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1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. Consider the follow-

ing classical parametric semilinear Dirichlet problem with superlinear subcritical
perturbation: {−Δu(z) = λu(z) + ξ(z)u(z)r−1 in Ω,

u = 0 on ∂Ω,

}
(1)

where 1 < r < 2∗, λ is a real parameter and ξ is a nonnegative notrivial potential.
Let λ1 > 0 be the first eigenvalue of the Laplace operator in H1

0 (Ω) and let ϕ1 >
0 denote the corresponding eigenfunction. A direct application of the mountain
pass theorem shows that in the coercive case where λ < λ1, problem (1) has a
positive solution. If λ ≥ λ1 (noncoercive case), there is no positive solution of (1);
this follows by multiplying with ϕ1 and integrating. However, the dual variational
method implies that problem (1) has at least a solution for all λ ≥ λ1. The case
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where ξ is an indefinite potential becomes more complicated, for instance we cannot
assert whether problem (1) has positive solutions.

Nonlinear eigenvalue problems arise in many parts of mathematical physics and
an understanding of their nature is of practical as well as theoretical importance.
Such problems aim to explain a diversity of natural phenomena that have been
observed and characterized over the years. For instance, the buckling of the Euler
rod, the appearance of Taylor vortices, and the emergence of perturbations in an
electric circuit, all have the same cause: a physical parameter crosses a threshold,
pressuring the system to assemble itself into a new state that differs significantly
from the previous state. Here we refer to the pioneering global bifurcation results
established by Crandall and Rabinowitz [4] and Rabinowitz [22].

A deep motivation of the analysis developed in this paper comes from the sem-
inal work by Brezis and Vázquez [2], who established the existence of an “extreme
value” λ∗ of the bifurcation parameter λ such that a large class of problems with
convex and increasing nonlinearity has a smooth positive solution for all 0 < λ < λ∗,
but no solution exists if λ > λ∗. On the other hand, Garcia Azorero, Peral Alonso
and Manfredi [9] proved that for all 0 < λ < λ∗, there are at least two solutions.
The analysis carried out in [9] is developed in the case of competition phenomena
of convex and concave nonlinearities. The present paper is devoted to the analysis
of a more general class of parametric Dirichlet problems with indefinite perturba-
tion. We are concerned with the study of the following class of quasilinear elliptic
boundary value problems⎧⎨

⎩
−Δa

pu(z) = λu(z)p−1 + ξ(z)u(z)r−1 in Ω,
u = 0 on ∂Ω,
u > 0 in Ω,

⎫⎬
⎭ (Pλ)

where λ ≥ λ̂a
1 > 0, 1 < p < r < p∗ and λ̂a

1 is the principal eigenvalue of
(−Δa

p,W 1,p
0 (Ω)).

In this equation, a ∈ C0,1(Ω) is a weight function satisfying 0 < ĉ ≤ a(z) for
all z ∈ Ω (recall that C0,1(Ω) is the space of all R-valued Lipschitz functions defined
on Ω). By Δa

p we denote the nonautonomous p-Laplace differential operator defined
by

Δa
pu = div (a(z)|Du|p−2Du) for all u ∈ W 1,p(Ω).

The interest in the study of problem (Pλ) is twofold. On the one hand, there are
physical motivations, since the non-autonomous differential operator has been ap-
plied to describe steady-state solutions of reaction-diffusion problems in biophysics,
plasma physics, and chemical reaction analysis. The prototype equation for these
models can be written in the form

ut = Δa
pu(z) + λup−1(z) + ξ(z)ur−1(z).

In this framework, the function u (assumed to be positive) generally stands for a con-
centration, the term Δa

pu(z) corresponds to the diffusion with coefficient a(z)|Du|p−2

while λup−1(z)+ξ(z)ur−1(z) represents the reaction term related to source and loss
processes. On the other hand, such differential operators provide a valuable frame-
work for explaining the behavior of highly anisotropic materials whose hardening



Vol. 91 (2023) Indefinite Perturbations of the Eigenvalue Problem 355

properties, which are linked to the exponent governing the propagation of the gra-
dient variable, differ considerably with the point, where the modulating coefficient
a(z) dictates the geometry of a composite material.

