrow +\infty 

F (t)

e\alpha 0t2/2
=+\infty .(2.16)

For any given w \in \scrS a, we have \| twt\| 2 = \| w\| 2, and so, twt \in \scrS a for every t > 0. Then,
(2.4) and (2.16) yield that

\Phi (twt)\rightarrow  - \infty as t\rightarrow +\infty .(2.17)

Thus, we can deduce that there exist t1 > 0 small enough and t2 > 0 large enough
such that

\| \nabla (t1wt1)\| 22 = t21\| \nabla w\| 22 \leq K(a),

\| \nabla (t2wt2)\| 22 = t22\| \nabla w\| 22 > 2K(a), and \Phi (t2wt2)< 0.
(2.18)

Let g0(t) := (t1 + (t2  - t1)t)wt1+(t2 - t1)t. Then, g0 \in \Gamma a, and so, \Gamma a \not = \emptyset . Now, using
the intermediate value theorem, for any g \in \Gamma a, there exists t0 \in (0,1), depending on
g, such that \| \nabla g(t0)\| 22 = 2K(a) and

max
t\in [0,1]

\Phi (g(t))\geq \Phi (g(t0))\geq inf
\bigl\{ 
\Phi (u) : u\in \scrS a,\| \nabla u\| 22 = 2K(a)

\bigr\} 
,

which, together with the arbitrariness of g \in \Gamma a, implies that

c(a) = inf
g\in \Gamma a

max
t\in [0,1]

\Phi (g(t))\geq inf
\bigl\{ 
\Phi (u) : u\in \scrS a,\| \nabla u\| 22 = 2K(a)

\bigr\} 
.(2.19)

Hence, (2.8) follows directly from (2.6) and (2.19), and the proof is completed.
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7718 S. CHEN, V. D. R\u ADULESCU, X. TANG, AND S. YUAN

Remark 2.3. From (2.13), we can deduce that, for any a > 0, there exists a
constant \rho (a)> 0 just depending on a> 0 such that \| \nabla u\| 2 \geq \rho (a) for all u\in \scrM a.

Let us define a continuous map \beta :H :=H1(\BbbR 2)\times \BbbR \rightarrow H1(\BbbR 2) by

\beta (v, t)(x) = etv(etx) for v \in H1(\BbbR 2), t\in \BbbR , and x\in \BbbR 2(2.20)

and consider the following auxiliary functional:

\~\Phi (v, t) =\Phi (\beta (v, t)) =
e2t

2
\| \nabla v\| 22  - 

1

e2t

\int 
\BbbR 2

b(e - tx)F (etv)dx,(2.21)

where H is a Banach space equipped with the scalar product

((v1, s1), (v2, s2))H = (v1, v2) + s1s2 \forall (vi, si)\in H, i= 1,2

and corresponding norm \| (v, t)\| H :=
\bigl( 
\| v\| 2 + | t| 2

\bigr) 1/2
for all (v, s) \in H. We see that

\~\Phi \prime (v, t) is of class \scrC 1, and for any (w,s)\in H,\Bigl\langle 
\~\Phi \prime (v, t), (w,s)

\Bigr\rangle 
= e2t

\int 
\BbbR 2

\nabla v \cdot \nabla wdx+ e2ts\| \nabla v\| 22  - 
1

e2t

\int 
\BbbR 2

b(e - tx)f(etv)etwdx

+
s

e2t

\int 
\BbbR 2

\bigl[ 
2b(e - tx) +\nabla b(e - tx) \cdot e - tx

\bigr] 
F (etv)dx

 - s

e2t

\int 
\BbbR 2

b(e - tx)f(etv)etvdx

= \langle \Phi \prime (\beta (v, t)), \beta (w, t)\rangle + sJ(\beta (v, t)).(2.22)

We shall prove that \~\Phi also possesses a kind of mountain pass geometrical structure
on \scrS a \times \BbbR .

Lemma 2.4. Assume that (F1), (F2), and (F3) hold. Let v \in \scrS a be arbitrary but
fixed. Then, we have the following:

(i) \| \nabla \beta (v, t)\| 2 \rightarrow 0 and \Phi (\beta (v, t))\rightarrow 0 as t\rightarrow  - \infty ;
(ii) \| \nabla \beta (v, t)\| 2 \rightarrow +\infty and \Phi (\beta (v, t))\rightarrow  - \infty as t\rightarrow +\infty ;
(iii) There exist s1 < 0 and s2 > 0, depending on a and v, such that the functions

\~v1 = \beta (v, s1) and \~v2 = \beta (v, s2) satisfy

\| \nabla \~v1\| 22 \leq K(a), \| \nabla \~v2\| 22 > 2K(a), and \Phi (\~v2)< 0.

Proof. (i) A straightforward calculation shows that

\| \beta (v, t)\| 22 = a and \| \nabla \beta (v, t)\| 22 =
e2t

2
\| \nabla v\| 22 \forall t\in \BbbR .(2.23)

Since e2t \rightarrow 0 as t \rightarrow  - \infty , using (2.11), (2.21), and (2.23), we can deduce that (i)
holds, arguing as in the proof of (i) of Lemma 2.2.

(ii) From (2.21) and the fact that e2t \rightarrow +\infty as t\rightarrow +\infty , item (ii) follows as in
the proof of (2.17).

(iii) Item (iii) follows from (2.23) and the above items (i) and (ii).

Lemma 2.5. Assume that (F1), (F2), and (F3) hold. Let v \in \scrS a be arbitrary but
fixed. Then,

c(a) = \~c(a) := inf
\~g\in \~\Gamma a

max
\tau \in [0,1]

\~\Phi (\~g(\tau ))>max
\~g\in \~\Gamma a

max
\Bigl\{ 
\~\Phi (\~g(0)), \~\Phi (\~g(1))

\Bigr\} 
,(2.24)

where

\~\Gamma a := \{ \~g \in \scrC ([0,1],\scrS a \times \BbbR ) : \~g(0) = (\~g1(0),0),\| \nabla \~g1(0)\| 22 \leq K(a), \~\Phi (\~g(1))< 0\} .
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7719

Proof. Note that \~\Gamma a \not = \emptyset due to (iii) of Lemma 2.4. Since \Gamma a = \{ \beta \circ \~g : \~g \in \~\Gamma a\} ,
i.e., c(a) = \~c(a), (2.8) and (2.21) lead to

\~c(a) = c(a)>max
g\in \Gamma a

max\{ \Phi (g(0)),\Phi (g(1))\} =max
\~g\in \~\Gamma a

max\{ \~\Phi (\~g(0)), \~\Phi (\~g(1))\} .

This completes the proof.

Following [33], we know that, for any a > 0, \scrS a is a submanifold of H1(\BbbR 2) with
codimension 1, and the tangent space at \scrS a is defined as

Tu =

\biggl\{ 
v \in H1(\BbbR 2) :

\int 
\BbbR 2

uvdx= 0

\biggr\} 
.(2.25)

The norm of the \scrC 1 restriction functional \Phi | \prime \scrS a
(u) is defined by

\| \Phi | \prime \scrS a
(u)\| = sup

v\in Tu,\| v\| =1

\langle \Phi \prime (u), v\rangle .(2.26)

As in Jeanjean [18], for every (u, t)\in \scrS a \times \BbbR , we define the following linear space

\~Tu,t =

\biggl\{ 
(v, s)\in H :

\int 
\BbbR 2

uvdx= 0

\biggr\} 
(2.27)

and the norm of the derivative of the \scrC 1 restriction functional \~\Phi | \scrS a\times \BbbR by

\| \~\Phi | \prime \scrS a\times \BbbR (u, t)\| = sup
(v,s)\in \~Tu,t,\| (v,s)\| H=1

\Bigl\langle 
\~\Phi | \prime \scrS a\times \BbbR (u, t), (v, s)

\Bigr\rangle 
.(2.28)

In the same way as [18, Proposition 2.2], we have the following proposition.

Proposition 2.6. Assume that \~\Phi has a mountain pass geometry on the constraint
\scrS a \times \BbbR . Let a> 0 and \{ \~gn\} \subset \~\Gamma a be such that

max
\tau \in [0,1]

\~\Phi (\~gn(\tau ))\leq \~c(a) +
1

n
\forall n\in \BbbN .(2.29)

Then, there exists a sequence \{ (vn, tn)\} \subset \scrS a \times \BbbR such that
(i) \~\Phi (vn, tn)\in 

\bigl[ 
\~c(a) - 1

n , \~c(a) +
1
n

\bigr] 
;

(ii) min\tau \in [0,1] \| (vn, tn) - \~gn(\tau )\| H \leq 1\surd 
n
;

(iii) \| \~\Phi | \prime \scrS a\times \BbbR (vn, tn)\| \leq 2\surd 
n
; i.e.,

| \langle \~\Phi \prime (vn, tn), (v, s)\rangle | \leq 
2\surd 
n
\| (v, s)\| H \forall (v, s)\in \~Tvn,tn .

