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Abstract
In this paper, we study the existence of ground state solutions for the following Schrödinger–
Poisson–Slater equation:

−�u + (|x |α−n ∗ |u|2)u = μ|u|p−2u + |u|2∗−2u, in R
n,

where n � 3, α ∈ (0, n). By combining the Nehari–Pohozaev method with compactness
arguments, we first obtain a positive ground state solution for above equation. Then we
establish several qualitative properties of the ground state solutions.

Keywords Schrödinger–Poisson–Slater equation · Ground state solution ·
Coulomb–Sobolev inequality · Critical exponents

Mathematics Subject Classification 35J20 · 35A23 · 35Q55 · 35J61

1 Introduction andmain results

The Schrödinger equation is central in quantum mechanics and it plays the role of New-
ton’s laws and conservation of energy in classical mechanics, that is, it predicts the future
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behaviour of a dynamical system. The linear Schrödinger equation is a central tool of quantum
mechanics, which provides a thorough description of a particle in a non-relativistic setting.
Schrödinger’s linear equation is

�ψ + 8π2m

�2
(E − V (x)) ψ = 0 ,

where ψ is the Schrödinger wave function, m is the mass of the particle, � denotes Planck’s
renormalized constant, E is the energy, and V stands for the potential energy. Schrödinger
also established the classical derivation of his equation, based upon the analogy between
mechanics and optics, and closer to de Broglie’s ideas. He developed a perturbation method,
inspired by the work of Lord Rayleigh in acoustics, but he also proved the equivalence
between his wave mechanics and Heisenberg’s matrix.

The nonlocal version of this equation was first studied in the 1928 pioneering paper by
Gamow [12], who proved the tunneling effect, which lead to the construction of the electronic
microscope and the correct study of the alpha radioactivity. The notion of “solution” used
by him was not explicitly mentioned in the paper but it is coherent with the notion of weak
solution introduced several years later by other authors such as Leray, Sobolev and Schwartz.
This is the Schrödinger–Poisson–Slater, which was considered in [28] as a simplification of
the Hartree–Fock model.

In this paper, we study the following Schrödinger–Poisson–Slater equation:

− �u + (|x |α−n ∗ |u|2)u = μ|u|p−2u + |u|2∗−2u, in R
n, (1.1)

where n � 3, α ∈ (0, n), 2∗ = 2n/(n − 2), p > 0 and μ > 0 is a parameter. In Eq. (1.1),
|x |α−n ∗ |u|2 is known as the repulsive Coulomb potential, which makes the usual Sobolev
space H1(Rn) not to be a good framework for Eq. (1.1). The following Coulomb–Sobolev
space is the suitable working space (cf. [19])

X1,α := {v ∈ D1,2(Rn); L(v) < ∞},
where

L(v) :=
∫

R
n

∫
R
n

|v(x)|2|v(y)|2
|x − y|n−α

dxdy,

is the so-called Coulomb energy of the wave. It is well known that every solution to Eq. (1.1)
is a critical point of the energy functional J : X1,α → R, given by

J (u) = 1

2

∫
R
n
|∇u|2dx + 1

4
L(u) − μ

p

∫
R
n
|u|pdx − 1

2∗

∫
R
n
|u|2∗

dx .

In [4, 18], the authors studied the following Coulomb–Sobolev inequality

‖φ‖rr � C‖∇φ‖
r(n+α)−4n
4+α−n

2 [L(φ)] 2n−r(n−2)
2(4+α−n) (1.2)

with n �= 4 + α, where
⎧⎪⎪⎨
⎪⎪⎩

r ∈ [ 2(4+α)
2+α

,∞), n = 2;
r ∈ [ 2(4+α)

2+α
, 2n
n−2 ], 3 � n < 4 + α;

r ∈ [ 2n
n−2 ,

2(4+α)
2+α

], n > 4 + α.

(1.3)
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The best constant of (1.2) is helpful to estimate the lower bound of the Coulomb energy. To
obtain the best constant, one can consider the minimization problem

inf
φ �=0

‖∇φ‖
r(n+α)−4n
4+α−n

2 [L(φ)] 2n−r(n−2)
2(4+α−n)

‖φ‖rr
. (1.4)

In [2], the authors proved that theminimization problem (1.4) is attained under the assumption
(1.3).

To find solutions of the minimization problem (1.4), it is natural to study the following
Euler–Lagrange equation

− �u + (|x |α−n ∗ |u|2)u = μ|u|r−2u, in R
n . (1.5)

From a physical standpoint, Eq. (1.5) appeared in various physical frameworks, such as
plasma, semiconductor physics and theHartree–Fock theory (cf. [6, 11, 18] and the references
therein). In particular, when α = 2 and n = 3, the motivation in the study of problem (1.5)
originates from the Slater approximation of the exchange term in the Hartree–Fock model,
we refer to [28]. In this setting, r = 5

3 is an important exponent in problem (1.5). Of course,
other exponents have been employed in various approximations, see [5, 6] for more details
related to these models and their variants. From the mathematical point of view, there is a
series of analytical results on the Schrödinger–Poisson systems in the literature, see [1, 9, 10,
13–17, 20, 23–25, 27, 31] and so on. Especially, Ianni and Ruiz [14] focused on the following
version of the Schrödinger–Poisson–Slater equation:

−�u +
(

|u|2 ∗ 1

4π |x |
)
u = μ|u|r−2u, in R

3.

With the aid of the monotonicity trick, a positive ground state solution was obtained when
3 < r < 6. Following the ideas in [29], the authors [16] considered the higher-dimensional
version of the Schrödinger–Poisson–Slater equation (1.5) where r belongs to the intervals
in (1.3). Under the assumption 2(α + 4)/(2 + α) < r < 2n/(n − 2) when n < 4 + α,
or 2n/(n − 2) < r < 2(α + 4)/(2 + α) when n > 4 + α, they obtained a ground state
solution of the Nehari–Pohozaev type. In 2019, Liu et al. [24] investigated the following
Schrödinger–Poisson–Slater type equation with critical growth:

− �u +
(

|u|2 ∗ 1

|4πx |
)
u = μ|u|r−2u + |u|4u, in R

3. (1.6)

whereμ > 0. When r ∈ (3, 6), they obtained the existence of positive ground state solutions
by combining a new perturbation method and the Mountain–Pass theorem.

Based on the work of [24], we are also concerned with the existence of ground state
solutions (which are not limited to radial structure) of higher-dimensional equation (1.1).
In addition, we want to establish some necessary and sufficient condition for ground state
solutions obtained.

Before stating our main results, we introduce the following functionals and sets, respec-
tively:

T (u) =
∫

R
n
|∇u|2dx,

Q(u) =
∫

R
n
|∇u|2dx − p(n + α) − 4n

p(4 + α − n)
μ

∫
R
n
|u|pdx −

∫
R
n
|u|2∗

dx,

A = {
u ∈ X1,α : u �= 0 and K (u) := 〈J ′(u), u〉 = 0

}
,

123



128 Page 4 of 34 C. Lei et al.

G = {u ∈ A : J (u) � J (v) for all v ∈ A} ,

M = {u ∈ X1,α : u �= 0 and Q(u) = 0}.
Set

M = {u ∈ u ∈ X1,α\{0} : I (u) = 0},
where

I (u) = q − nb

2

∫
R
n
|∇u|2dx + q − nb

4
L(u) − p − nb

p
μ

∫
R
n
|u|pdx − 2∗ − nb

2∗

∫
R
n
|u|2∗

dx,

with b = 2/(2 + α), q = (8 + 2α)/(2 + α). A function u ∈ A is called a bound state of
(1.1). A function u ∈ G is named a ground state of (1.1).

Now our first main result in this paper can be stated as follows.

Theorem 1.1 Let q = (8+ 2α)/(2+ α). Then Eq. (1.1) has a positive ground state solution
on M under one of the following cases:

(i) When n = 3, q < p < 4 for μ enough large;
(ii) When n = 3, 4 < p < 6 for any μ > 0;
(iii) When 3 < n < 4 + α, q < p < 2∗ for any μ > 0.

In the case of n > 4+ α, it seems difficult to find ground state solutions of (1.1) in space
X1,α . So we restrict X1,α in radial space X1,α

rad := {u ∈ X1,α : u(x) = u(|x |)}. Set
M̃ =

{
u ∈ X1,α

rad \{0} : Ĩ (u) = 0
}

,

where

Ĩ (u) = −q − nb̃

2

∫
R
n
|∇u|2dx + −q − nb̃

4
L(u) − −p − nb̃

p
μ

∫
R
n
|u|pdx − −2∗ − nb̃

2∗

∫
R
n
|u|2∗

dx,

5 with b̃ = −2/(2 + α). Then we obtain the following main results:

Theorem 1.2 Let q = (8+ 2α)/(2+α). Assume that 2∗ < p < q with n > 4+α. Then Eq.
(1.1) has a positive ground state solution on M̃ for any μ > 0.

Theorem 1.3 Under one of the following assumptions:

(1) n = 3, 2 + 8/(3 + α) < p < 6, 0 < α < 1 and μ > 0;
(2) n = 3, 2 + 8/(3 + α) < p < 6, 1 � α < 3 and μ is enough large;
(3) 4 � n < 4 + α, 2 + 8/(n + α) < p < 2n/(n − 2) and μ > 0.

Then

(i) A and G are nonempty.
(ii) u ∈ G if and only if u solves the minimization problem{

u ∈ M,

J (u) = min{J (w) : w ∈ M}. (1.7)

In radial space X1,α
rad , we also have the following result:

Theorem 1.4 Assume μ > 0 and 2n/(n − 2) < p < 2 + 8/(n + α) with n > 4 + α. Then

(i) A and G are nonempty.
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(ii) u ∈ G if and only if u solves the minimization problem{
u ∈ M,

J (u) = min{J (w) : w ∈ M},

whereM =
{
u ∈ X1,α

rad : u �= 0 and Q(u) = 0
}

.

Remark 1.1 When n = 3 andα = 2 in (i)–(ii) of Theorem1.1,we recover Theorem1.1 in [24]
by using the Nehari–Pohozaev manifold method instead of using a perturbation method and
the mountain pass theorem. More importantly, our approach can handle higher-dimensional
case of the Schrödinger–Poisson–Slater equation. Moreover, we also discover a sufficient
and necessary condition for ground state solutions obtained.