In the reaction of problem (Pλ), λ is a parameter. We are mainly concerned with
the case where λ ≥ λ̂a

1, which expresses the fact that the corresponding eigenvalue
problem is not coercive. The perturbation ξ(z)u(z)r−1 is indefinite, that is, ξ ∈
Liploc(Ω) ∩ L∞(Ω) satisfies ξ+ �= 0 �= ξ−. So, we are dealing with an indefinite
superlinear perturbation of the eigenvalue problem for (−Δa

p,W 1,p
0 (Ω)). Our aim is

to prove an existence and multiplicity theorem for positive solutions, which is global
in the parameter λ (a bifurcation-type theorem).

This problem was first investigated by Brown and Zhang [3] and Ouyang [18]
for semilinear equations driven by the Laplacian. Brown and Zhang [3] used the
Nehari method, while Ouyang [18] used bifurcation and variational methods. Ex-
tensions to equations driven by the autonomous p-Laplacian (that is, a ≡ 1), were
obtained by Drabek and Pohozaev [7] and by Birindelli and Demengel [1]. Drabek
and Pohozaev [7] used the fibering method (see Kuzin and Pohozaev [13]), while
Birindelli and Demengel [1] followed a variational approach. Their existence and
multiplicity results are not global in λ > 0. Motivated by the above mentioned
pioneering contributions, we develop in this paper an exhaustive bifurcation anal-
ysis in the framework of a standard Dirichlet boundary condition. To the best of
our knowledge, this is the first analysis carried out for non-autonomous quasilinear
equations with indefinite potential and noncoercive perturbation.

2. Mathematical Background and Hypotheses

The main function spaces used in the analysis of problem (Pλ) are the Sobolev space
W 1,p

0 (Ω) and the Banach space

C1
0 (Ω) = {u ∈ C1(Ω) : u = 0 on ∂Ω}.

On account of the Poincaré inequality, we can consider on W 1,p
0 (Ω) the following

norm:

‖u‖ = ‖Du‖p for all u ∈ W 1,p
0 (Ω).

The space C1
0 (Ω) is an ordered Banach space with positive (order) cone

C+ = {u ∈ C1
0 (Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

int C+ =
{

u ∈ C+ : u(z) > 0 for all z ∈ Ω,
∂u

∂n

∣∣
∂Ω

< 0
}

,

with n(·) being the outward unit normal on ∂Ω and
∂u

∂n
= (Du, n)RN .
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Let a ∈ C0(Ω) with a(z) ≥ ĉ > 0 for all z ∈ Ω and consider the nonlinear

operator Aa
p : W 1,p

0 (Ω) → W−1,p′
(Ω) = W 1,p

0 (Ω)∗ (
1
p

+
1
p′ = 1) defined by

〈Aa
pu, h〉 =

∫
Ω

a(z)|Du|p−2(Du,Dh)RN dz for all u, h ∈ W 1,p
0 (Ω).

This operator has the following properties (see Proposition 7.77 of Hu and
Papageorgiou [11, p.465]).

Proposition 2.1. The operator Aa
p(·) is bounded (maps bounded sets to bounded sets),

continuous, strictly monotone (thus, maximal monotone, too) and of type (S)+, that
is,
“if un

w−→ u in W 1,p
0 (Ω) and lim supn→∞〈Aa

p(un), un − u〉 ≤ 0, then un → u in
W 1,p

0 (Ω).”

We consider the following nonlinear eigenvalue problem

− Δa
pu(z) = λ̂|u(z)|p−2u(z) in Ω, u|∂Ω = 0. (2)

We say that the real number λ̂ is an eigenvalue of (−Δa
p, W 1,p

0 (Ω)) if problem
(2) has a nontrivial weak solution û ∈ W 1,p

0 (Ω), which is known as an eigenfunction
corresponding to the eigenvalue λ̂.