Note that

d

dt
\~\Phi (v, t) =

\Bigl\langle 
\~\Phi \prime (v, t), (0,1)

\Bigr\rangle 
= e2t\| \nabla v\| 22 +

1

e2t

\int 
\BbbR 2

\bigl[ 
2b(e - tx) +\nabla b(e - tx) \cdot e - tx

\bigr] 
F (etv)dx

 - 1

e2t

\int 
\BbbR 2

b(e - tx)f(etv)etvdx

= J(\beta (v, t)) \forall (v, t)\in H.(2.30)

With the aforementioned lemmas, we can get the desired sequence as follows.
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7720 S. CHEN, V. D. R\u ADULESCU, X. TANG, AND S. YUAN

Lemma 2.7. Assume that (F1), (F2), and (F3) hold. Then, there exists a bounded
sequence \{ un\} \subset \scrS a such that

\Phi (un)\rightarrow c(a)> 0, \Phi | \prime \scrS a
(un)\rightarrow 0, and J(un)\rightarrow 0.(2.31)

Proof. Let

un = \beta (vn, tn) and gn(\tau ) = \beta (\~gn(\tau )) for \tau \in [0,1],(2.32)

where \beta is defined by (2.20); vn, tn, and \~gn are given in Proposition 2.6. Then, un \in \scrS a

and gn \in \Gamma a by (2.23) and (ii) of Lemma 2.2. Moreover, by (2.21), (2.30), Lemma 2.5,
and Proposition 2.6, we have

\Phi (un) = \~\Phi (vn, tn)\in 
\biggl[ 
c(a) - 1

n
, c(a) +

1

n

\biggr] 
(2.33)

and

J(un) =
\Bigl\langle 
\~\Phi \prime (vn, tn), (0,1)

\Bigr\rangle 
\rightarrow 0.(2.34)

Using (F3) and (F5), we know that, for any \delta > 0, there exists R\delta > 0 such that

f(t)t\geq \delta F (t)> 0 \forall | t| \geq R\delta .(2.35)

Noting that b(x) \geq 1 and \nabla b(x) \cdot x \leq 0 \forall x \in \BbbR 2, it follows from (2.33), (2.34), and
(2.35) with \delta = 8 that

c(a) + o(1) =\Phi (un) - 
1

4
J(un)

=
1

4
\| \nabla un\| 22 +

1

4

\int 
| un| <R8

b(x) [f(un)un  - 6F (un)] dx

+
1

4

\int 
| un| \geq R8

b(x) [f(un)un  - 6F (un)] dx - 
1

4

\int 
\BbbR 2

\nabla b(x) \cdot xF (un)dx

\geq 1

4
\| \nabla un\| 22 +

3

16

\int 
| un| \geq R8

b(x)f(un)undx - C2\| un\| 22,(2.36)

which implies that \{ un\} is bounded in H1(\BbbR 2). To finish the proof, it remains to
prove that \Phi | \prime \scrS a

(un)\rightarrow 0; i.e., \langle \Phi \prime (un),w\rangle \rightarrow 0 for all w \in Tun
. For this, we just need

to show that \{ (\beta (w, - tn),0)\} \subset Tvn,tn and \{ (\beta (w, - tn),0)\} is bounded in H since

\langle \Phi \prime (un),w\rangle =
\Bigl\langle 
\~\Phi \prime (vn, tn), (\beta (w, - tn),0)

\Bigr\rangle 
\leq 2\surd 

n
\| (\beta (w, - tn),0)\| H \forall w \in Tun

.

(2.37)

Indeed, for any w \in Tun , i.e.,\int 
\BbbR 2

unwdx=

\int 
\BbbR 2

etnvn(e
tnx)w(x)dx= 0,

we have\int 
\BbbR 2

vn(x)\beta (w, - tn)(x)dx=
\int 
\BbbR 2

vn(x)e
 - tnw(e - tnx)dx=

\int 
\BbbR 2

etnvn(e
tnx)w(x)dx= 0,
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7721

which implies that

(\beta (w, - tn),0)\in Tvn,tn .(2.38)

Moreover, by (ii) of Proposition 2.6, we have

| tn| \leq min
\tau \in [0,1]

\| (vn, tn) - \~gn(\tau )\| H \leq 1 for large n\in \BbbN ,

which leads to

\| (\beta (w, - tn),0)\| 2H = \| \beta (w, - tn)\| 2 = e - 2tn\| \nabla w\| 22 + \| w\| 22 \leq e2\| w\| 2 for large n\in \BbbN .
(2.39)

This shows that \{ (\beta (w, - tn),0)\} \subset Tvn,tn is bounded in H. Jointly with (2.38), we
get \Phi | \prime \scrS a

(un) \rightarrow 0. From this, (2.33), and (2.34), we conclude that \{ un\} , defined by
(2.32), is bounded and satisfies (2.31). The proof is completed.

To overcome the difficulties caused by the critical exponential growth in the con-
text of normalized solutions, we need to establish some crucial energy estimates for
the minimax level c(a) given by (2.8), which are given in the next subsection.

2.2. Energy estimates for minimax level. In this subsection, we give a pre-
cise estimation for the energy level c(a) given by (2.8), which helps us to restore the
compactness in the critical exponential case.

Let \kappa := lim inf | t| \rightarrow \infty 
t2F (t)

e\alpha 0t2
. By (F4), we know that \kappa > 0. Then, we can choose

d> 0 such that \kappa > 4\pi 
ed2\alpha 3

0
. For large n\in \BbbN , let Rn \geq d be such that

a=
d2

16 logn

\biggl( 
1 + 2 log 2 + 2 log2 2 - 4

n2
 - 8

n2
logn

\biggr) 
+

log2 2

48(2Rn  - d) logn

\bigl( 
8R3

n + 4R2
nd - 10Rnd

2 + 3d3
\bigr) 
.(2.40)

Then, one has

lim
n\rightarrow \infty 

R2
n

logn
=

12a

log2 2
.(2.41)

Now, we define the following newMoser-type functions wn(x) supported inBRn
:=

BRn
(0):

wn(x) =
1\surd 
2\pi 

\left\{           

\surd 
logn, 0\leq | x| \leq d/n,

log(d/| x| )\surd 
logn

, d/n\leq | x| \leq d/2,
2(Rn - | x| ) log 2
(2Rn - d)

\surd 
logn

, d/2\leq | x| \leq Rn,

0, | x| \geq Rn.

(2.42)

Computing directly, we get that, for large n\in \BbbN ,

\| \nabla wn\| 22 =
\int 
\BbbR 2

| \nabla wn| 2dx= 1 - log 2

logn
+

(2Rn + d) log2 2

2(2Rn  - d) logn
\leq 1(2.43)
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7722 S. CHEN, V. D. R\u ADULESCU, X. TANG, AND S. YUAN

and

\| wn\| 22 =
\int 
\BbbR 2

| wn| 2dx

=

\int d/n

0

(logn)rdr+

\int d/2

d/n

log2(d/r)

logn
rdr+

\int Rn

d/2

4(Rn  - r)2 log2 2

(2Rn  - d)2 logn
rdr

=
d2

16 logn

\biggl( 
1 + 2 log 2 + 2 log2 2 - 4

n2
 - 8

n2
logn

\biggr) 
+

log2 2

48(2Rn  - d) logn

\bigl( 
8R3

n + 4R2
nd - 10Rnd

2 + 3d3
\bigr) 

= a.(2.44)

Lemma 2.8. Assume that (F1), (F2), (F3), and (F4) hold. Then, there exists
\=n\in \BbbN such that

sup
t>0

\Phi (t(w\=n)t)<
2\pi 

\alpha 0
.(2.45)

Proof. Using the fact that \kappa > 4\pi /(ed2\alpha 3
0) and (F4), we may choose small \varepsilon > 0

and large t\varepsilon > 0 such that

1 + log
(2 - \varepsilon )(\kappa  - \varepsilon )d2\alpha 3

0

8\pi (1 + \varepsilon )5/2
> 0(2.46)

and

t2F (t)\geq (\kappa  - \varepsilon )e\alpha 0t
2

\forall | t| \geq t\varepsilon .(2.47)

Using (2.4) and (2.43), we have

\Phi (t(wn)t) =
t2

2
\| \nabla wn\| 22  - 

1

t2

\int 
\BbbR 2

b(x/t)F (twn)dx

\leq t2

2
 - 1

t2

\int 
\BbbR 2

F (twn)dx \forall t > 0 for large n\in \BbbN .(2.48)

There are four cases to distinguish. In the following, we agree that all inequalities
hold for large n\in \BbbN without mentioning.

Case (i) t\in [0,
\sqrt{} 

2\pi 
\alpha 0

]. Then, by F (t)\geq 0, \forall t\in \BbbR and (2.48), we have

\Phi (t(wn)t)\leq 
t2

2
 - 1

t2

\int 
\BbbR 2

F (twn)dx\leq 
t2

2
\leq \pi 

\alpha 0
,(2.49)

which yields the existence of \=n\in \BbbN , satisfying (2.45).

Case (ii) t\in [
\sqrt{} 

2\pi 
\alpha 0
,
\sqrt{} 

4\pi 
\alpha 0

]. In this case, twn(x)\geq t\varepsilon for x\in Bd/
\surd 
n and large n\in \BbbN .