Remark 1.2 Let us discuss some subtle difficulties during our research process:
(1) The lack of compactness. A general tool that could be useful to overcome the lack of

compactness is the Schwartz rearrangement map u → u∗. The following properties are well
known (see [16]):∫

R
n
|∇u∗|2dx �

∫
R
n
|∇u|2dx;

∫
R
n

∫
R
n

|u(x)|2|u(y)|2
|x − y|n−α

dxdy �
∫

R
n

∫
R
n

|u∗(x)|2|u∗(y)|2
|x − y|n−α

dxdy;
∫

R
n
|u|pdx =

∫
R
n
|u∗|pdx, 1 � p < +∞.

For (1.1), however, if we use the Schwartz rearrangement technique, it is impossible to
overcome the lack of compactness due to the nonlocal term.

(2) Since q = (8 + 2α)/(2 + α) and q < 4, it is difficult to prove the boundedness of
(PS) sequence of J . In the present paper we have opted to use theNehari–Pohozaevmanifold
M to avoid the difficulty. However, we would like to point out that this method produces
a new difficulty, that is, proving that the minimization sequence in M (or in M) of J is a
Palais–Smale sequence.

(3) As we mentioned in the case n > 4 + α, it seems difficult to estimate the threshold
value of the energy functional J because of the following fact:

∫
R
n

∫
R
n

|uε(x)|2|uε(y)|2
|x − y|n−α

dxdy → +∞,

∫
R
n
|uε|pdx → +∞

as ε → 0, where uε is as in Lemma 2.5 below. However, in radial space X1,α
rad , the following

embedding results

X1,α
rad ↪→ L2∗

loc(R
n), X1,α

rad ↪→ L p(Rn) (2∗ < p < (8 + 2α)/(2 + α))

are compact. Employing the above embedding results, we can establish a ground state of
(1.1). Furthermore, we do not need to estimate the threshold value of the energy functional
J even if problem (1.1) satisfies critical growth.

2 Proof of Theorem 1.1

We firstly establish the following result.
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Lemma 2.1 The functional J is unbounded from below.

Proof Let u ∈ X1,α , and ut = tu(tbx), b = 2/(2 + α), t > 0. By the standard scaling we
have ∫

R
n
|∇ut |2dx = tq−nb

∫
R
n
|∇u|2dx, L(ut ) = tq−nbL(u),

and ∫
R
n
|ut |pdx = t p−nb

∫
R
n
|u|pdx,

∫
R
n
|ut |2∗

dx = t2
∗−nb

∫
R
n
|u|2∗

dx .

Hence,

J (ut ) = 1

2

∫
R
n
|∇ut |2dx + 1

4
L(ut ) − μ

p

∫
R
n
|ut |pdx − 1

2∗

∫
R
n
|ut |2∗

dx

= tq−nb

2

∫
R
n
|∇u|2dx + tq−nb

4
L(u) − μt p−nb

p

∫
R
n
|u|pdx − t2

∗−nb

2∗

∫
R
n
|u|2∗

dx .

Noting that p > q , we see that J (ut ) → −∞ as t → +∞. �
By calculations, we can easily get the following lemma.

Lemma 2.2 Let a1, a2, a3 be positive constants, and f (t) = a1tq−nb − a2t p−nb − a3t2
∗−nb

for t � 0. Then f has a unique critical point, corresponding to its maximum.

Assume that u is a critical point of J . Write ut = tu(tbx) with b = 2/(2+ α) and t > 0.
Clearly, ϕ(t) := J (ut ) is positive for small t and tends to −∞ as t → +∞. By Lemma
2.2, ϕ has a unique critical point which corresponds to its maximum. Since u is a critical
point of J , the maximum of ϕ(t) should be achieved at t = 1 and ϕ′(1) = 0. Therefore,
define the manifoldM as (2.1) Obviously,M �= ∅. Indeed, for given any v �= 0, Lemma 2.2
shows that there exists t > 0 such that uv

t ∈ M. Moreover, the curve 
 = {ut } intersects the
manifoldM and J |
 attains its maximum along 
 at the point u. If u is a mountain pass type
solution of problem (1.1), it is natural to look for the minima of J on M. In addition, For
any nontrivial critical point u of J , it is standard to prove the following Pohozaev identity

P(u) = n − 2

2

∫
R
n
|∇u|2dx + n + α

4
L(u) − μn

p

∫
R
n
|u|pdx − n − 2

2

∫
R
n
|u|2∗

dx = 0.

It is clear that I (u) = 〈J ′(u), u〉 − bP(u) with b = 2/(2 + α). Therefore, M is called the
Nehari–Pohozaev manifold here. If u is a nontrivial solution of (1.1), then u ∈ M.

Moreover, we have the following result.

Lemma 2.3 M is a C1-manifold and every critical point of J inM is a critical point of J .

Proof We proceed in four steps.

Step 1.We claim 0 /∈ ∂M.
For u ∈ X1,α\{0}, by the Gagliardo–Nirenberg’s inequality, there exists C > 0 such that

∫
R
n
|u|pdx � C

(∫
R
n
|∇u|2dx

) p(n+α)−4n
2(4+α−n)

(L(u))
2n−p(n−2)
2(4−n+α) .

Therefore, by Sobolev inequality, there holds

J (u) �
1

2
‖∇u‖2 − Cμ‖∇u‖ p(n+α)−4n

4+α−n − C‖∇u‖2∗

123
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for some C > 0. We see that there exist r , ρ > 0 (ρ enough small), such that J (u) � r for
‖u‖ = ρ. Thus, 0 /∈ ∂M.

Step 2.We claim infM J > 0.
For any u ∈ M, there holds

J (u) = 1

2

∫
R
n
|∇u|2dx + 1

4
L(u) − μ

p

∫
R
n
|u|pdx − 1

2∗

∫
R
n
|u|2∗

dx

= 1

p

p − q

q − nb

∫
R
n
|u|pdx + 1

2∗
2∗ − q

q − nb

∫
R
n
|u|2∗

dx

> 0.

(2.1)

Step 3.We claim that M is a C1-manifold.
By the implicit function theorem, it only need I ′(u) �= 0 for any u ∈ M. We prove it

by argument of contradiction. Namely, suppose that I ′(u) = 0 for some u ∈ M. Thus, in a
weak sense there holds

− �u + (|x |α−n ∗ |u|2)u = μ
p − nb

q − nb
|u|p−2u + 2∗ − nb

q − nb
|u|2∗−2u. (2.2)

Multiplying (2.2) by u and integrating, we have∫
R
n
|∇u|2dx + L(u) − μ

p − nb

q − nb

∫
R
n
|u|pdx − 2∗ − nb

q − nb

∫
R
n
|u|2∗

dx = 0. (2.3)

The Pohozaev identity corresponding to Eq. (2.2) is

n − 2

2

∫
R
n
|∇u|2dx + n + α

4
L(u) − μ

p − nb

q − nb

n

p

∫
R
n
|u|pdx − n

2∗
2∗ − nb

q − nb

∫
R
n
|u|2∗

dx = 0.

(2.4)

It follows from I (u) = 0 that

n

2

∫
R
n
|∇u|2dx + n

4
L(u) − μ

n

p

p − nb

q − nb

∫
R
n
|u|pdx − n

2∗
2∗ − nb

q − nb

∫
R
n
|u|2∗

dx = 0.

Therefore, by (2.3) that ∫
R
n
|∇u|2dx = α

4
L(u).

Multiplying (2.3) by 1
p and applying I (u) = 0, we have

(
1

2
− 1

p

) ∫
R
n
|∇u|2dx +

(
1

4
− 1

p

)
L(u) =

(
1

2∗ − 1

p

)
2∗ − nb

q − nb

∫
R
n
|u|2∗

dx .

Applying the relation
∫

R
n |∇u|2dx = α

4 L(u) to the above equation, we obtain

p(2 + α) − 2α − 8

8q
L(u) =

(
1

2∗ − 1

p

)
2∗ − nb

q − nb

∫
R
n
|u|2∗

dx .

Since (8 + 2α)/(2 + α) < p < 2∗, we have

p(2 + α) − 2α − 8 > 0,
1

2∗ − 1

p
< 0.

Therefore, we reach a contradiction. Thus,M is a C1-manifold.
Step 4.We claim that every critical point of J on M is a critical point of J in X1,α .

123
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Assume that u is a critical point of J onM, there exists a Lagrange multiplier λ such that
J ′(u) = λI ′(u). It can be written, in a weak sense, as

−�u + (|x |α−n ∗ |u|2)u − μ|u|p−2u − |u|2∗−2u

= λ

[
−�u + (|x |α−n ∗ |u|2)u − μ

p − nb

q − nb
|u|p−2u − 2∗ − nb

q − nb
|u|2∗−2u

]

That is,

− (1 − λ) �u + (1 − λ) (|x |α−n ∗ |u|2)u = μ

(
1 − p − nb

q − nb
λ

)
|u|p−2u +

(
1 − 2∗ − nb

q − nb
λ

)
|u|2∗−2u.

(2.5)

We see that λ �= 1, it remains now to prove that λ = 0. Denote

B = μ

∫
R
n
|u|pdx, C =

∫
R
n
|u|2∗

dx .

We can establish the following equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
T + 1

4
L(u) − 1

p

p − nb

q − nb
B − 1

2∗
2∗ − nb

q − nb
C = 0,

T + L(u) − 1

1 − λ

(
1 − p − nb

q − nb
λ

)
B − 1

1 − λ

(
1 − 2∗ − nb

q − nb
λ

)
C = 0,

n − 2

2
T + n + α

4
L(u) − n

p

1

1 − λ

(
1 − p − nb

q − nb
λ

)
B − 1

1 − λ

(
1 − 2∗ − nb

q − nb
λ

)
n

2∗ C = 0,

(2.6)

where the second equation follows by multiplying (2.5) by u and integrating, and the third
equality is the Pohozaev identity corresponding to Eq. (2.5).

It follows from the first and the third equations in (2.6) that

1

4
L(u) =

[
1

2(1 − λ)

(
1 − p − nb

q − nb
λ

)
− 1

p

p − nb

q − nb

]
B

+
[

1

2(1 − λ)

(
1 − 2∗ − nb

q − nb
λ

)
− 1

2∗
2∗ − nb

q − nb

]
C.