Then, it follows from (2.42) and (2.47) that
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7723

1

t2

\int 
\BbbR 2

F (twn)dx\geq 
1

t2

\int 
Bd/

\surd 
n

F (twn)dx\geq 
\int 
Bd/

\surd 
n

(\kappa  - \varepsilon )e\alpha 0t
2w2

n

t4w2
n

dx

\geq (\kappa  - \varepsilon )\alpha 2
0

8\pi logn

\int 
Bd/

\surd 
n

e\alpha 0t
2w2

ndx

=
(\kappa  - \varepsilon )d2\alpha 2

0

8n2 logn

\Biggl[ 
e(2\pi )

 - 1\alpha 0t
2 logn + 2n2 logn

\int 1

1/2

n(2\pi )
 - 1\alpha 0t

2s2 - 2sds

\Biggr] 

\geq (\kappa  - \varepsilon )d2\alpha 2
0

8n2 logn

\Biggl[ 
e(2\pi )

 - 1\alpha 0t
2 logn + 2n2 logn

\int 1

1/2

n(2\pi )
 - 1\alpha 0t

2s - 2ds

\Biggr] 

\geq (\kappa  - \varepsilon )d2\alpha 2
0

8n2 logn

\biggl[ 
e(2\pi )

 - 1\alpha 0t
2 logn +

4\pi 

\alpha 0t2

\Bigl( 
n(2\pi )

 - 1\alpha 0t
2

 - n(4\pi )
 - 1\alpha 0t

2
\Bigr) \biggr] 

\geq (\kappa  - \varepsilon )d2\alpha 2
0

4n2 logn
e(2\pi )

 - 1\alpha 0t
2 logn  - O

\biggl( 
1

n logn

\biggr) 
.(2.50)

Using (2.48) and (2.50), we are led to

\Phi (t(wn)t)\leq 
t2

2
 - 1

t2

\int 
\BbbR 2

F (twn)dx

\leq t2

2
 - (\kappa  - \varepsilon )d2\alpha 2

0

4n2 logn
e(2\pi )

 - 1\alpha 0t
2 logn +O

\biggl( 
1

n logn

\biggr) 
:=\varphi n(t) +O

\biggl( 
1

n logn

\biggr) 
.(2.51)

Choosing tn > 0 such that \varphi \prime 
n(tn) = 0, then we have

1 =
(\kappa  - \varepsilon )d2\alpha 3

0

4\pi n2
e(2\pi )

 - 1\alpha 0t
2
n logn.(2.52)

It follows that

t2n =
4\pi 

\alpha 0

\biggl[ 
1 +

log 4\pi  - log((\kappa  - \varepsilon )d2\alpha 3
0)

2 logn

\biggr] 
=

4\pi 

\alpha 0
 - 2\pi 

\alpha 0 logn
log

(\kappa  - \varepsilon )d2\alpha 3
0

4\pi 
(2.53)

and

\varphi n(t)\leq \varphi n(tn) =
t2n
2

 - \pi 

\alpha 0 logn
\forall t\geq 0.(2.54)

Using (2.53) and (2.54), we are led to

\varphi n(t)\leq 
t2n
2

 - \pi 

\alpha 0 logn

=
2\pi 

\alpha 0
 - \pi 

\alpha 0 logn
log

(\kappa  - \varepsilon )d2\alpha 3
0

4\pi 
 - \pi 

\alpha 0 logn

=
2\pi 

\alpha 0
 - \pi 

\alpha 0 logn
log

e(\kappa  - \varepsilon )d2\alpha 3
0

4\pi 
,

which, together with (2.51), yields

\Phi (t(wn)t)\leq 
2\pi 

\alpha 0
 - \pi 

\alpha 0 logn
log

e(\kappa  - \varepsilon )d2\alpha 3
0

4\pi 
+O

\biggl( 
1

log2 n

\biggr) 
.
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7724 S. CHEN, V. D. R\u ADULESCU, X. TANG, AND S. YUAN

Then, we deduce from (2.46) that (2.45) holds for some \=n\in \BbbN .
Case (iii) t \in [

\sqrt{} 
4\pi 
\alpha 0
,
\sqrt{} 

4\pi 
\alpha 0

(1 + \varepsilon )]. In this case, twn(x) \geq t\varepsilon for x \in Bd/
\surd 
n and

large n\in \BbbN ; then (2.42) and (2.47) yield

1

t2

\int 
\BbbR 2

F (twn)dx\geq 
1

t2

\int 
Bd/

\surd 
n

F (twn)dx\geq 
\int 
Bd/

\surd 
n

(\kappa  - \varepsilon )e\alpha 0t
2w2

n

t4w2
n

dx

\geq (\kappa  - \varepsilon )\alpha 2
0

8\pi (1 + \varepsilon )2 logn

\int 
Bd/

\surd 
n

e\alpha 0t
2w2

ndx

=
(\kappa  - \varepsilon )d2\alpha 2

0

8(1 + \varepsilon )2n2 logn

\Biggl[ 
e(2\pi )

 - 1\alpha 0t
2 logn + 2n2 logn

\int 1

1/2

n(2\pi )
 - 1\alpha 0t

2s2 - 2sds

\Biggr] 

\geq (\kappa  - \varepsilon )d2\alpha 2
0

8(1 + \varepsilon )2n2 logn

\biggl[ 
e(2\pi )

 - 1\alpha 0t
2 logn + 2 logn

\int 1

1 - \varepsilon 

n[(1 - \varepsilon )(2\pi ) - 1\alpha 0t
2+2\varepsilon ]sds

\biggr] 
\geq (\kappa  - \varepsilon )d2\alpha 2

0

8(1 + \varepsilon )2n2 logn

\biggl\{ 
e(2\pi )

 - 1\alpha 0t
2 logn +

1

1+ \varepsilon 
e[(1 - \varepsilon )(2\pi ) - 1\alpha 0t

2+2\varepsilon ] logn

\biggr\} 
 - O

\biggl( 
1

n2\varepsilon 2 logn

\biggr) 
\geq (\kappa  - \varepsilon )d2\alpha 2

0

4(1 + \varepsilon )5/2n2 - \varepsilon logn
e(2 - \varepsilon )(4\pi ) - 1\alpha 0t

2 logn  - O

\biggl( 
1

n2\varepsilon 2 logn

\biggr) 
.(2.55)

Using (2.48) and (2.55), we are led to

\Phi (t(wn)t)\leq 
t2

2
 - 1

t2

\int 
\BbbR 2

F (twn)dx

\leq t2

2
 - (\kappa  - \varepsilon )d2\alpha 2

0

4(1 + \varepsilon )5/2n2 - \varepsilon logn
e(2 - \varepsilon )(4\pi ) - 1\alpha 0t

2 logn +O

\biggl( 
1

n2\varepsilon 2 logn

\biggr) 
:=\psi n(t) +O

\biggl( 
1

n2\varepsilon 2 logn

\biggr) 
.(2.56)

Choosing \^tn > 0 satisfying \psi \prime 
n(\^tn) = 0, then we have

1 =
(2 - \varepsilon )(\kappa  - \varepsilon )d2\alpha 3

0

8\pi (1 + \varepsilon )5/2n2 - \varepsilon 
e(2 - \varepsilon )(4\pi ) - 1\alpha 0\^t

2
n logn,(2.57)

which implies that

\^t2n =
4\pi 

\alpha 0

\Biggl[ 
1 +

log
\bigl( 
8\pi (1 + \varepsilon )5/2

\bigr) 
 - log

\bigl( 
(2 - \varepsilon )(\kappa  - \varepsilon )d2\alpha 3

0

\bigr) 
(2 - \varepsilon ) logn

\Biggr] 

=
4\pi 

\alpha 0
+

4\pi 

(2 - \varepsilon )\alpha 0 logn
log

8\pi (1 + \varepsilon )5/2

(2 - \varepsilon )(\kappa  - \varepsilon )d2\alpha 3
0

.(2.58)

From (2.56) and (2.58), we deduce that

\psi n(t)\leq \psi n(\^tn) =
\^t2n
2

 - 2\pi 

(2 - \varepsilon )\alpha 0 logn

=
2\pi 

\alpha 0
+

2\pi 

(2 - \varepsilon )\alpha 0 logn
log

8\pi (1 + \varepsilon )5/2

(2 - \varepsilon )(\kappa  - \varepsilon )d2\alpha 3
0

 - 2\pi 

(2 - \varepsilon )\alpha 0 logn

=
2\pi 

\alpha 0
 - 2\pi 

(2 - \varepsilon )\alpha 0 logn

\biggl[ 
1 + log

(2 - \varepsilon )(\kappa  - \varepsilon )d2\alpha 3
0

8\pi (1 + \varepsilon )5/2

\biggr] 
,
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7725

which, together with (2.56), yields that

\Phi (t(wn)t)\leq 
2\pi 

\alpha 0
 - \pi 

(2 - \varepsilon )\alpha 0 logn

\biggl[ 
1 + log

(2 - \varepsilon )(\kappa  - \varepsilon )d2\alpha 3
0

8\pi (1 + \varepsilon )5/2

\biggr] 
+O

\biggl( 
1

log2 n

\biggr) 
.

Then, it follows from (2.46) that (2.45) holds for some \=n\in \BbbN .
Case (iv) t\in (

\sqrt{} 
4\pi 
\alpha 0

(1 + \varepsilon ),+\infty ). Since twn(x)\geq t\varepsilon for x\in Bd/
\surd 
n and large n\in \BbbN ,

we deduce from (2.42) and (2.48) that

\Phi (t(wn)t)\leq 
t2

2
 - 1

t2

\int 
\BbbR 2

F (twn)dx

\leq t2

2
 - 2\pi 2(\kappa  - \varepsilon )d2

n2t4 logn
e(2\pi )

 - 1\alpha 0t
2 logn

\leq 2\pi (1 + \varepsilon )

\alpha 0
 - \alpha 2

0(\kappa  - \varepsilon )d2

8(1 + \varepsilon )2 logn
e2\varepsilon logn \leq 4\pi 

3\alpha 0
,(2.59)

where we have used the fact that the function

\phi n(t) :=
t2

2
 - 2\pi 2(\kappa  - \varepsilon )d2

n2t4 logn
e(2\pi )

 - 1\alpha 0t
2 logn

is decreasing on t\in 
\Bigl( \sqrt{} 

4\pi 
\alpha 0

(1 + \varepsilon ),+\infty 
\Bigr) 
for large n. In fact,

\phi \prime n(t) = t - 2\pi 2(\kappa  - \varepsilon )d2

n2t5 logn

\biggl( 
\alpha 0t

2 logn

\pi 
 - 4

\biggr) 
e(2\pi )

 - 1\alpha 0t
2 logn.

Assume that sn \geq 
\sqrt{} 

4\pi 
\alpha 0

(1 + \varepsilon ) such that \phi \prime n(sn) = 0 for large n. Then,

s6n =
2\pi (\kappa  - \varepsilon )d2

n2

\biggl( 
\alpha 0s

2
n  - 4\pi 

logn

\biggr) 
e(2\pi )

 - 1\alpha 0s
2
n logn,(2.60)

which yields

s2n =
4\pi 

\alpha 0

\left[  1 + log s6n  - log
\Bigl( 
2\pi (\kappa  - \varepsilon )d2

\Bigl( 
\alpha 0s

2
n  - 4\pi 

logn

\Bigr) \Bigr) 
2 logn

\right]  
=

4\pi 

\alpha 0
+

2\pi 

\alpha 0 logn
log

s6n

2\pi (\kappa  - \varepsilon )d2
\Bigl( 
\alpha 0s2n  - 4\pi 

logn

\Bigr) .(2.61)

This implies that limn\rightarrow \infty s2n = 4\pi 
\alpha 0

, which is a contradiction. So, \phi n(t) is decreasing
on

t\in 
\biggl( \sqrt{} 

4\pi 

\alpha 0
(1 + \varepsilon ),+\infty 

\biggr) 
for large n. Thus, (2.45) holds for some \=n\in \BbbN .
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7726 S. CHEN, V. D. R\u ADULESCU, X. TANG, AND S. YUAN

The above four cases show that (2.45) holds for some \=n \in \BbbN , and the proof is
completed.

Lemma 2.9. Assume that (F1), (F2), (F3), and (F4) hold. Then, c(a)< 2\pi /\alpha 0.

Proof. Let w\=n be given by Lemma 2.8. Since \| \nabla t(w\=n)t\| 22 = t2\| \nabla w\=n\| 22, we know
that there exist tw > 0 small enough and Tw > 0 large enough that \| \nabla tw(w\=n)tw\| 22 \leq 
K(a) and \Phi (Tw(w\=n)Tw

)< 0 by (2.17). Set

g0(\tau ) = [(1 - \tau )tw + \tau Tw](w\=n)(1 - \tau )tw+\tau Tw
\forall \tau \in [0,1].

Then, g0 \in \Gamma a. Jointly with the definition of c(a), we have c(a) < 2\pi /\alpha 0 for any
a> 0.

Lemma 2.10. Assume that f satisfies (F1), (F2), (F3), and (F4\prime ) with \gamma > \gamma \ast (a).
Then, c(a)< 2\pi /\alpha 0, where \gamma 

\ast (a) is given by (1.20).

Proof. Since

\scrC p = inf
u\in H1(\BbbR 2)\setminus \{ 0\} 

\| \nabla u\| p - 2
2 \| u\| 22
\| u\| pp

,(2.62)

we can choose vn \in \scrS a such that

\scrC p \leq 
\| \nabla vn\| p - 2

2 \| vn\| 22
\| vn\| pp

=
\| \nabla vn\| p - 2

2 a

\| vn\| pp
< \scrC p +

1

n
\forall n\in \BbbN .(2.63)

Note that

\Phi (t(vn)t) =
t2

2
\| \nabla vn\| 22  - 

1

t2

\int 
\BbbR 2

b(x/t)F (tvn)dx(2.64)

\leq t2

2
\| \nabla vn\| 22  - \gamma tp - 2\| vn\| pp := gn(t) \forall t > 0, n\in \BbbN .

Let

tp - 4
n =

\| \nabla vn\| 22
\gamma (p - 2)\| vn\| pp

(2.65)

such that g\prime n(tn) = 0. It is easy to see that gn(t)\leq gn(tn) for all t > 0. Then, it follows
from (2.63) and (2.64) that

\Phi (t(vn)t)\leq gn(tn) =
p - 4

2(p - 2)

1

[\gamma (p - 2)]
2/(p - 4)

\Biggl( 
\| \nabla vn\| p - 2

2

\| vn\| pp

\Biggr) 2/(p - 4)

\leq p - 4

2(p - 2)

1

[\gamma (p - 2)]
2/(p - 4)

\biggl( \scrC p + 1
n

a

\biggr) 2/(p - 4)

\forall t > 0, n\in \BbbN .(2.66)

Since p > 4 and \gamma > \gamma \ast (a), then there exists \epsilon 0 > 0 such that

\gamma = \gamma \ast (a)(1 - \epsilon 0)
(4 - p)/2 =

\scrC p
a(p - 2)

\biggl[ 
\alpha 0(p - 4)

4\pi (p - 2)(1 - \epsilon 0)

\biggr] (p - 4)/2

.(2.67)

By (2.66) and (2.67), we have

\Phi (t(vn)t)\leq 
\biggl( \scrC p + 1

n

\scrC p

\biggr) 2/(p - 4)
2\pi (1 - \epsilon 0)

\alpha 0
\forall t > 0, n\in \BbbN ,
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7727

which implies that there exists \=n\in \BbbN large enough that

max
t>0

\Phi (t(v\=n)t)<
2\pi 

\alpha 0
.(2.68)

Replacing w\=n by v\=n in the proof of Lemma 2.9, we can get c(a) \leq maxt>0\Phi (t(v\=n)t)
for any \gamma > \gamma \ast (a). From this and (2.68), we derived the desired conclusion, and so,
the proof is completed.

To guarantee that the obtained bounded PS sequence is strongly convergent up
to a subsequence, we give some crucial statements.

2.3. To restore the compactness.
Lemma 2.11. Assume that (F1) and (F2) hold. Let un \rightharpoonup \=u in H1(\BbbR 2) and\int 

\BbbR 2 | f(un)un| dx\leq K0 for some constant K0 > 0.
(i) Then, limn\rightarrow \infty 

\int 
\BbbR 2 f(un)\phi dx=

\int 
\BbbR 2 f(\=u)\phi dx for any \phi \in \scrC \infty 

0 (\BbbR 2).
(ii) Suppose that \Omega \subset \BbbR 2 and un \rightarrow \=u in Lq(\Omega ) for some q \geq 2. If further (F5)

holds, then limn\rightarrow \infty 
\int 
\Omega 
F (un)dx=

\int 
\Omega 
F (\=u)dx.

Proof. Item (i) follows directly from [14, Lemma 2.1]. Arguing as in Assertion 2
of [12, Proof of Theorem 1.4], we can conclude item (ii).

Proposition 2.12 [7, Proposition 4.1]. Let \{ un\} \subset \scrS a be a bounded PS sequence
satisfying (2.31). Then, there is a sequence \{ \lambda n\} \subset \BbbR such that, up to a subsequence,

(1) un\rightharpoonup \=u in H1(\BbbR 2) and \lambda n \rightarrow \=\lambda in \BbbR ;
(2)  - \Delta un  - \lambda nun  - b(x)f(un)\rightarrow 0 in (H1(\BbbR 2))\ast ;
(3)  - \Delta un  - \=\lambda un  - b(x)f(un)\rightarrow 0 in (H1(\BbbR 2))\ast .

In addition, assume that (F1) and (F2) hold and that
\int 
\BbbR 2 | f(un)un| dx\leq K0 for some

constant K0 > 0 as required in Lemma 2.11; then
(4)  - \Delta \=u - \=\lambda \=u - b(x)f(\=u) = 0 in (H1(\BbbR 2))\ast .

Lemma 2.13. Assume that (F1), (F2), and (F3) hold. If there exist u \in H1(\BbbR 2)
and \lambda \in \BbbR such that

 - \Delta u - \lambda u= b(x)f(u), x\in \BbbR 2,(2.69)

then J(u) = 0, where J is defined by (2.5).

Proof. By a standard argument, we can derive the following Pohozaev identity:

P (u) := \lambda \| u\| 22 +
\int 
\BbbR 2

[2b(x) +\nabla b(x) \cdot x]F (u) = 0.(2.70)

Multiplying (2.69) by u and integrating, we get

\| \nabla u\| 22  - \lambda \| u\| 22  - 
\int 
\BbbR 2

b(x)f(u)udx= 0.(2.71)

By (2.70) plus (2.71), we conclude J(u) = 0 as desired.

3. Normalized solutions for autonomous equation (1.9).

3.1. Radial solutions for (1.9). In this subsection, we shall establish the exis-
tence of radial solutions for (1.9) and give the proof of (i) of Theorem 1.2. For this, we
work in the spaceH1

r (\BbbR 2) because this space embeds compactly in Ls(\BbbR 2) for all s > 2,
which helps to restore the compactness. Moreover, by Palais' principle of symmetric
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7728 S. CHEN, V. D. R\u ADULESCU, X. TANG, AND S. YUAN

criticality [33], it is well known that the solutions in H1
r (\BbbR 2) are in fact solutions in

whole H1(\BbbR 2). In this subsection, we shall consider the problem in \scrS r
a = \scrS a\cap H1

r (\BbbR 2).