(2.7)

Applying the the first and the second equations in (2.6), we have

n − 4 − α

4
L(u) = n − 2

2(1 − λ)

(
1 − p − nb

q − nb
λ

)
B − n

p

1

1 − λ

(
1 − p − nb

q − nb
λ

)
B

+ n − 2

2(1 − λ)

(
1 − 2∗ − nb

q − nb
λ

)
C − 1

1 − λ

(
1 − 2∗ − nb

q − nb
λ

)
n

2∗ C

= 1

1 − λ

(n − 2)p − 2n

2p

(
1 − p − nb

q − nb
λ

)
B.

Consequently,

1

4
L(u) = 1

(1 − λ)(n − 4 − α)

(n − 2)p − 2n

2p

(
1 − p − nb

q − nb
λ

)
B. (2.8)

123
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It follows from (2.7) and (2.8) that
[

1

2(1 − λ)

(
1 − 2∗ − nb

q − nb
λ

)
− 1

2∗
2∗ − nb

q − nb

]
C

=
[

p − nb

p(q − nb)
− 1

2(1 − λ)

(
1 − p − nb

q − nb
λ

)

+ 1

(1 − λ)(n − 4 − α)

(n − 2)p − 2n

2p

(
1 − p − nb

q − nb
λ

) ]
B.

That is,
[
1

2

(
1 − 2∗ − nb

q − nb
λ

)
− 1

2∗
2∗ − nb

q − nb
(1 − λ)

]
C

=
[

p − nb

p(q − nb)
(1 − λ) − 1

2

(
1 − p − nb

q − nb
λ

)

+ 1

n − 4 − α

(n − 2)p − 2n

2p

(
1 − p − nb

q − nb
λ

)]
B.

(2.9)

Noting that

2∗ − nb

q − nb
= n

n − 2
.

On one hand, we have

1

2

(
1 − 2∗ − nb

q − nb
λ

)
− 1

2∗
2∗ − nb

q − nb
(1 − λ) = 1

2

(
1 − n

n − 2
λ

)
− 1

2∗
n

n − 2
(1 − λ) = − 1

n − 2
λ.

On the other hand, there holds
[

p − nb

p(q − nb)
(1 − λ) − 1

2

(
1 − p − nb

q − nb
λ

)

+ 1

n − 4 − α

(n − 2)p − 2n

2p

(
1 − p − nb

q − nb
λ

) ]

= p − nb

p(q − nb)
− 1

2
+ 1

n − 4 − α

(n − 2)p − 2n

2p

+
[
− p − nb

p(q − nb)
+ p − nb

2(q − nb)
− 1

n − 4 − α

(n − 2)p − 2n

2p

p − nb

q − nb

]
λ.

Note that

q − nb = 8 + 2α

2 + α
− 2n

2 + α
= 2(4 + α − n)

2 + α
.

By computing, there hold

p − nb

p(q − nb)
− 1

2
+ 1

n − 4 − α

(n − 2)p − 2n

2p
= 0,

and

− p − nb

p(q − nb)
+ p − nb

2(q − nb)
− 1

n − 4 − α

(n − 2)p − 2n

2p

p − nb

q − nb
= p − nb

q − nb

8 + 2α − p(2 + α)

2p(n − 4 − α)
.
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From the above information and (2.9), we obtain

p − nb

q − nb

8 + 2α − p(2 + α)

2p(n − 4 − α)
λB = − 1

n − 2
λC.

Since n < 4 + α and (8 + 2α)/(2 + α) < p < 2∗, we have

p − nb > 0, q − nb > 0,

so that

p − nb

q − nb

8 + 2α − p(2 + α)

2p(n − 4 − α)
> 0.

Consequently, we conclude that

λ ≡ 0.

Therefore, we obtain J ′(u) = 0 for n � 3, i.e., u is a critical point of J . The proof is complete.

�
Lemma 2.4 Assume q < p < 2∗ with n < 4+α, and u is the ground state related to problem
(1.1). Then

J (u) = inf{J (v) : v ∈ M}. (2.10)

Proof We proceed in two steps.
By Lemma 2.3, the minimizing problem (2.10) is well defined. Thus, we denote

d := inf{J (v) : v ∈ M}.
Step 1. J (u) � d.

We only prove that I (u) = 0 for u ∈ A. Since u is a ground state related to problem (1.1),
then

〈J ′(u), u〉 = 0 = P(u).

Consequently

I (u) = 〈J ′(u), u〉 − 2

2 + α
P(u) = 0.

This implies that u ∈ M. By the definition of d , we have

J (u) � d.

Step 2. J (u) � d for any u ∈ A.

For any v ∈ M, if K (v) = 0, noting that u is the ground state solution, then we have

J (v) � J (u).

By the arbitrariness of v, we have d � J (u). We are done.
If K (v) �= 0, setting vλ = λv(λbx), where b = 2

2+α
. From Lemma 2.1, we have

K (vλ) = λq−nb(T (v) + L(v)) − λp−nbμ

∫
R
n
|v|pdx − λ2

∗−nb
∫

R
n
|v|2∗

dx .

Set

H(λ) := K (vλ)

λq−nb
.
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Since q < p < 2∗, we see that

lim
λ→0

H(vλ) = T (v) + L(v) > 0, lim
λ→+∞ H(vλ) = −∞.

This implies that there exists λ0 > 0, such that

H(vλ0) = 0,

or equivalently,

K (vλ0) = 0.

Moreover, it follows from K (vλ0) = 0 that

J (vλ0) � J (u).

On the other hand, in view of Lemma 2.1,

∂λ J (vλ) = q − nb

2
λq−nb−1

∫
R
n
|∇u|2dx + q − nb

4
λq−nb−1L(u)

−μ(p − nb)

p
λp−nb−1

∫
R
n
|u|pdx − 2∗ − nb

2∗ λ2
∗−nb−1

∫
R
n
|u|2∗

dx

= 1

λ
I (vλ).

Now, we define

f (λ) := I (vλ) = q − nb

2
λq−nb

∫
R
n
|∇u|2dx + q − nb

4
λq−nbL(u)

−μ(p − nb)

p
λp−nb

∫
R
n
|u|pdx − 2∗ − nb

2∗ λ2
∗−nb

∫
R
n
|u|2∗

dx .

Assume that there exists λ1 such that f (λ1) = 0. It follows v ∈ M and f (λ1) = 0 that⎧⎨
⎩

λ
q−nb
1 [ q−nb

2
∫
Rn |∇v|2dx + q−nb

4 L(v)] − μ(p−nb)
p λ

p−nb
1

∫
Rn |v|pdx − 2∗−nb

2∗ λ2
∗−nb

1
∫
Rn |v|2∗dx = 0,

q−nb
2

∫
Rn |∇v|2dx + q−nb

4 L(v) − μ(p−nb)
p

∫
Rn |v|pdx − 2∗−nb

2∗
∫
Rn |v|2∗dx = 0.

Then

p − nb

p

(
λ
q−nb
1 − λ

p−nb
1

)
μ

∫
R
n
|v|pdx = 2∗ − nb

2∗
(
λ2

∗−nb
1 − λ

q−nb
1

) ∫
R
n
|v|2∗

dx .

Noting that

q < p < 2∗.

Once λ1 > 1, we derive

λ
q−nb
1 − λ

p−nb
1 < 0, λ2

∗−nb
1 − λ

q−nb
1 > 0,

which is an absurd. If λ1 < 1, then

λ
q−nb
1 − λ

p−nb
1 > 0, λ2

∗−nb
1 − λ

q−nb
1 < 0,

we reach a contradiction. Therefore, the equation f (λ) = 0 admits a unique positive solution
λ = 1. As a result, we obtain{

∂λ J (vλ) > 0, for all λ ∈ (0, 1),

∂λ J (vλ) < 0, for all λ ∈ (1,+∞).
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We thus get that J (vλ) < J (v) for any λ > 0 and λ �= 1. In particular, we have

J (vλ0) � J (v).

Thus,

J (u) � J (vλ0) � J (v)

for v ∈ M. Taking the infimum over v, one has

J (u) � d.

From the above information, we establish the relation J (u) = d . The proof is complete. �
Denote

U (x) = [n(n − 2)] n−2
4

(1 + |x |2) n−2
2

, Uε(x) = [n(n − 2)ε2] n−2
4

(ε2 + |x |2) n−2
2

, x ∈ R
n, ε > 0.

U (and Uε) satisfies the limit equation

�U +U 2∗−1 = 0, U > 0 in R
n .

Choose η ∈ C∞
0 (Bδ(x0), [0, 1]) where Bδ(x0) ⊂ � such that η(x) = 1 near x = x0 and

u(x) � m > 0 for x ∈ Bδ(x0). Denote uε = Uεη.

Lemma 2.5 Assume (8 + 2α)/(2 + α) < p < 2∗ with n < 4 + α. Then

sup
t � 0

J (tuε(t
bx)) �

1

n
S

n
2

for sufficient small ε > 0, where b = 2/(2 + α).

Proof From Lemma 1.1 in [8], we have
⎧⎪⎨
⎪⎩

∫
R
n
|∇uε|2dx =

∫
R
n
|∇U |2dx + O(εn−2) = S

n
2 + O(εn−2),∫

R
n
u2

∗
ε dx =

∫
R
n
U 2∗

dx + O(εn) = S
n
2 + O(εn),

and

∫
R
n
utεdx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cε
(n−2)t

2 , t <
n

n − 2
,

cε
n
2 | ln ε|, t = n

n − 2
,

cεn− (n−2)t
2 ,

n

n − 2
< t < 2∗.

(2.11)

Since limt→0+ J (tuε(tbx)) = 0 and limt→+∞ J (tuε(tbx)) → −∞ as t → ∞, there exists
a Tε > 0 such that supt � 0 J (tuε(tbx)) = I (Tεuε(Tεx)). Moreover, we can obtain that there
exist t1, t2 > 0 (independent of ε, μ), such that

t1 � Tε � t2 < +∞.

Notice that

L(u) � C |u|44n
n+α
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for some C > 0 (which is implied by the Hardy–Littlewood–Sobolev inequality). Conse-
quently,

sup
t � 0

J (tuε(t
bx)) � sup

t � 0

{
tq−nb

2
S

n
2 − t2

∗−nb

2∗ S
n
2

}

+ tq−nb
2

4
L(uε) − μt p−nb

1

p

∫
R
n
u p

ε dx + O(εn−2)

�
1

n
S

n
2 + O(εn−2) + C

(∫
R
n
u

4n
n+α
ε dx

) n+α
n − Cμ

∫
R
n
u p

ε dx .