Proof of (i) of Theorem 1.2. In the same way as Lemmas 2.7 and 2.9, we can
deduce that, for any a> 0, there exists a bounded sequence \{ un\} \subset \scrS r

a such that

\Phi \infty (un)\rightarrow c\infty r (a)\in (0,2\pi /\alpha 0), \Phi \infty | \prime \scrS r
a
(un)\rightarrow 0, and J\infty (un)\rightarrow 0(3.1)

with

c\infty r (a) = inf
g\in \Gamma \infty 

r,a

max
t\in [0,1]

\Phi \infty (g(t))> max
g\in \Gamma \infty 

r,a

max\{ \Phi \infty (g(0)),\Phi \infty (g(1))\} ,(3.2)

where \Gamma \infty 
r,a = \{ g \in \scrC ([0,1],\scrS r

a) : \| \nabla g(0)\| 22 \leq K(a),\Phi \infty (g(1))< 0\} and K(a) is given in
Lemma 2.2. Then, there exists \=u\in H1

r (\BbbR 2) such that, passing to a subsequence,

un\rightharpoonup \=u in H1
r (\BbbR 2), un \rightarrow \=u in Ls(\BbbR 2) for s > 2, un \rightarrow \=u a.e. in \BbbR 2.(3.3)

Since f(t)t\geq 0 for any t\in \BbbR , arguing as in the proof of (2.36), we have that \{ f(un)un\} 
is bounded in L1(\BbbR 2). From Proposition 2.12, we know that there is a sequence
\{ \lambda n\} \subset \BbbR such that, up to a subsequence,

\lambda n \rightarrow \=\lambda \in \BbbR ;(3.4)

moreover, we have that

 - \Delta un  - \lambda nun  - f(un)\rightarrow 0,  - \Delta un  - \=\lambda un  - f(un)\rightarrow 0(3.5)

in (H1
r (\BbbR 2))\ast and

 - \Delta \=u - \=\lambda \=u - f(\=u) = 0(3.6)

by (i) of Lemma 2.11. Noting that un \rightarrow \=u in Ls(\BbbR 2) for s > 2, it follows from (ii) of
Lemma 2.11 that \int 

\BbbR 2

F (un)dx=

\int 
\BbbR 2

F (\=u)dx+ o(1).(3.7)

To prove that \=u is a radial solution to (1.9), it suffices to show that \| \=u\| 22 = a by (3.6).
For this, we prove below three claims in turn.

Claim 1. \=u \not = 0.
Otherwise, we suppose that un\rightharpoonup 0 in H1

r (\BbbR 2). Then, (1.11), (3.1), and (3.7) give

\| \nabla un\| 2 = 2\Phi \infty (un) + 2

\int 
\BbbR 2

F (un)dx= 2c\infty r (a) + o(1) :=
4\pi 

\alpha 0
(1 - 3\=\varepsilon ) + o(1)(3.8)

for some constant \=\varepsilon > 0. Choosing q \in (1,2) such that

(1 + \=\varepsilon )(1 - 3\=\varepsilon )q

1 - \=\varepsilon 
< 1,(3.9)

using (F1), we get

| f(t)| q \leq C1

\Bigl[ 
e\alpha 0(1+\=\varepsilon )qt2  - 1

\Bigr] 
\forall | t| \geq 1.(3.10)
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7729

By (3.8), (3.9), (3.10), and (ii) of Lemma 1.1, we have\int 
| un| \geq 1

| f(un)| qdx\leq C1

\int 
\BbbR 2

\Bigl[ 
e\alpha 0(1+\=\varepsilon )qu2

n  - 1
\Bigr] 
dx

=C1

\int 
\BbbR 2

\Bigl[ 
e\alpha 0(1+\=\varepsilon )q\| un\| 2(un/\| un\| )2  - 1

\Bigr] 
dx\leq C2.(3.11)

Noting that q/(q  - 1) > 2 and un \rightarrow 0 in Ls(\BbbR 2) for s > 2, by (3.3), (3.11), and the
H\"older inequality, we have

\int 
| un| \geq 1

f(un)undx\leq 

\Biggl[ \int 
| un| \geq 1

| f(un)| qdx

\Biggr] 1/q
\| un\| q/(q - 1) = o(1).(3.12)

Moreover, by (F2), we have\int 
| un| <1

f(un)undx\leq C3\| un\| 44 = o(1).(3.13)

Then, it follows from (1.11), (1.13), (3.1), (3.7), (3.12), and (3.13) that

c\infty r (a) + o(1) =\Phi \infty (un) - 
1

2
J\infty (un) =

1

2

\int 
\BbbR 2

[f(un)un  - 4F (un)] dx= o(1),(3.14)

which is a contradiction due to c\infty r (a) > 0 for any a > 0. This shows that \=u \not = 0 as
claimed.

Claim 2.
\int 
\BbbR 2 f(un)(un  - \=u)dx= o(1).

Using (3.6) and arguing as in the proof of Lemma 2.13, we have J\infty (\=u) = 0. This,
jointly with (F3), (1.11), and (1.13), implies that

\Phi \infty (\=u) =\Phi \infty (\=u) - 1

2
J\infty (\=u) =

1

2

\int 
\BbbR 2

[f(\=u)\=u - 4F (\=u)] dx\geq 0.(3.15)

By (1.11), (3.1), (3.7), and (3.15), we have

c\infty r (a) + o(1) =\Phi \infty (un) =
1

2
\| \nabla un\| 22  - 

\int 
\BbbR 2

F (un)dx

=
1

2

\bigl( 
\| \nabla (un  - \=u)\| 22 + \| \nabla \=u\| 22

\bigr) 
 - 
\int 
\BbbR 2

F (\=u)dx+ o(1)

=
1

2
\| \nabla (un  - \=u)\| 22 +\Phi \infty (\=u) + o(1)

\geq 1

2
\| \nabla (un  - \=u)\| 22 + o(1).(3.16)

Since 0 < c\infty r (a) < 2\pi /\alpha 0 for any a > 0, similarly as in (3.8), it follows from (3.16)
that there exists \=\varepsilon > 0 such that

\| \nabla (un  - \=u)\| 22 \leq 
(1 - 3\=\varepsilon )4\pi 

\alpha 0
<

4\pi 

\alpha 0
for large n\in \BbbN .(3.17)
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7730 S. CHEN, V. D. R\u ADULESCU, X. TANG, AND S. YUAN

By (3.9), (3.10), (3.17), Young's inequality, and Lemma 1.1, we have\int 
| un| \geq 1

| f(un)| qdx\leq C1

\int 
| un| \geq 1

\Bigl[ 
e\alpha 0(1+\=\varepsilon )qu2

n  - 1
\Bigr] 
dx

\leq C1

\int 
| un| \geq 1

\Bigl[ 
e\alpha 0(1+\=\varepsilon )2\=\varepsilon  - 1q\=u2

e\alpha 0(1+\=\varepsilon )2q(un - \=u)2  - 1
\Bigr] 
dx

\leq (q - 1)C1

q

\int 
| un| \geq 1

\Bigl[ 
e\alpha 0(1+\=\varepsilon )2\=\varepsilon  - 1q2(q - 1) - 1\=u2

 - 1
\Bigr] 
dx

+
C1

q

\int 
| un| \geq 1

\Bigl[ 
e\alpha 0(1+\=\varepsilon )2q2(un - \=u)2  - 1

\Bigr] 
dx

\leq (q - 1)C1

q

\int 
\BbbR 2

\Bigl[ 
e\alpha 0(1+\=\varepsilon )2\=\varepsilon  - 1q2(q - 1) - 1\=u2

 - 1
\Bigr] 
dx

+
C1

q

\int 
\BbbR 2

\Bigl[ 
e\alpha 0(1+\=\varepsilon )2q2(un - \=u)2  - 1

\Bigr] 
dx\leq C4.(3.18)

Noting that q/(q - 1)> 2, by (3.3), (3.18), and the H\"older inequality, we have\int 
| un| \geq 1

f(un)(un  - \=u)dx\leq 

\Biggl[ \int 
| un| \geq 1

| f(un)| qdx

\Biggr] 1/q
\| un  - \=u\| q/(q - 1) = o(1).(3.19)

Moreover, by (F1) and (F2), we have\int 
| un| <1

f(un)(un  - \=u)dx\leq C5\| un\| 39/2\| un  - \=u\| 3 = o(1).(3.20)

Hence, Claim 2 follows from directly (3.19) and (3.20).
Claim 3. un \rightarrow \=u in H1

r (\BbbR 2).
Note that (3.5) yields

\| \nabla un\| 22 + \lambda n\| un\| 22  - 
\int 
\BbbR 2

f(un)undx\rightarrow 0(3.21)

and \int 
\BbbR 2

(\nabla un \cdot \nabla \=u+ \lambda nun\=u)dx - 
\int 
\BbbR 2

f(un)\=udx\rightarrow 0.(3.22)

By (3.21) minus J\infty (un)\rightarrow 0 and using (3.4) and (3.7), we have

\=\lambda a+ o(1) = \lambda n\| un\| 22 = 2

\int 
\BbbR 2

F (un)dx+ o(1) = 2

\int 
\BbbR 2

F (\=u)dx+ o(1),

which, together with F (t) > 0 for t \not = 0, yields \=\lambda > 0. By (3.21) minus (3.22), using
the above Claim 2, we have\int 

\BbbR 2

[\nabla un \cdot \nabla (un  - \=u) + \lambda nun(un  - \=u)] dx= o(1),(3.23)

which, together with un \rightharpoonup \=u in H1
r (\BbbR 2) and \lambda \rightarrow \=\lambda > 0, implies that un \rightarrow \=u in

H1
r (\BbbR 2). The proof of Claim 3 is completed.
Next, using Palais' principle of symmetric criticality [33], the above function

\=u \in H1
r (\BbbR 2) \setminus \{ 0\} is in fact a radial solution of (1.9) in H1(\BbbR 2), and so, the proof of

(i) of Theorem 1.2 is completed.
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7731

3.2. Ground state solutions for (1.9). In this subsection, we shall obtain the
existence of ground state solutions for (1.9) and finish the proof of (ii) of Theorem 1.2.
For this, we shall directly work on the space H1(\BbbR 2) instead of H1

r (\BbbR 2) used in the
last subsection. First, we establish some important inequalities.

Lemma 3.1. Assume that f \in \scrC (\BbbR ,\BbbR ) satisfies (F2) and (F6). Then,

t - 2F (tu) - F (u) +
1 - t2

2
[f(u)u - 2F (u)]\geq 0 \forall u\in \BbbR , t > 0(3.24)

and

f(u)u - 4F (u)\geq 0 \forall u\in \BbbR .(3.25)

Proof. Using (F6), a standard argument shows that (3.24) holds. Moreover, (3.25)
follows by letting t\rightarrow 0 in (3.24).

Lemma 3.2. Assume that (F1), (F2), and (F6) hold. Then,

\Phi \infty (u)\geq \Phi \infty (tut) +
1 - t2

2
J\infty (u) \forall u\in \scrS a, t > 0.(3.26)

Proof. By (1.11), (1.13), and (3.24), we have

\Phi \infty (u) =\Phi \infty (tut) +
1 - t2

2
J\infty (u)

+

\int 
\BbbR 2

\biggl\{ 
t - 2F (tu) - F (u) +

1 - t2

2
[f(u)u - 2F (u)]

\biggr\} 
dx

\geq \Phi \infty (ut) +
1 - t2

2
J\infty (u) \forall u\in \scrS a, t > 0.

Corollary 3.3. Assume that (F1), (F2), and (F6) hold. Then,

\Phi \infty (u) =max
t>0

\Phi \infty (tut) \forall u\in \scrM \infty 
a .(3.27)

By a standard argument, we can get the following lemma.

Lemma 3.4. Assume that (F1), (F2), and (F6) hold. Then, for any u\in \scrS a, there
exists tu > 0 such that tuutu \in \scrM \infty 

a .

By Lemma 2.2, we have

c\infty (a) := inf
g\in \Gamma \infty 

a

max
t\in [0,1]

\Phi \infty (g(t))> max
g\in \Gamma \infty 

a

max\{ \Phi \infty (g(0)),\Phi \infty (g(1))\} .(3.28)

\Gamma \infty 
a = \{ g \in \scrC ([0,1],\scrS a) : \| \nabla g(0)\| 22 \leq K(a),\Phi \infty (g(1)) < 0\} , and K(a) is given in

Lemma 2.2.

Lemma 3.5. Assume that (F1), (F2), (F3), and (F6) hold. Then,

c\infty (a) =m\infty (a) = inf
u\in \scrM \infty 

a

\Phi \infty (u) = inf
u\in \scrS a

max
t>0

\Phi \infty (tut).

Proof. Using Corollary 3.3 and Lemma 3.4, it is easy to see that

m\infty (a) = inf
u\in \scrM \infty 

a

\Phi \infty (u) = inf
u\in \scrS a

max
t>0

\Phi \infty (tut).
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7732 S. CHEN, V. D. R\u ADULESCU, X. TANG, AND S. YUAN

To finish the proof, it remains to show that c\infty (a) =m\infty (a). For this, we first prove
that c\infty (a)\leq m\infty (a). As in the proof of Lemma 2.4, we know that for any u \in \scrM \infty 

a ,
there exist t1 > 0 small enough and t2 > 1 large enough that \| \nabla (t1ut1)\| 22 \leq K(a) and
\Phi \infty (t2(ut2))< 0. Letting

g\infty (\tau ) = [(1 - \tau )t1 + \tau t2]u(1 - \tau )t1+\tau t2 \forall \tau \in [0,1],

jointly with the definition of c\infty (a), then we have g\infty \in \Gamma \infty 
a . By (3.27), we have

c\infty (a)\leq max
\tau \in [0,1]

\Phi \infty (g\infty (\tau )) =\Phi \infty (u),

and so, c\infty (a)\leq m\infty (a) = infu\in \scrM \infty 
a
\Phi \infty (u) for any a> 0.

On the other hand, by (3.26) with t\rightarrow 0, we have

J\infty (u)\leq 2\Phi \infty (u) \forall u\in \scrS a,

which implies that

J\infty (g(1))\leq 2\Phi \infty (g(1))< 0 \forall g \in \Gamma \infty 
a .

Since \| g(0)\| 22 \leq K(a), by (i) of Lemma 2.2, we have J\infty (g(0))> 0. Hence, any path
in \Gamma \infty 

a has to cross \scrM \infty 
a . This shows that

max
\tau \in [0,1]

\Phi \infty (g(\tau ))\geq inf
u\in \scrM \infty 

a

\Phi \infty (u) =m\infty (a) \forall g \in \Gamma \infty 
a ,

and so, c\infty (a)\geq m\infty (a) due to the arbitrariness of g. Therefore, c\infty (a) =m\infty (a) for
any a> 0, and the proof is completed.

Besides the above characterization of the mountain pass type, we give further
the behavior of m\infty (a) for a > 0, which is crucial to recover the compactness of
PS sequences. In fact, we establish the same conclusion on the behavior of m(a) as
m\infty (a) for a > 0 in Lemma 4.5 below. So, to avoid repetition, we omit the proof of
Lemma 3.6 here, which can be deduced obviously from Lemma 4.5.

Lemma 3.6. Assume that (F1), (F2), (F3), (F5), and (F6) hold. The func-
tion a \mapsto \rightarrow m\infty (a) is continuous and nonincreasing on (0,\infty ). Moreover, if m\infty (a) is
achieved, then m\infty (a)>m\infty (a\prime ) for any a\prime >a.

Proof of (ii) of Theorem 1.2. In the same way as Lemmas 2.7 and 2.9, we can
deduce that for any a> 0, there exists a bounded sequence \{ un\} \subset \scrS a such that

\Phi \infty (un)\rightarrow c\infty (a)\in (0,2\pi /\alpha 0), \Phi \infty | \prime \scrS a
(un)\rightarrow 0, and J\infty (un)\rightarrow 0,(3.29)

where c\infty (a) is given by (3.28). To obtain the existence of ground state solutions for
(1.9), we split the proof into several claims.

Claim 1. \delta := limsupn\rightarrow \infty supy\in \BbbR 2

\int 
B2(y)

| un| 2dx> 0.

Otherwise, if \delta = 0, then by Lions' concentration compactness principle [23] or
[33, Lemma 1.21], we have un \rightarrow 0 in Ls(\BbbR 2) for s > 2. Arguing as in the proof of
(2.36), we have \int 

\BbbR 2

f(un)undx\leq C1.(3.30)
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7733

For any given \varepsilon \in (0,M0C1/\beta 0), we choose M\varepsilon >M0C1/\varepsilon > \beta 0; then it follows from
(F5) and (3.30) that\int 

| un| \geq M\varepsilon 

F (un)dx\leq M0

\int 
| un| \geq M\varepsilon 

| f(un)| dx

\leq M0

M\varepsilon 

\int 
| un| \geq M\varepsilon 

f(un)undx< \varepsilon .(3.31)

By (F1) and (F2), we obtain\int 
| un| \leq M\varepsilon 

F (un)dx\leq C\varepsilon \| un\| 44 = o(1)(3.32)

and \int 
| un| \leq 1

f(un)undx\leq C\varepsilon \| un\| 44 = o(1),(3.33)

where C\varepsilon > 0 is a constant depending on \varepsilon . Due to the arbitrariness of \varepsilon > 0, we
derive from (3.31) and (3.32) that\int 

\BbbR 2

F (un)dx= o(1).(3.34)

Since 0 < c\infty (a) < 2\pi /\alpha 0 for any a > 0, similarly as in (3.8), it follows from (3.16)
that there exists \=\varepsilon > 0 such that (3.17) holds. Hence, it follows from (1.11), (3.29),
and (3.34) that there exists a constant \=\varepsilon > 0 such that

\| \nabla un\| 2 = 2\Phi \infty (un) + 2

\int 
\BbbR 2

F (un)dx= 2c\infty (a) + o(1) :=
4\pi 

\alpha 0
(1 - 3\=\varepsilon ) + o(1).(3.35)

By replacing c\infty r (a) in (3.14) by c\infty (a)> 0, we then get a contradiction with the fact
c\infty (a)> 0. This shows that \delta > 0.

Going if necessary to a subsequence, we may assume the existence of yn \in \BbbR 2 such
that \int 

B1(yn)

| un| 2dx>
\delta 

2
.(3.36)

Let \~un(x) = un(x+ yn). Then, \int 
B1(0)

| \~un| 2dx>
\delta 

2
,(3.37)

and so, there exists \~u\in H1(\BbbR 2) \setminus \{ 0\} such that, passing to a subsequence,

\~un\rightharpoonup \~u in H1(\BbbR 2), \~un \rightarrow \~u in Ls
loc(\BbbR 2) for s > 2, \~un \rightarrow \~u a.e. in \BbbR 2.(3.38)

Moreover, (3.29) gives

\Phi \infty (\~un)\rightarrow c\infty (a)\in (0,2\pi /\alpha 0) and J\infty (\~un)\rightarrow 0, n\rightarrow \infty .(3.39)

As in Proposition 2.12, we know that there exists a sequence \{ \lambda n\} \subset \BbbR such that (3.4)
holds; moreover, (3.5) also holds in (H1(\BbbR 2))\ast . Thus, we have

 - \Delta \~un + \lambda n\~un  - f(\~un)\rightarrow 0 and  - \Delta \~un + \=\lambda \~un  - f(\~un)\rightarrow 0 in (H1(\BbbR 2))\ast ,(3.40)
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7734 S. CHEN, V. D. R\u ADULESCU, X. TANG, AND S. YUAN

which, together with (3.38) and (i) of Lemma 2.11, yields

 - \Delta \~u+ \=\lambda \~u - f(\~u) = 0 in (H1(\BbbR 2))\ast .(3.41)

Claim 2. \~un \rightarrow \~u in L2(\BbbR 2).
Using (3.41) and arguing as in the proof of Lemma 2.13, we have J\infty (\~u) = 0.