(2.12)

(i) When n = 3. It follows from (2.11) that

(∫
R
3
u

12
3+α
ε dx

) 3+α
3

� Cε2 + Cε1+α.

If q = (8 + 2α)/(2 + α) < p < 6, then we have

8+2α
2+α

− 3 = 2−α
2+α

⎧⎨
⎩

< 0, 2 < α < 3,
= 0, α = 2,
> 0, 0 < α < 2.

This implies that

∫
R
3
u p

ε dx =
{
Cε

p
2 , q < p < 3,

Cε3−
p
2 , p > 3.

(2.13)

If q < p < 4, we have q/2 > 1 and 3 − q/2 > 1. Hence, it follows from (2.12) and (2.13)
that

sup
t � 0

J (tuε(t
bx)) = 1

3
S

3
2 + O(ε) + C

(∫
R
3
u

12
3+α
ε dx

) 3+α
3 − Cμ

∫
R
3
u p

ε dx

�
1

3
S

3
2 + Cε − μ(Cε

p
2 + Cε3−

p
2 )

<
1

3
S

3
2

provided ε enough small and μ � μ∗ (μ∗ suitable large).
If 4 < p < 6, we see that

sup
t � 0

J (tuε(t
bx)) <

1

3
S

3
2

provided ε enough small and μ > 0.
(ii) When 4 � n < 4 + α, on one hand, there holds

8 + 2α

2 + α
− n

n − 2
= 6n + nα − 16 − 4α

(2 + α)(n − 2)
> 0.

Then, it follows from (2.11) that
∫

R
n
u p

ε dx = Cεn− (n−2)p
2 .
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On the other hand, since n � 4 and α < n, we have

4n

n + α
− n

n − 2
= n(3n − 8 − α)

(n + α)(n − 2)
> 0.

Thus
(∫

R
n
u

4n
n+α
ε dx

) n+α
n = C(εn− 2n(n−2)

n+α )
n+α
n = Cε4+α−n .

Therefore, noting that

2(2n − 4 − α)

n − 2
− 8 + 2α

2 + α
= 2α(n − 4 − α)

(n − 2)(2 + α)
< 0,

which implies that

p >
8 + 2α

2 + α
>

2(2n − 4 − α)

n − 2
.

Consequently,

n − (n − 2)p

2
< 4 + α − n.

In addition, since n � 4, we have

n

n − 2
− 8 + 2α

2 + α
= 16 − 6n − (n − 4)α

(n − 2)(2 + α)
< 0.

This implies that

p >
8 + 2α

2 + α
>

n

n − 2
�

4

n − 2
.

As a result,

n − (n − 2)p

2
< n − 2.

sup
t � 0

J (tuε(t
bx)) �

1

n
S

n
2 + O(εn−2) + C

(∫
R
n
u

4n
n+α
ε dx

) n+α
n − Cμ

∫
R
n
u p

ε dx

�
1

n
S

n
2 + O(εn−2) + Cε4+α−n − Cμεn− (n−2)p

2

<
1

n
S

n
2

for ε enough small and μ > 0. The proof is complete. �
Let us define F : X1,α → R as

F(u) :=
∫

R
n
|∇u|2dx +

∫
R
n

∫
R
n

|u(x)|2|u(y)|2
|x − y|n−α

dxdy.

Lemma 2.6 Let {um} ⊂ M be a minimizing sequence of J , and d < 1
n S

n
2 . Then {um} is a

bounded (PS)d sequence for J . Moreover, there exist a subsequence of {um}, still denoted
itself, a number k ∈ N ∪ {0} and a finite sequence

(v0, v1, . . . , vk) ⊂ X1,α, vi �≡ 0, f or i > 0
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of critical points problem (1.1) and k sequences {ξ1m}, . . . , {ξ km} ⊂ R
n, such that as m →

+∞,

‖um − v0 −
k∑

i=1

v(· − ξ im)‖ → 0,

|ξ im | → +∞, |ξ im − ξ
j
m | → +∞, i �= j,

J (v0) +
k∑

i=1

J (vi ) = d = inf
M

J . (2.14)

Proof Step 1. Let {um} ⊂ M be aminimizing sequence of J inM, that is, J (um) → infM J
as m → ∞. We claim that {um} is a (PS) sequence of J . In fact, by the Lemma 2.4, we can
obtain that {um} is also a (PS) sequence of J in A. By the Ekeland variational principle (see
Theorem 8.5 in [30]), there exists {λm} ⊂ R such that

J (um) → inf
M

J ,

J ′(um) − λmK
′(um) → 0 as m → ∞.

Then

0 = 〈J ′(um), um〉 = λm〈K ′(um), um〉 + o(1).

Since 〈K ′(um), um〉 �= 0, we find

lim
m→∞ λm = 0.

Thus we obtain that {um} ⊂ M is (PS) sequence of J . Namely

J (um) → inf
M

J , J ′(um) → 0 as m → ∞. (2.15)

It follows from J ′(um) → 0 and I (um) = 0 that

P(um) → 0 as m → ∞. (2.16)

By (2.1), there holds

1

p

p − q

q − nb
μ

∫
R
n
|um |pdx + 1

2∗
2∗ − q

q − nb

∫
R
n
|um |2∗

dx → inf
M

J (m → ∞),

which leads to ∫
R
n
|um |pdx < +∞,

∫
R
n
|um |2∗

dx < +∞.

By I (um) = 0, that is,

q − nb

2

∫
R
n

|∇um |2dx + q − nb

4
L(um ) − μ(p − nb)

p

∫
R
n

|um |pdx − 2∗ − nb

2∗
∫

R
n

|um |2∗
dx = 0,

we obtain that {um} is bounded in X1,α .
Step 2. Since {um} is bounded in X1,α , we can find a subsequence of um denoted by itself

such that um⇀v0 weakly in X1,α when m → ∞. It follows from J ′(um) → 0 (m → ∞)

that
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∫
R
n
∇v0∇ϕdx +

∫
R
n

∫
R
n

|v0(x)|2v0(y)ϕ(y)

|x − y|n−α
dxdy

−μ

∫
R
n
|v0|p−2v0ϕdx −

∫
R
n
|v0|2∗−2v0ϕdx = 0

for ϕ ∈ C∞
0 (Rn). Then v0 is a critical point for J . Thereby,

〈J ′(v0), v0〉 = 0, and P(v0) = 0.

Denote u1m := um − v0, then u1m⇀0 in X1,α when m → ∞. By the Brézis–Lieb lemma
(cf. [2, 7]), we have∫

R
n
|u1m |2∗

dx =
∫

R
n
|um |2∗

dx −
∫

R
n
|v0|2∗

dx + o(1), (2.17)
∫

R
n
|∇u1m |2dx =

∫
R
n
|∇um |2dx −

∫
R
n
|∇v0|2dx + o(1), (2.18)

∫
R
n
|u1m |pdx =

∫
R
n
|um |pdx −

∫
R
n
|v0|pdx + o(1), (2.19)

and

L(u1m) = L(um) − L(v0) + o(1) (2.20)

when m → ∞. Hence, from the above information, we obtain{
J (u1m) = J (um) − J (v0) + o(1) → infM J − J (v0),

J ′(u1m) → 0,
(2.21)

and

P(um)

= n − 2

2

∫
R
n
|∇um |2dx + n + α

4
L(um) − μ

n

p

∫
R
n
|um |pdx − n

2∗

∫
R
n
|um |2∗

dx

= n − 2

2

∫
R
n
|∇u1m |2dx + n + α

4
L(u1m) − μ

n

p

∫
R
n
|u1m |pdx − n

2∗

∫
R
n
|u1m |2∗

dx

+n − 2

2

∫
R
n
|∇v0|2dx + n + α

4
L(v0) − μ

n

p

∫
R
n
|v0|pdx − n

2∗

∫
R
n
|v0|2∗

dx + o(1)

= n − 2

2

∫
R
n
|∇u1m |2dx + n + α

4
L(u1m) − μ

n

p

∫
R
n
|u1m |pdx − n

2∗

∫
R
n
|u1m |2∗

dx + o(1),

when m → ∞. In view of (2.16), we have

P(u1m ) = n − 2

2

∫
R
n

|∇u1m |2dx + n + α

4
L(u1m ) − μ

n

p

∫
R
n

|u1m |pdx − n

2∗
∫

R
n

|u1m |2∗
dx

= o(1).
(2.22)

If

u1m → 0 in X1,α (m → ∞),

we are done. Indeed, by the Coulomb–Sobolev inequality,
∫

R
n
|u1m |pdx → 0,

∫
R
n
|u1m |2∗

dx → 0, as m → ∞.
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By (2.1), we have

J (v0) = inf
M

J > 0, F[um] → F[v0] (m → ∞).

Observe that in this case v0 �≡ 0 and v0 ∈ M.
If

u1m � 0 in X1,α (m → ∞).

Recall (2.15) and that v0 is a solution, then when m → ∞,

〈J ′(um), um〉 = F[um] − μ

∫
R
n
|um |pdx −

∫
R
n
|um |2∗

dx

→ 0 = F[v0] − μ

∫
R
n
|v0|pdx −

∫
R
n
|v0|2∗

dx .

Next, the argument is divided into two cases

Case 1. lim
m→∞

∫
R
n
|um |pdx =

∫
R
n
|v0|pdx;

Case 2. lim
m→∞

∫
R
n
|um |pdx �=

∫
R
n
|v0|pdx .

In Case 1, when m → ∞, it follows from (2.22) that

n − 2

2

∫
R
n
|∇u1m |2dx + n + α

4
L(u1m) − n

2∗

∫
R
n
|u1m |2∗

dx = o(1). (2.23)

In addition, by (2.15) and (2.17)–(2.20), we see that as m → ∞,
∫

R
n
|∇u1m |2dx +

∫
R
n
|∇v0|2dx + L(u1m) + L(v0)

−
∫

R
n
|u1m |2∗

dx −
∫

R
n
|v0|2∗

dx − μ

∫
R
n
|v0|pdx = o(1).

The equality combined with 〈J ′(v0), v0〉 = 0 gives that
∫

R
n
|∇u1m |2dx + L(u1m) −

∫
R
n
|u1m |2∗

dx = o(1) (m → ∞). (2.24)

It follows from (2.23) and (2.24) that

4 + α − n

4
L(u1m) = o(1) (m → ∞).

Consequently

L(u1m) = o(1) (m → ∞).