Letting \| \~u\| 22 := \~a\in (0, a], in view of Lemma 3.4, there exists \~t > 0 such that \~t\~u\~t \in \scrM \infty 
\~a ,

and so, \Phi \infty \bigl( \~t\~u\~t\bigr) \geq m\infty (\~a). From (1.11), (1.13), (3.39), Fatou's lemma, and Lemmas
3.2, 3.5, and 3.6, we have

m\infty (a) = c\infty (a) = lim
n\rightarrow \infty 

\biggl[ 
\Phi \infty (\~un) - 

1

2
J\infty (\~un)

\biggr] 
=

1

2
lim
n\rightarrow \infty 

\int 
\BbbR 2

[f(\~un)\~un  - 4F (\~un)] dx

\geq 1

2

\int 
\BbbR 2

[f(\~u)\~u - 4F (\~u)] dx

=\Phi \infty (\~u) - 1

2
J\infty (\~u)\geq \Phi \infty \bigl( \~t\~u\~t\bigr)  - t2

2
J\infty (\~u)

\geq m\infty (\~a)\geq m\infty (a),

which implies that

\Phi \infty (\~u) =m\infty (\~a) =m\infty (a), \| \~u\| 22 = \~a.(3.42)

This shows that m\infty (\~a) is achieved. Then, it follows from the last conclusion of
Lemma 3.6 that \| \~u\| 22 = \~a= a= \| \~un\| 22. This shows that \~un \rightarrow \~u in L2(\BbbR 2) as claimed.

Claim 3. \| \nabla (\~un  - \~u)\| 22 \rightarrow 0.
Using the above Claim 2, it is easy to see that \~un \rightarrow \~u in Ls(\BbbR 2) for all s\geq 2. From

(ii) of Lemma 2.11, we have
\int 
\BbbR 2 F (\~un)dx=

\int 
\BbbR 2 F (\~u)dx+o(1). In the same way as the

proof of Claim 2 in the proof of (i) of Theorem 1.2, we can get
\int 
\BbbR 2 f(\~un)(\~un - \~u)dx=

o(1) by replacing H1
r (\BbbR 2) with H1(\BbbR 2). Arguing as in the proof of Claim 3 in the

proof of (i) of Theorem 1.2 and using (3.4), (3.40), and (3.41), we can deduce that
\lambda n \rightarrow \=\lambda > 0 and \int 

\BbbR 2

\bigl[ 
\nabla \~un \cdot \nabla (\~un  - \~u) + \=\lambda \~un(\~un  - \~u)

\bigr] 
dx= o(1).

Jointly with \~un\rightharpoonup \~u in H1(\BbbR 2), we conclude that \| \nabla (\~un  - \~u)\| 22 \rightarrow 0 as claimed.
From (3.39), (3.41), Lemma 3.5, and the above Claim 2 and Claim 3, we conclude

that, for any a > 0, (\~u, \=\lambda ) solves (1.9), and \Phi \infty (\=u) =m\infty (a). This shows that \~u is a
ground state solution for (1.9), and so, Theorem 1.2 is proved.

4. Ground state solutions for nonautonomous equation (1.1). In this
section, we establish the existence of ground state solutions to (1.1) and complete the
proof of Theorem 1.6.

First, similarly as [13, Lemmas 2.1--2.3], we have the following two lemmas.

Lemma 4.1. Assume that (B1), (B2), and (B3) hold. Then,

 - t2 - \theta [b(x) - b(tx)] +
1

\theta  - 2

\bigl( 
t2 - \theta  - 1

\bigr) 
\nabla b(x) \cdot x\geq 0 \forall x\in \BbbR 2, t > 0(4.1)

and

\nabla b(x) \cdot x\leq 0 \forall x\in \BbbR 2, \nabla b(x) \cdot x\rightarrow 0 as | x| \rightarrow \infty .(4.2)
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7735

If (B2) holds, then t2b(tx) is nondecreasing on t \in (0,\infty ) for every x \in \BbbR 2, and there
exist t1, t2 > 0 and \Lambda 0 \subset \BbbR 2 such that t2b(tx) is strictly increasing on t \in [t1, t2] for
every x\in \Lambda 0.

Lemma 4.2. Assume that (B1), (B2), (F1), (F2), and (F7) hold. Then,

t - 2b(t - 1x)F (tu) - b(x)F (u) +
1 - t2

2
b(x)[f(u)u - 2F (u)]

 - 1 - t2

2
\nabla b(x) \cdot xF (u)\geq 0 \forall x\in \BbbR 2, t > 0, u\in \BbbR .(4.3)

Similarly as Lemma 3.2, we get the following inequality.

Lemma 4.3. Assume that (B1), (B2), (F1), (F2), and (F7) hold. Then,

\Phi (u)\geq \Phi (tut) +
1 - t2

2
J(u) \forall u\in \scrS a, t > 0.(4.4)

As in the proof of Lemma 3.5, we have the following result.

Lemma 4.4. Assume that (B1), (B2), (B3), (F1), (F2), (F3), and (F7) hold.
Then

c(a) =m(a) = inf
u\in \scrM a

\Phi (u) = inf
u\in \scrS a

max
t>0

\Phi (tut)> 0,

where c(a) is given in Lemma 2.2.

Lemma 4.5. Assume that (B1), (B2), (B3), (F1), (F2), (F3), and (F7) hold.
Then the function a \mapsto \rightarrow m(a) is continuous and nonincreasing on (0,\infty ). In particular,
if m(a) is achieved, then m(a)>m(a\prime ) for any a\prime >a.

Proof. By a standard argument, we can derive the continuity of m(a). Now, we
prove the monotonicity of m(a). For any a2 > a1 > 0, it follows that there exists
\{ un\} \subset \scrM a1

such that

m(a1)\leq \Phi (un)<m(a1) +
1

n
.(4.5)

Let \xi :=
\sqrt{} 
a2/a1 \in (1,\infty ) and vn(x) := un(\xi 

 - 1x). Then \| vn\| 22 = a2 and \| \nabla vn\| 2 =
\| \nabla un\| 2. As in Lemma 3.4, there exists tn > 0 such that tn(vn)tn \in \scrM a2

. Then, it
follows from (B2), (1.4), (4.5), and Lemmas 4.1 and 4.3 that

m(a2)\leq \Phi (tn(vn)tn)

=\Phi (tn(un)tn) + t - 2
n

\int 
\BbbR 2

\bigl[ 
b(t - 1

n x)F (tnun) - \xi 2b(\xi t - 1
n x)F (tnun)

\bigr] 
dx

\leq \Phi (un)<m(a1) +
1

n
,

which shows that m(a2)\leq m(a1) by letting n\rightarrow \infty .
Next, we assume that m(a) is achieved; i.e., there exists \~u \in \scrM a such that

\Phi (\~u) = m(a). For any given a\prime > a, let \~\xi = a\prime /a \in (1,\infty ), and let \~v(x) := \~u(\~\xi  - 1x).
Then, \| \~v\| 22 = a\prime and \| \nabla \~v\| 2 = \| \nabla \~u\| 2. As in Lemma 3.4, there exists t0 > 0 such that
t0\~vt0 \in \scrM a\prime . From (B2), (1.4), and Lemmas 4.1 and 4.3, we then deduce that

m(a\prime )\leq \Phi (t0\~vt0)

=\Phi (t0\~ut0) + t - 2
0

\int 
\BbbR 2

\Bigl[ 
b(t - 1

0 x)F (t0\~u) - \~\xi 2b(\~\xi t - 1
0 x)F (t0\~u)

\Bigr] 
dx

<\Phi (t0\~ut0)\leq \Phi (\~u) =m(a),
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7736 S. CHEN, V. D. R\u ADULESCU, X. TANG, AND S. YUAN

where the strict inequality follows from the last conclusion of Lemma 4.1 and the fact
that \~\xi > 1 and F (t)> 0 for all t \not = 0. This shows that m(a\prime )<m(a), and the proof is
completed.

Lemma 4.6. Assume that (B1), (B2), (B3), (F1), (F2), (F3), and (F7) hold.
Then

lim
a\rightarrow 0+

m(a) =+\infty and lim
a\rightarrow +\infty 

m(a) = 0.

Proof. We first prove that m(a) \rightarrow +\infty as a \rightarrow 0+. Arguing by contradiction,
using Lemma 4.5, we may assume that there exist a sequence \{ un\} \subset H1(\BbbR 2) \setminus \{ 0\} 
and a constant M1 > 0 such that

\| un\| 2 \rightarrow 0, J(un) = 0 and \Phi (un)\leq M1 \forall n\in \BbbN .(4.6)

Set

tn = 2
\sqrt{} 
M1/\| \nabla un\| 2 and vn = tn(un)tn .(4.7)

Noting that \| vn\| 2 = \| un\| 2 \rightarrow 0 by (4.6) and (4.7), it follows from (ii) of Lemma 2.11
that \int 

\BbbR 2

b(x)F (vn)dx\rightarrow 0.(4.8)

From (1.4), (4.6), (4.7), (4.8), and Lemma 4.3, we derive

M1 \geq \Phi (un)\geq \Phi (vn) =
1

2
\| \nabla vn\| 22  - 

\int 
\BbbR 2

b(x)F (vn)dx=
t2n
2
\| \nabla un\| 22 + o(1) = 2M1 + o(1).

This contradiction shows that lima\rightarrow 0+ m(a) =+\infty .
We next prove that m(a)\rightarrow 0 as a\rightarrow +\infty . Fix u\in \scrS 1 \cap L\infty (\BbbR 2), and set

ua =
\surd 
au\in \scrS a \forall a\geq 1.(4.9)

As in Lemma 3.4, there exists ta > 0 such that ta(ua)ta \in \scrM a. Then, it follows from
Lemma 4.4 that

0<m(a)\leq \Phi (ta(ua)ta)\leq 
at2a
2

\| \nabla u\| 22, \forall a\geq 1.(4.10)

To complete the proof, using Lemma 4.5, it suffices to show that at2a \rightarrow 0 as a\rightarrow +\infty .
Since J(ta(ua)ta) = 0 for all a \geq 1, by (B1) with b\infty = 1, (F3), (4.2), and (4.9), we
have

a\| \nabla u\| 22 = \| \nabla ua\| 22

=
1

t4a

\int 
\BbbR 2

b(x/ta)f(
\surd 
atau)

\surd 
ataudx

 - 1

t4a

\int 
\BbbR 2

[2b(x/ta) +\nabla b(x/ta) \cdot (x/ta)]F (
\surd 
atau)dx

\geq 2

t4a

\int 
\BbbR 2

F (
\surd 
atau)dx= 2

\int 
\BbbR 2

F (
\surd 
atau)

(
\surd 
atau)4

a2u4dx \forall a\geq 1,

which gives

1

a
\| \nabla u\| 22 \geq 2

\int 
\BbbR 2

F (
\surd 
atau)

(
\surd 
atau)4

u4dx\geq 0 \forall a\geq 1.(4.11)
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NORMALIZED SOLUTIONS FOR SCHR\"ODINGER EQUATIONS IN \BbbR \bftwo 7737

Noting that F (t)/t4 is nondecreasing on t\in ( - \infty ,0)\cup (0,+\infty ) by (F3), it follows from
(F2) and (4.11) with a\rightarrow +\infty that at2a \rightarrow 0 as a\rightarrow +\infty . The proof is completed.

Arguing as in the above proof, we can also get the similar asymptotic behavior
of m\infty (a) as follows.

Corollary 4.7. Assume that (F1), (F2), (F3), and (F6) hold. Then

lim
a\rightarrow 0+

m\infty (a) =+\infty and lim
a\rightarrow +\infty 

m\infty (a) = 0.

Lemma 4.8. Assume that (B1), (B2), (B3), (F1), (F2), (F3), and (F7) hold.
Then m(a)<m\infty (a).

Proof. In view of (ii) of Theorem 1.2, there exists \=u\in \scrM \infty 
a such that

(\Phi \infty \bigm| \bigm| 
\scrS a
)\prime (\=u) = 0 and \Phi \infty (\=u) =m\infty (a).(4.12)

As in Lemma 3.4, there exists \=t > 0 such that \=t\=u\=t \in \scrM a. Since b(x)\geq ( \not \equiv )1 \forall x \in \BbbR 2

and F (\=t\=u)> 0, then it follows from (1.4), (1.11), (4.12) and Corollary 3.3 that

m\infty (a) =\Phi \infty (\=u)\geq \Phi \infty (\=t\=u\=t) =
\=t2

2
\| \nabla \=u\| 22  - 

1
\=t2

\int 
\BbbR 2

F (\=t\=u)dx

>
\=t2

2
\| \nabla \=u\| 22  - 

1
\=t2

\int 
\BbbR 2

b(x/\=t)F (\=t\=u)dx=\Phi (\=t\=u\=t)\geq m(a).

This shows that m(a)<m\infty (a) for any a> 0.

Lemma 4.9. Assume that (F1) and (F2) hold. Let \{ un\} \subset H1(\BbbR 2) be a sequence
satisfying un\rightharpoonup 0 in H1(\BbbR 2) and

\int 
\BbbR 2 F (un)dx\leq C0 for some constant C0 > 0. Then,\int 

\BbbR 2

[b(x) - 1]F (un)dx= o(1).(4.13)

Proof. Since 0< 1 = lim| y| \rightarrow \infty b(y)\leq b(x), using (2.36), we can deduce that (3.30)
holds; moreover, for any given \varepsilon > 0, there exists R\varepsilon > 0 such that

1\leq b(x)\leq 1 + \varepsilon \forall | x| \geq R\varepsilon ,

which yields \int 
| x| \geq R\varepsilon 

[b(x) - 1]F (un)dx\leq \varepsilon 

\int 
\BbbR 2

F (un)dx\leq \varepsilon C0.(4.14)

Noting that un \rightarrow 0 in Ls
loc(\BbbR 2) for s\geq 2, then (ii) of Lemma 2.11 gives\int 

| x| \leq R\varepsilon 

F (un)dx= o(1).(4.15)

Hence, (4.13) follows from (4.14) and (4.15) since \varepsilon > 0 is arbitrary.

Proof of Theorem 1.6. From Lemmas 2.7 and 2.9, we know that, for any a > 0,
there exists a bounded sequence \{ un\} \subset \scrS a such that

\Phi (un)\rightarrow c(a)\in (0,2\pi /\alpha 0), \Phi | \prime \scrS a
(un)\rightarrow 0, and J(un)\rightarrow 0,(4.16)
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where c(a) is given by (2.8). Then, there exists \=u \in H1(\BbbR 2) such that, passing to a
subsequence,

un\rightharpoonup \=u in H1(\BbbR 2), un \rightarrow \=u in Ls
loc(\BbbR 2) for s > 2, un \rightarrow \=u a.e. in \BbbR 2.(4.17)

Now, we claim that \=u \not = 0.
Arguing by contradiction, suppose that \=u = 0. Then, un \rightharpoonup 0 in H1(\BbbR 2). We

expect to derive a contradiction with m(a) < m\infty (a) obtained in Lemma 4.8, and
so, we need to obtain some information related to \Phi \infty (un). Since \| un\| 22 = a > 0,
using Lemma 3.4, for every n \in \BbbN , there exists tn > 0 such that tn(un)tn \in \scrM \infty 

a , i.e.,
J\infty (tn(un)tn) = 0, and so \Phi \infty (tn(un)tn)\geq m\infty (a). We next prove that both \{ tn\} and
\{ 1/tn\} are bounded. Using (4.16) and arguing as in Claim 1 for the proof of (ii) of
Theorem 1.2, we can derive that

\delta = limsup
n\rightarrow \infty 

sup
y\in \BbbR 2

\int 
B2(y)

| un| 2dx> 0.

Going if necessary to a subsequence, we may assume the existence of yn \in \BbbR 2 such
that (3.36) holds. Let \~un(x) = un(x+ yn). Then, there exists \~u \in H1(\BbbR 2) \setminus \{ 0\} such
that, passing to a subsequence, (3.38) holds. Since J\infty (tn(un)tn) = 0 for all n \in \BbbN ,
then (F3) and (1.13) give

\| \nabla un\| 22 =
1

t4n

\int 
\BbbR 2

[f(tnun)tnun  - 2F (tnun)] dx

\geq 2

t4n

\int 
\BbbR 2

F (tnun)dx=
2

t4n

\int 
\BbbR 2

F (tn\~un)dx.(4.18)

Since \~un \rightarrow \~u a.e. in \BbbR 2, from (F1), Fatou's lemma, and (4.18), we can deduce easily
that \{ tn\} is bounded. This, jointly with (4.18), yields that

\int 
\BbbR 2 F (tnun)dx is bounded.

Using the fact that tnun\rightharpoonup 0 in H1(\BbbR 2) and Lemma 4.9, we have\int 
\BbbR 2

[1 - b(x)]F (tnun)dx= o(1).(4.19)

Noting that tn(un)tn \in \scrM \infty 
a for every n \in \BbbN , in view of Remark 2.3, we know that

there exists a constant \rho (a)> 0 such that \| \nabla (tn(un)tn)\| 22 = t2n\| \nabla un\| 22 \geq \rho (a), which,
together with the boundednss of \{ \| \nabla un\| 2\} , implies that \{ 1/tn\} is bounded as well.
Then, it follows from (1.4), (1.11), (1.14), (4.16), (4.19), and Lemmas 4.3 and 4.4 that

m(a) = c(a) =\Phi (un)

\geq \Phi (tn(un)tn) +
1 - t2n

2
J(un) =\Phi (tn(un)tn) + o(1)

=\Phi \infty (tn(un)tn) +
1

t2n

\int 
\BbbR 2

[1 - b(x)]F (tnun)dx+ o(1)

\geq m\infty (a) + o(1),

which gives m(a) \geq m\infty (a). This contradicts Lemma 4.8. Therefore, the claim that
\=u \not = 0 is proved.

By adapting the proofs of Claims 2 and 3 for the proof of (ii) of Theorem 1.2,
we can deduce that un \rightarrow \=u in H1(\BbbR 2), and so, \Phi (\=u) =m(a). Hence, for any a > 0,
(\=u, \=\lambda ) solves (1.1) by Proposition 2.12, and \=u is a ground state solution of (1.1) for
any a > 0. From Lemmas 4.5 and 4.6, we have that the function a \mapsto \rightarrow m(a) is strictly
decreasing on a\in (0,+\infty ), lima\rightarrow 0+ m(a) =+\infty , and lima\rightarrow +\infty m(a) = 0.
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Remark 4.10. The ideas of proofs of Theorems 1.3 and 1.7 are almost the same
as those of Theorems 1.2 and 1.6, respectively. In fact, to conclude Theorems 1.3 and
1.7, we just need to replace Lemma 2.9 used in the proof of Theorems 1.2 and 1.6 by
Lemma 2.10.

Acknowledgments. We would like to thank the associate editor and the re-
viewers for their helpful remarks.
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