Namely
∫

R
n
|∇u1m |2dx −

∫
R
n
|u1m |2∗

dx = o(1). (2.25)

Set

lim
m→∞

∫
R
n
|∇u1m |2dx = l.
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Then l = 0. Otherwise, if l > 0. By using (2.25) and Sobolev inequality, we obtain

l � S
n
2 .

Hence, we obtain

J (um) = 1

2

∫
R
n
|∇um |2dx + 1

4
L(um) − μ

p

∫
R
n
|um |pdx − 1

2∗

∫
R
n
|um |2∗

dx + o(1)

= 1

2

∫
R
n
|∇u1m |2dx + 1

2

∫
R
n
|∇v0|2dx + 1

4
L(u1m) + 1

4
L(v0) − μ

p

∫
R
n
|u1m |pdx

−μ

p

∫
R
n
|v0|pdx − 1

2∗

∫
R
n
|v0|2∗

dx − 1

2∗

∫
R
n
|u1m |2∗

dx + o(1)

= 1

2

∫
R
n
|∇u1m |2dx − 1

2∗

∫
R
n
|u1m |2∗

dx + J (v0) + o(1)

=
(
1

2
− 1

2∗

) ∫
R
n
|∇u1m |2dx + J (v0) + o(1)

= 1

n
l + J (v0) + o(1)

�
1

n
S

n
2 + J (v0) + o(1)

when m → ∞. Thus we have

1

n
S

n
2 + J (v0) � J (um) → d <

1

n
S

n
2 .

This implies that

J (v0) < 0.

Consequently

v0 �≡ 0.

Since v0 is a solution of (1.1), thus

〈J ′(v0), v0〉 = 0, and P(v0) = 0.

This combining v0 �≡ 0 imply

v0 ∈ M.

Therefore,

J (v0) � inf
M

J = d > 0.

We reach a contradiction. Therefore,

l ≡ 0.

As a result, ∫
R
n
|∇u1m |2dx → 0,

∫
R
n
|u1m |2∗

dx → 0

as m → ∞. Thus we obtain J (v0) = infM J > 0, which implies that v0 �= 0. Thus, by the
strong maximum principle, v0 is a positive ground state solution of (1.1), and Theorem 1.1
is proved.
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In Case 2, since X1,α ↪→ L p
loc(R

n) is compact, there exist δ1 > 0, {ξ1m} ⊂ R
n such that

∫
B1

|u1m(x + ξ1m)|pdx � δ1 > 0. (2.26)

This and (2.26) lead to |ξ1m | → +∞ (m → ∞).
Step 3. Define v1m := u1m(· + ξ1m). Obviously, it is a bounded (PS) sequence at level

infu∈M J − J (v0) (recall (2.21)). Up to a subsequence, we may assume that

u1m⇀v1 in X1,α (m → ∞),

and v1 is a solution of (1.1). By (2.26) we also have that v1 �= 0, and v1 ∈ M.
Define

u2m := u1m − v1(· − ξ1m).

Then

u2m⇀0 in X1,α (m → ∞).

Arguing as in Step 2 and taking into account (2.21), we obtain that when m → ∞,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F[u2m] = F[u1m] − F[v1] + o(1) = F[um] − F[v0] − F[v1] + o(1),

J (u2m) = J (u1m) − J (v1) = J (um) − J (v0) − J (v1) + o(1),

J ′(u2m) → 0,

P(u2m) → 0.

(2.27)

If u2m → 0 (m → ∞) in X1,α we are done. In fact, when m → ∞, u1m → v1(· − ξ1m)

in X1,α . As in Step 2, we can obtain that v1 is a nontrivial solution of (1.1) with J (v1) =
infu∈M J > 0.

If u2m �→ 0 (m → ∞) in X1,α . Similarly, if u2m → 0 (m → ∞) in L p(Rn), we are done
and J (v1) = infu∈M J > 0. If u2m � 0 (m → ∞) in L p(Rn), we may assume the existence
of {ξ2m} ⊂ R

n such that∫
B1

|u2m(x + ξ2m)|pdx � δ2 for some δ2 > 0.

Since

u2m⇀0, and u2m(· + ξ1m)⇀0 in X1,α (m → ∞),

we deduce that when m → ∞,

|ξ2m | → +∞, |ξ2m − ξ1m | → +∞.

Therefore, up to a subsequence, we may assume that

u2m(· + ξ2m)⇀v2(·) in X1,α (m → ∞),

and v2 is a nontrivial solution of (1.1). We now define

u3m := u2m − v2(· − ξ2m).

Iterating the above procedure we construct sequences {u j
m} j and {ξ j

m} j , in the following way
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u j+1
m := u j

m − v j (· − ξ
j
m),

F[u j
m] = F[um] −

j−1∑
i=0

F[vi ] + o(1) (m → ∞),

J (u j
m) = J (um) −

j−1∑
i=0

J (vi ) + o(1) (m → ∞),

J ′(vi ) = 0, for i � 0.

Noting that F[um] is bounded and
1

2
F[vi ] �

1

2

∫
R
n
|∇vi |2dx + 1

4
L(vi ) > inf

M
J ,

which implies that the iteration must stop by at most finite steps. Namely, there exists some
positive integer k, such that ukm → 0 (m → ∞) in X1,α . The proof is finished. �
Proof of Theorem 1.1 We apply Lemma 2.6 to obtain

k∑
i=0

J (vi ) = inf
M

J . (2.28)

Since vi (i = 1, . . . , k) is a solution of Eq. (1.1), we have J ′(vi ) = 0 and P(vi ) = 0 for
i = 0, 1, . . . , k. This implies that vi ∈ M, and thus J (vi ) � infM J for i = 1, . . . , k.
Applying (2.28) and noting that Step 2 in Lemma 2.3, there are two possibilities: either
v0 �= 0 and k = 0, or v0 = 0 and k = 1. In the first case, um(· + ξ1m) → v0(·) (m → ∞)

in X1,α (by (2.14)) and v0 ∈ A is a solution of Eq. (1.1) (by Step 4 in Lemma 2.3) with
J (v0) = infM J (by (2.28)), and so v0 ∈ G is a positive ground state solution of (1.1). In the
latter, um(· + ξ1m) → v1(·) in X1,α as m → ∞ (by (2.14)) and v1 ∈ G is a positive ground
state solution of Eq. (1.1) with J (v1) = infM J (by (2.28)). The proof is ended. �

3 Proof of Theorem 1.2

Lemma 3.1 The functional J is unbounded from below.

Proof For n > 4+ α, let u ∈ X1,α
rad , and ut = t−1u(t b̃x), b̃ = − 2

2+α
, t > 0. By the standard

scaling we have∫
R
n
|∇ut |2dx = t−q−nb̃

∫
R
n
|∇u|2dx, L(ut ) = t−q−nb̃L(u),

and ∫
R
n
|ut |pdx = t−p−nb̃

∫
R
n
|u|pdx,

∫
R
n
|ut |2∗

dx = t−2∗−nb̃
∫

R
n
|u|2∗

dx .

Hence,

J (ut ) = 1

2

∫
R
n

|∇ut |2dx + 1

4
L(ut ) − μ

p

∫
R
n

|ut |pdx − 1

2∗
∫

R
n

|ut |2∗
dx

= t−q−nb̃

2

∫
R
n

|∇u|2dx + t−q−nb̃

4
L(u) − μt−p−Nb̃

p

∫
R
n

|u|pdx − t−2∗−nb̃

2∗
∫

R
n

|u|2∗
dx .

Since 2∗ < q when n > 4 + α, we see that J (ut ) → −∞ as t → +∞. �
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Similar to Lemma 2.2, since −q − nb̃ < −p − nb̃ < −2∗ − nb̃, we have the following
lemma.

Lemma 3.2 Let

ϕ(t) := t−q−nb̃
[
1

2

∫
R
n
|∇u|2dx + 1

4
L(u)

]
− μt−p−nb̃

p

∫
R
n
|u|pdx − t−2∗−nb̃

2∗

∫
R
n
|u|2∗

dx

for u ∈ M̃ and t � 0. Then ϕ has a unique positive critical point, corresponding to its
maximum.

It is clear that Ĩ (u) = −〈J ′(u), u〉 − b̃P(u) with b̃ = 2/(2 + α).
Firstly, similar to the proofs of Lemmas 2.3 and 2.4, the conclusions of Lemmas 2.3 and

2.4 hold true when 2∗ < p < (8 + 2α)/(2 + α) with n > 4 + α.
Secondly, comparedwith Theorem 1.1, we do not need to estimate the functional threshold

for the case n > 4+α.We just need the (PS) sequence to be strongly convergent in L2∗
loc(R

n).
Indeed, since 2∗ < p < (8 + 2α)/(2 + α) with n > 4 + α, the the embedding

X1,α
rad ↪→ L2∗

loc(R
n)

is compact, we obtain the following result.

Lemma 3.3 Let {um} ⊂ M̃ be a minimizing sequence of J . Then {um} is a bounded (PS)

sequence for J . Moreover, there exist a subsequence of {um}, still denoted itself, a number
k ∈ N ∪ {0} and a finite sequence

(v0, v1, . . . , vk) ⊂ X1,α
rad , vi �≡ 0, f or i > 0

of critical points problem (1.1) and k sequences {ξ1m}, . . . , {ξ km} ⊂ R
n, such that as m →

+∞,

‖um − v0 −
k∑

i=1

v(· − ξ im)‖ → 0,

|ξ im | → +∞, |ξ im − ξ
j
m | → +∞, i �= j,

J (v0) +
k∑

i=1

J (vi ) = inf
M̃

J .

Proof We divide the proof into three steps. Step 1. Let {um} ⊂ M̃ be a minimizing sequence
of J in M̃, that is, J (um) → infM̃ J as m → ∞. We claim that {um} is a (PS) sequence of
J . In fact, by the Lemma 2.4, we can obtain that {um} is also a (PS) sequence of J in A. By
the Ekeland variational principle, there exists {λm} ⊂ R such that

J (um) → inf
M̃

J ,

J ′(um) − λmK
′(um) → 0 as m → ∞.

Then

0 = 〈J ′(um), um〉 = λm〈K ′(um), um〉 + o(1).

Since 〈K ′(um), um〉 �= 0, we find

lim
m→∞ λm = 0.
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Thus we obtain that {um} ⊂ M̃ is (PS) sequence of J . Namely

J (um) → inf
M̃

J , J ′(um) → 0 as m → ∞.

It follows from J ′(um) → 0 and Ĩ (um) = 0 that

P(um) → 0 as m → ∞.

Since {um} ⊂ M̃, we have

1

p

q − p

−q − nb̃

∫
R
n
|um |pdx + 1

2∗
q − 2∗

−q − nb̃

∫
R
n
|um |2∗

dx → inf
M̃

J (m → ∞),

leading to

∫
R
n
|um |pdx < +∞,

∫
R
n
|um |2∗

dx < +∞.

By Ĩ (um) = 0, that is,

−q − nb̃

2

∫
R
n
|∇um |2dx + −q − nb̃

4
L(um) − μ(−p − nb̃)

p

∫
R
n
|um |pdx

−−2∗ − nb̃

2∗

∫
R
n
|um |2∗

dx = 0.

Then

−q − nb̃

2

∫
R
n
|∇um |2dx + −q − nb̃

4
L(um) � C < +∞.

This implies that {um} is bounded in X1,α
rad .

Step 2. Since {um} is bounded in X1,α
rad , up to a subsequence, we may assume that um⇀v0

weakly in X1,α
rad when m → ∞. It follows from J ′(um) → 0 (m → ∞) that

∫
R
n
∇v0∇ϕdx +

∫
R
n

∫
R
n

|v0(x)|2v0(y)ϕ(y)

|x − y|n−α
dxdy

−μ

∫
R
n
|v0|p−2v0ϕdx −

∫
R
n
|v0|2∗−2v0ϕdx = 0

for ϕ ∈ C∞
0 (Rn). Then v0 is a critical point for J . Thereby,

〈J ′(v0), v0〉 = 0, and P(v0) = 0.

Denote u1m := um − v0, then u1m⇀0 in X1,α
rad when m → ∞. By the Brezis-Lieb lemma,

we have ∫
R
n
|u1m |2∗

dx =
∫

R
n
|um |2∗

dx −
∫

R
n
|v0|2∗

dx + o(1),
∫

R
n
|∇u1m |2dx =

∫
R
n
|∇um |2dx −

∫
R
n
|∇v0|2dx + o(1),

and

L(u1m) = L(um) − L(v0) + o(1)
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when m → ∞. Hence, from the above information, we obtain{
J (u1m) = J (um) − J (v0) + o(1) → infM̃ J − J (v0),

J ′(u1m) → 0.

If

u1m → 0 in X1,α
rad (m → ∞),

then Theorem 1.2 is proved. Indeed, by the Coulomb–Sobolev inequality,∫
R
n
|u1m |pdx → 0,

∫
R
n
|u1m |2∗

dx → 0, as m → ∞.

By (2.1), we have

J (v0) = inf
M̃

J > 0, F[um] → F[v0] (m → ∞).

Observe that in this case v0 �≡ 0 and v0 ∈ M̃.
If

u1m � 0 in X1,α
rad (m → ∞).

Next, the argument is divided into two cases

Case 1. lim
m→∞

∫
R
n
|um |2∗

dx =
∫

R
n
|v0|2∗

dx;

Case 2. lim
m→∞

∫
R
n
|um |2∗

dx �=
∫

R
n
|v0|2∗

dx .

In Case 1, since the the embedding

X1,α
rad ↪→ L p(Rn)

is compact for 2∗ < p < q . Therefore,

lim
m→∞

∫
R
n
|u1m |pdx = 0.

It follows from 〈J ′(um), um〉 = o(1) that∫
R
n
|∇u1m |2dx +

∫
R
n
|∇v0|2dx + L(u1m) + L(v0)

−
∫

R
n
|v0|2∗

dx − μ

∫
R
n
|v0|pdx = o(1).

The equality combined with 〈J ′(v0), v0〉 = 0 gives that∫
R
n
|∇u1m |2dx + L(u1m) = o(1) (m → ∞).

Consequently,

um → v0 in X1,α
rad (m → ∞).

This implies that

J (v0) = inf
M̃

J ,
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and

v0 ∈ M̃.

Thus, v0 is a positive ground state solution of (1.1), and Theorem 1.2 is proved.
In Case 2, since X1,α

rad ↪→ L2∗
loc(R

n) is compact, there exist δ1 > 0, {ξ1m} ⊂ R
n such that

∫
B1

|u1m(x + ξ1m)|pdx � δ1 > 0. (3.1)

This leads to |ξ1m | → +∞ (m → ∞).
Step 3. Define v1m := u1m(· + ξ1m). Obviously, it is a bounded (PS) sequence at level

infu∈M̃ J − J (v0). Up to a subsequence, we may assume that

u1m⇀v1 in X1,α
rad (m → ∞),

and v1 is a solution of (1.1). By (3.1) we also have that v1 �= 0, and v1 ∈ M̃.
Define

u2m := u1m − v1(· − ξ1m).

Then

u2m⇀0 in X1,α (m → ∞).

Arguing as in Step 2, there holds that when m → ∞,
⎧⎪⎨
⎪⎩
F[u2m] = F[u1m] − F[v1] + o(1) = F[um] − F[v0] − F[v1] + o(1),

J (u2m) = J (u1m) − J (v1) = J (um) − J (v0) − J (v1) + o(1),

J ′(u2m) → 0.

If u2m → 0 (m → ∞) in X1,α
rad we are done. In fact, when m → ∞, u1m → v1(· − ξ1m)

in X1,α . As in Step 2, we can obtain that v1 is a ground state solution of (1.1) with J (v1) =
infu∈M̃ J > 0.

If u2m �→ 0 (m → ∞) in X1,α
rad . Similarly, if u2m → 0 (m → ∞) in L2∗

(Rn), we are
done and J (v1) = infu∈M̃ J > 0. If u2m � 0 (m → ∞) in L2∗

(Rn), we may assume the
existence of {ξ2m} ⊂ R

n such that
∫
B1

|u2m(x + ξ2m)|2∗
dx � δ2 for some δ2 > 0.

Since

u2m⇀0, and u2m(· + ξ1m)⇀0 in X1,α
rad (m → ∞),

we deduce that when m → ∞,

|ξ2m | → +∞, |ξ2m − ξ1m | → +∞.

Therefore, up to a subsequence, we may assume that

u2m(· + ξ2m)⇀v2(·) in X1,α
rad (m → ∞),

and v2 is a nontrivial solution of (1.1). We now define

u3m := u2m − v2(· − ξ2m).
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Iterating the above procedure we construct sequences {u j
m} j and {ξ j

m} j , in the following way
u j+1
m := u j

m − v j (· − ξ
j
m),

F[u j
m] = F[um] −

j−1∑
i=0

F[vi ] + o(1) (m → ∞),

J (u j
m) = J (um) −

j−1∑
i=0

J (vi ) + o(1) (m → ∞),

J ′(vi ) = 0, for i � 0.

Noting that F[um] is bounded and
1

2
F[vi ] �

1

2

∫
R
n
|∇vi |2dx + 1

4
L(vi ) > inf

M̃
J ,

which implies that the iteration must stop by at most finite steps. Namely, there exists some
positive integer k, such that ukm → 0 (m → ∞) in X1,α

rad . The proof is finished. �
Proof of Theorem 1.2 By Lemma 3.3,

k∑
i=0

J (vi ) = inf
M̃

J .

Similar to the proof of Theorem 1.1, we obtain that v0 or v1 is the positive ground state
solution of (1.1). The proof is now complete. �

4 Proof of Theorem 1.3

Similar to Lemma 2.4, we have the following relation.

Lemma 4.1 Let 2 + 8/(n + α) < p < 2n/(n − 2) when 4 + α > n, and u be the ground
state related to problem (1.1). Then

J (u) = inf{J (v) : v ∈ M}. (4.1)

Proof We proceed in three steps.
Step 1.We claim that the minimizing problem (4.1) is well defined. Indeed, let v ∈ M , it

follows that

J (v) = J (v) − 1
2Q(v)

= 1

4
L(v) + 1

p

(
p(n + α) − 4n

2(4 − n + α)
− 1

)
μ

∫
R
n
|u|pdx

= 1

4
L(u) + p(n + α) − 8 − 2α − 2n

2p(4 − n + α)
μ

∫
R
n
|u|pdx + 1

n

∫
R
n
|u|2∗

dx

> 0.

Thus, we denote

d̃ := inf{J (v) : v ∈ M}.
Step 2. J (u) � d̃ for u ∈ A.
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We shall prove that u ∈ A ⇒ u ∈ M . Since u is a ground state related to problem (1.1),
we have⎧⎪⎪⎨

⎪⎪⎩

∫
R
n
|∇u|2dx + L(u) − μ

∫
R
n
|u|pdx −

∫
R
n
|u|2∗

dx = 0,

n − 2

2

∫
R
n
|∇u|2dx + n + α

4
L(u) − n

p
μ

∫
R
n
|u|pdx − n

2∗

∫
R
n
|u|2∗

dx = 0,

such that
n − 4 − α

4

∫
R
n
|∇u|2dx = n − 4 − α

4

∫
R
n
|u|2∗

dx + 4n − p(n + α)

4p
μ

∫
R
n
|u|pdx .

Consequently ∫
R
n
|∇u|2dx = p(n + α) − 4n

p(4 + α − n)
μ

∫
R
n
|u|pdx +

∫
R
n
|u|2∗

dx .

This implies that Q(u) = 0, namely u ∈ M , and so

J (u) � d̃.

Step 3. J (u) � d̃ for any u ∈ A.

For any v ∈ M , if K (v) = 0, noting that u is the ground state solution, then we have

J (v) � J (u).

By the arbitrariness of v, we have d̃ � J (u). We are done.

If K (v) �= 0, setting vλ = λ
n+α

4+α−n v(λ
4

4+α−n x). An easy computation yields that∫
R
n
|∇uλ|2dx = λ

2n+2α
4−n+α

∫
R
n
|∇u|2λ 8

4−n+α · 1

λ
4n

4−n+α

dx = λ2
∫

R
n
|∇u|2dx,

L(uλ) = λ
4n+4α
4−n+α

∫
R
n

∫
R
n

u2(x)u2(y)

|x − y|n−α
λ

4(n−α)
4−n+α · 1

λ
8n

4−n+α

dxdy = L(u).

Thus

K (vλ) = λ2T (v) + L(v) − λ
p(n+α)−4n
4−n+α μ

∫
R
n
|v|pdx − λ

2∗(n+α)−4n
4−n+α

∫
R
n
|v|2∗

dx,

We see that

lim
λ→0

K (vλ) = L(v) > 0, lim
λ→+∞ K (vλ) = −∞.

This implies that there exists λ0 > 0, such that

K (vλ0) = 0.

Moreover, it follows from K (vλ0) = 0 that

J (vλ0) � J (u).

On the other hand, by some basic calculations, we have

∂λ J (vλ) = λT (v) − p(n + α) − 4n

p(4 + α − n)
λ

p(n+α)−4n
4+α−n −1

μ

∫
R
n

|v|pdx

− 2∗(n + α) − 4n

2∗(4 + α − n)
λ
2∗(n+α)−4n

4+α−n −1
∫

R
n

|v|2∗
dx

= λT (v) − p(n + α) − 4n

p(4 + α − n)
λ

p(n+α)−4n
4+α−n −1

μ

∫
R
n

|v|pdx − λ
2∗(n+α)−4n

4+α−n −1
∫

R
n

|v|2∗
dx

= 1

λ
Q(vλ).
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Now, we define

f̃ (λ) := Q(vλ) = λ2T (v) − p(n + α) − 4n

p(4 + α − n)
λ

p(n+α)−4n
4+α−n μ

∫
R
n

|v|pdx − λ
2∗(n+α)−4n

4+α−n

∫
R
n

|v|2∗
dx .

Assume that there exists λ1 such that f̃ (λ1) = 0. It follows v ∈ M and f̃ (λ1) = 0 that
⎧⎨
⎩

λ21T (v) − p(n+α)−4n
p(4+α−n)

λ
p(n+α)−4n
4+α−n

1 μ
∫

R
n |v|pdx − λ

2∗(n+α)−4n
4+α−n

1

∫
R
n |v|2∗

dx = 0,

T (v) = p(n+α)−4n
p(4+α−n)

μ
∫

R
n |v|pdx + ∫

R
n |v|2∗

dx .

Then

p(n + α) − 4n

p(4 + α − n)

(
λ21 − λ

p(n+α)−4n
4+α−n

1

)
μ

∫
R
n
|v|pdx =

(
λ

2∗(n+α)−4n
4+α−n

1 − λ21

) ∫
R
n
|v|2∗

dx .

Noting that

p(n + α) − 4n

4 + α − n
− 2 = p(n + α) − 8 − 2α − 2n

4 + α − n
> 0,

and

2∗(n + α) − 4n

4 + α − n
− 2 = 2∗ − 2 > 0,

If λ1 > 1, then

λ21 − λ
p(n+α)−4n
4+α−n

1 < 0, λ
2∗(n+α)−4n

4+α−n
1 − λ21 > 0,

which is a contradiction. If λ1 < 1, then

λ21 − λ
p(n+α)−4n
4+α−n

1 > 0, λ
2∗(n+α)−4n

4+α−n
1 − λ21 < 0,

we reach a contradiction. Therefore, the equation f̃ (λ) = 0 has a unique positive solution
λ = 1. As a result, we obtain

{
∂λ J (vλ) > 0, for all λ ∈ (0, 1),

∂λ J (vλ) < 0, for all λ ∈ (1,+∞).

We thus get that J (vλ) < J (v) for any λ > 0 and λ �= 1. In particular, we have

J (vλ0) � J (v).

Thus,

J (u) � J (vλ0) � J (v)

for v ∈ M . Taking the infimum over v, one has

J (u) � d̃.

From the above information, we establish the relation J (u) = d̃. The proof is complete. �

Lemma 4.2 Every critical point of J in M is a critical point of J in X1,α .
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Proof Assume that u is a critical point of J in M , there exists a Lagrange multiplier λ such
that J ′(u) = λQ′(u). It can be written, in a weak sense, as

−�u + (|x |α−n ∗ |u|2)u − μ|u|p−2u − |u|2∗−2u = λ(−2�u − p(n + α) − 4n

4 + α − n
μ|u|p−2u − 2∗|u|2∗−2u).

That is,

− (1 − 2λ)�u + (|x |α−n ∗ |u|2)u = (1 − λ
p(n + α) − 4n

4 + α − n
)μ|u|p−2u + (1 − 2∗λ)|u|2∗−2u. (4.2)

It remains now to prove that λ = 0. Denote

A := μ

∫
R
n
|u|pdx, B :=

∫
R
n
|u|2∗

dx .

By (4.2), we can establish the following equations we can establish the following equations
⎧⎪⎨
⎪⎩
T (u) = p(n+α)−4n

p(4+α−n)
A + B,

(1 − 2λ)T (u) + L(u) = (1 − λ
p(n+α)−4n
4+α−n )A + (1 − 2∗λ)B,

n−2
2 (1 − 2λ)T (u) + n+α

4 L(u) = n
p (1 − λ

p(n+α)−4n
4+α−n )A + n

2∗ (1 − 2∗λ)B,

(4.3)

where the second equation follows by multiplying (4.2) by u and integrating, and the third
equality is the Pohozaev identity corresponding to Eq. (4.2).

From (4.3), we can obtain⎧⎨
⎩
L(u) = [1 − λ

p(n+α)−4n
4+α−n − p(n+α)−4n

p(4+α−n)
(1 − 2λ)]A + (2 − 2∗)λB,

n+α
4 L(u) = [ np (1 − λ

p(n+α)−4n
4+α−n ) − n−2

2 (1 − 2λ)
p(n+α)−4n
p(4+α−n)

]A + n−2
2 (2 − 2∗)λB.

From the above relations, we have

(Ln,p,αλ + Hn,p,α)A − 4 + α − n

2
(2∗ − 2)λB = 0, (4.4)

where

Ln,p,α := pn(n + α) − 4n2

p(4 + α − n)
− p(n + α)(n − 2) − 4n(n − 2)

p(4 + α − n)

− p(n + α)2 − 4n(n + α)

4(4 + α − n)
+ 2p(n + α)2 − 8n(n + α)

4p(4 + α − n)
,

Hn,p,α := (n + α)[p(4 − 2n) + 4n]
4p(4 + α − n)

− n

p
+ (n − 2)[p(n + α) − 4n]

2p(4 + α − n)
.

By computing,

Hn,p,α = p(n + α)(4 − 2n) + 4n(n + α) − 4n(4 + α − n) + 2p(n − 2)(n + α) − 8n(n − 2)

4p(4 + α − n)
= 0.

Ln,p,α = 4pn(n + α) − 16n2 − 4p(n + α)(n − 2) + 16n(n − 2) − p2(n + α)2

4p(4 + α − n)

+ 4np(n + α) + 2p(n + α)2 − 8n(n + α)

4p(4 + α − n)

= 2p(n + α)2 − p2(n + α)2 + 8np(n + α) − 4p(n + α)(n − 2) − 8n(4 + n + α)

4p(4 + α − n)

= p(n + α)(6n + 2α + 8 − p(n + α)) − 8n(4 + n + α)

4p(4 + α − n)

.= −χ2 + (6n + 2α + 8)χ − 8n(4 + n + α)

4p(4 + α − n)
,
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where χ = p(n + α). Consider that the equation

f (χ) = −χ2 + (6n + 2α + 8)χ − 8n(4 + n + α).

We claim that f (χ) < 0 when χ > 8 + 2α + 2n with n < 4 + α. Indeed,

� = (6n + 2α + 8)2 − 32n(4 + n + α) = 4(n − α − 4)2.

Consequently, it follows from f (χ) = 0 that

χ = −(6n + 2α + 8) ± 2
√

(n − α − 4)2

−2
.

Observing that for n < 4 + α, we have

χ = p(n + α) = 8 + 2α + 2n, or χ = p(n + α) = 4n.

Noting that

2 + 8

n + α
< p <

2n

n − 2
,

we see that

f (χ) < 0

for χ > 8 + 2α + 2n, namely p > 2 + 8
n+α

. Consequently, it follows from (4.4) that
[
Ln,p,αA − 4 + α − n

2
(2∗ − 2)B

]
< 0

for 2 + 8
n+α

< p < 2n
n−2 . Thus, again from (4.4), we obtain

λ ≡ 0.

Thereby

J ′(u) = 0.

The proof is thus complete. �
Lemma 4.3 Assume that 2 + 8/(n + α) < p < 2∗ with n < 4 + α, then

sup
t � 0

J
(
t

n+α
4+α−n uε(t

4
4+α−n x)

)
<

1

n
S

n
2 .

Proof Case 1: 2 + 8/(n + α) < p < 2∗ with n < 4 + α. Since

lim
t→0+ J (t

n+α
4+α−n uε(t

4
4+α−n x)) = 0

and

lim
t→+∞ J (t

n+α
4+α−n uε(t

4
4+α−n x)) → −∞

as t → ∞, there exists a Tε > 0 such that

sup
t � 0

J (tuε(t
bx)) = J (T

n+α
4+α−n

ε uε(T
4

4+α−n
ε x)).
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Moreover, we can obtain that there exist t̃1, t̃2 > 0 (independent of ε, μ), such that

t̃1 � Tε � t̃2 < +∞.

Case 2: n = 3 and 2 + 8/(3 + α) < p < 6. We find

2 + 8

3 + α
− 3 = 5 − α

3 + α
> 0.

sup
t � 0

J (t
3+α
1+α uε(t

4
1+α x)) � sup

t � 0

(
t2

2

∫
�

|∇uε|2dx − 1

6
t
6(3+α)−12

1+α

∫
�

u6εdx

)

+1

4

(∫
R
3
u

12
3+α
ε dx

) 3+α
3 − Cμ

∫
R
3
u p

ε dx

� sup
t � 0

(
t2

2
S

3
2 − t6

6
S

3
2

)
+ Cε + Cε2 + Cε1+α − Cμε3−

p
2

�
1

3
S

3
2 + Cε − Cμε3−

p
2 .

If 0 < α < 1, we see that

4 < 2 + 8

3 + α
< p < 6.

Consequently,

3 − p

2
< 1,

and so

sup
t � 0

J (t
3+α
1+α uε(t

4
1+α x)) <

1

3
S

3
2

for ε enough small. If 1 � α < 3. Let μ be suitable large, we also get

sup
t � 0

J (t
3+α
1+α uε(t

4
1+α x)) <

1

3
S

3
2 .

Case 3: 2 + 8/(n + α) < p < 2∗ with 4 � n < 4 + α. Noting that

2 + 8

n + α
− n

n − 2
= n2 − 16 + 4n + α(n − 4)

(n + α)(n − 2)
> 0,

n − n − 2

2
p − (n − 2) < n − n − 2

2

(
2 + 8

n + α

)
− (n − 2)

= −(n − 4) − (n − 2)
4

n + α
< 0,

and

p > 2 + 8

n + α
>

8 + 2α

2 + α
>

2(2n − 4 − α)

n − 2
.

Consequently,

n − (n − 2)p

2
< 4 + α − n.
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So

sup
t � 0

J (t
n+α

4+α−n uε(t
4

4+α−n x))

� sup
t � 0

(
t2

2

∫
�

|∇uε|2dx − 1

2∗ t
2∗(n+α)−4n

4+α−n

∫
�

u2
∗

ε dx

)
+ 1

4

(∫
R
n
u

4n
n+α
ε dx

) n+α
n

−Cμ
∫

R
3 u

p
ε dx

� sup
t � 0

(
t2

2

∫
�

|∇uε|2dx − 1

2∗ t
2∗

∫
�

u2
∗

ε dx

)
+ Cε4+α−n − Cμεn− (n−2)p

2

�
1

n
S

n
2 + Cεn−2 + Cε4+α−n − Cμεn− p(n−2)

2

<
1

n
S

n
2

provided ε enough small. The proof is complete. �
Proof of Theorem 1.3 We proceed in three steps.

Step 1. (1.7) has nonzero solutions. Since M �= ∅, J has a minimizing sequence {um} by
Lemma 4.1. In particular, Q(um) = 0 and J (um) → d̃ . Furthermore, note that

d̃ ← J (um ) − 1
2 Q(um ) = 1

4
L(um ) + p(n + α) − 8 − 2α − 2n

2p(4 − n + α)
μ

∫
R
n

|um |pdx + 1

n

∫
R
n

|um |2∗
dx,

which implies that

1

4
L(um) +

∫
R
n
|um |pdx + 1

n

∫
R
n
|um |2∗

dx � C < +∞,

for some C > 0. Since

T (um) = p(n + α) − 4n

p(4 + α − n)
μ

∫
R
n
|um |pdx +

∫
R
n
|um |2∗

dx < +∞,

we can obtain that {um} is bounded in X1,α . Similar to Lemma 2.6, we know that {um} is
also a (PS) sequence of J in A.

From J ′(um) → 0 as m → ∞. Similarly to Lemma 2.6, there exist k ∈ N ∪ {0} and a
finite sequence

(v0, v1, . . . , vk) ⊂ X1,α, vi �≡ 0, f or i > 0

of solutions of problem (1.1) and k sequences {ξ1m}, . . . , {ξ km} ⊂ R
n , such that asm → +∞,

∥∥∥∥∥um − v0 −
k∑

i=1

vi (· − ξ im)

∥∥∥∥∥
X1,α

→ 0;

|ξ im | → +∞, |ξ im − ξ
j
m | → +∞, i �= j; (4.5)

k∑
i=0

J (vi ) = d̃ (by Lemma 4.1). (4.6)

Since vi (i = 0, 1, . . . , k) is a solution of Eq. (1.1), we have J ′(vi ) = 0 for i = 0, 1, . . . , k.
This implies that vi ∈ A, and thus by Lemma 4.1, we have

J (vi ) � d̃ � inf
G

J (u) > 0 for i = 0, 1, . . . , k.
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Applying (4.6), there are two possibilities: either v0 �= 0 and k = 0, or v0 = 0 and k = 1. In
the first case, um(· + ξ1m) → v0(·) in X1,α (by (4.5)) and v0 is a solution of Eq. (1.7) with
J (v0) = d̃ (by (4.6)). In the latter, um(· + ξ1m) → v1(·) in X1,α as m → ∞ (by (4.5)) and v1
is a solution of Eq. (1.7) with J (v1) = d̃ (by (4.6)). Hence we prove Step 1.

Step 2. Every solution of (1.7) satisfies Eq. (1.1). Consider any solution u of (1.7). For

σ > 0, let u(x) = σ
2

p−2 uσ (σ x), we have∫
R
n
|∇u|2dx = 1

σ
p(n−2)−2n

p−2

∫
R
n
|∇uσ |2dx,

and ∫
R
n
|u|pdx = 1

σ
p(n−2)−2n

p−2

∫
R
n
|uσ |pdx .

Thus

Q(uσ ) = σ
p(n−2)−2n

p−2 Q(u) = 0,

and so uσ ∈ M . Since u = u1 satisfies (1.7), we deduce that f (σ ) = J (uσ ) satisfies
f ′(1) = 0. By using the property uσ ∈ M , we have

f ′(1) = 〈J ′(u), u〉(X1,α)−1,X1,α ,

where J ′ is the gradient of the C1 functional J , i.e.,

J ′(u) = −�u +
(∫

R
n

|u(y)|2
|x − y|n−α

dy

)
u − μ|u|p−2u − |u|2∗−2u.

Notice that

Q′(u) = −2�u − p(n + α) − 4n

4 − n + α
μ|u|p−2u − 2∗|u|∗−2u.

It follows from u ∈ M that

〈Q′(u), u〉(X1,α)−1,X1,α

= 2
∫

R
n
|∇u|2dx − p(n + α) − 4n

4 − n + α
μ

∫
R
n
|u|pdx − 2∗

∫
R
n
|u|2∗

dx − pQ(u)

= (2 − p)
∫

R
n
|∇u|2dx − (2∗ − p)

∫
R
n
|u|2∗

dx

< 0.

Finally, since u solves (1.7), there exists a Lagrange multiplier λ such that

J ′(u) = λQ′(u).

Thus,

0 = 〈J ′(u), u〉(X1,α)−1,X1,α = λ〈Q′(u), u〉(X1,α)−1,X1,α .

Noting that 〈Q′(u), u〉(X1,α)−1,X1,α < 0, we obtain λ = 0. Consequently, J ′(u) = 0, which
means that u solves Eq. (1.1).

Step 3. Conclusion. Consider

l = min{J (u) : u ∈ A}. (4.7)
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Let u ∈ G be such that J (u) = l. From Step 2 in Lemma 4.1, we have u ∈ M . So J (u) � d̃.
In particular

l = J (u) � d̃. (4.8)

Consider now a solution v of (1.7). Since J (v) = d̃ and v ∈ A (by Step 2), it follows from
(4.7) that d̃ � l. Combining with (4.8), we obtain d̃ = l. The equivalence of the two problems
follows easily. This completes the proof. �
Proof of Theorem 1.4 Similar to the Step 1 in the proof of Theorem 1.3, we can prove that
{um} is bounded in X1,α

rad . Since the embedding

X1,α
rad ↪→ L2∗

loc(R
n)

is compact, we are able to overcome the lack of compactness by the method of Lemma 3.3.
Thus, the same result as in Theorem 1.3 can be obtained.
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15. Ji, C., Zhang, Y., Rădulescu, V.: Multi-bump solutions for the magnetic Schrödinger–Poisson systemwith

critical growth. Electron. J. Qual. Theory Differ. Equ. 21, 1–30 (2022)

123



128 Page 34 of 34 C. Lei et al.

16. Lei, C., Lei, Y.: On existence of ground states of an equation of the Schrödinger–Poisson–Slater type.
Comptes Rendus Math. 359, 219–227 (2021)

17. Li, Y., Zhang, B., Han, X.: Existence and concentration behavior of positive solutions to Schrödinger–
Poisson–Slater equations. Adv. Nonlinear Anal. 12, 20220293 (2023)

18. Lieb, E.: Coherent states as a tool for obtaining rigorous bounds. In: Feng, D. H., Klauder, J. & Strayer,
M. R., (eds.) Proceedings of the Symposium on Coherent States, Past, Present and Future, Oak Ridge.
World Scientific, Singapore, pp. 267–278 (1994)

19. Lions, P.L.: Some remarks on Hartree equation. Nonlinear Anal. 5, 1245–1256 (1981)
20. Lions, P.L.: Solutions ofHartree–Fock equations for Coulomb systems. Commun.Math. Phys. 109, 33–97

(1987)
21. Lions, P. L.: The concentration-compactness principle in the calculus of variations. The locally compact

case. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1985) and 1, 223–283 (1985)
22. Lions, P. L.: The concentration-compactness principle in the calculus of variations. The limit case. Rev.

Mat. Iberoamericana 1, 145–201 (1985) and 2, 45–121 (1985)
23. Liu, J., Ji, C.: Concentration results for a magnetic Schrödinger–Poisson system with critical growth.

Adv. Nonlinear Anal. 27, 775–798 (2020)
24. Liu, Z., Zhang, Z., Huang, S.: Existence and nonexistence of positive solutions for a static Schrödinger–

Poisson–Slater equation. J. Differ. Equ. 266, 5912–5941 (2019)
25. Ruiz, D., Vaira, G.: Cluster solutions for the Schrödinger–Poinsson–Slater problem around a local mini-

mum of potential. Rev. Mat. Iberoamericana 27, 253–271 (2011)
26. Ruiz, D.: On the Schrödinger–Poisson–Slater system: Behavior of minimizers, radial and nonradial cases.

Arch. Ration. Mech. Anal. 198, 349–368 (2010)
27. Siciliano, G.: Multiple positive solutions for a Schrödinger–Poisson–Slater system. J. Math. Anal. Appl.

365, 288–299 (2010)
28. Slater, J.C.: A simplification of the Hartree–Fock method. Phys. Rev. 81, 385–390 (1951)
29. Tang, X., Chen, S.: Ground state solutions of Nehari–Pohozaev type for Schrödinger–Poisson problems

with general potentials. Discret. Contin. Dyn. Syst. 37, 4973–5002 (2017)
30. Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications,

vol. 24. Birkäuser, Boston (1996)
31. Zhang, J., Xu, Z., Zou,W.: Standing waves for nonlinear Schrödinger equations involving critical growth.

J. Lond. Math. Soc. 90, 827–844 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Groundstates of the Schrödinger–Poisson–Slater equation with critical growth
	Abstract
	1 Introduction and main results
	2 Proof of Theorem 1.1
	3 Proof of Theorem 1.2
	4 Proof of Theorem 1.3
	Acknowledgements
	References