We know (see Liu and Papageorgiou [17]) that the following properties hold:
(i) There is a smallest eigenvalue λ̂a

1(p) > 0 which is given by

λ̂a
1(p) = inf

{∫
Ω

a(z)|Du|pdz

‖u‖p
p

: u ∈ W 1,p
0 (Ω), u �= 0

}
. (3)

(ii) λ̂a
1(p) is simple (that is, if û, v̂ ∈ W 1,p

0 (Ω) are two eigenfunctions corresponding
to λ̂a

1(p), then û = θv̂ with θ ∈ R, θ �= 0), isolated (that is, if σa
p denotes the

spectrum of (2), then there exists ε > 0 such that (λ̂a
1(p), λ̂a

1(p) + ε) ∩ σa
p = ∅);

moreover, the eigenfunctions corresponding to λ̂a
1(p) have fixed sign and belong

to intC+ ∪ (−int C+).
(iii) If λ̂ > λ̂a

1(p) is an eigenvalue of (2), then the eigenfunctions corresponding to
λ̂ are nodal (sign-changing).
If u, v : Ω → R are measurable functions and u(z) ≤ v(z) for a.a. z ∈ Ω, then

we define

[u, v] = {h ∈ W 1,p
0 (Ω); u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω},

intC1
0 (Ω)[u, v] = interior in C1

0 (Ω)of [u, v] ∩ C1
0 (Ω),

[u) = {h ∈ W 1,p
0 (Ω); u(z) ≤ h(z) for a.a. z ∈ Ω}.

We denote by | · |N the Lebesgue measure on R
N and when we want to em-

phasize the domain of the eigenvalue problem, we will write λ̂a
1(p, Ω). We denote by

Liploc(Ω) the space of locally Lipschitz functions on Ω.
Given a measurable function u : Ω → R we write 0 ≺ u if for all K ⊆ Ω

compact, we have

0 < cK ≤ u(z) for a.a. z ∈ K.
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If X is a Banach space and ϕ ∈ C1(X), we denote

Kϕ = {u ∈ X; ϕ′(u) = 0} (the critical set of ϕ)

and we say that ϕ(·) satisfies the C-condition if it has the following property:

“Every sequence {un}n∈N ⊆ X such that

{ϕ(un)}n∈N ⊆ R is bounded and (1 + ‖un‖X)ϕ′(un) → 0 in X∗,

admits a strongly convergent subsequence.”

Our hypotheses on the data of problem (Pλ) are the following.
H0: a ∈ C0,1(Ω), a(z) ≥ ĉ > 0 for all z ∈ Ω and ξ ∈ Liploc(Ω) ∩ L∞(Ω) such

that ξ+ �= 0 �= ξ− and if Ω+ = {z ∈ Ω : ξ(z) > 0}, Ω− = {z ∈ Ω : ξ(z) < 0},
then |Ω\(Ω+ ∪ Ω−)|N = 0 and

∫
Ω

ξ(z)ûr
1dz < 0, with û1 being the positive Lp-

normalized (that is, ‖û1‖p = 1) eigenfunction corresponding to λ̂a
1(p) > 0 (we know

that û1 ∈ int C+).
For λ ≥ λ̂a

1(p), let ψλ : W 1,p
0 (Ω) → R be the C1-functional defined by

ψλ(u) =
1
p

∫
Ω

a(z)|Du|pdz − λ

p
‖u‖p

p for all u ∈ W 1,p
0 (Ω).

We write ψ1 = ψλa
1(p).

3. Positive Solutions

We start by considering the following minimization problem:

m = inf
{

ψ1(u) : u ∈ W 1,p
0 (Ω), ‖u‖p = 1,

∫
Ω

ξ(z)|u|rdz = 0
}

. (4)

Proposition 3.1. If hypotheses H0 hold, then m > 0.

Proof. From (3) we see that m ≥ 0. Suppose that m = 0. Then we can find a
sequence {un}n∈N ⊆ W 1,p

0 (Ω) such that

ψ1(un) ↓ 0, ‖un‖p = 1,

∫
Ω

ξ(z)|un|rdz = 0 for all n ∈ N. (5)

From (5) we see that {un}n∈N ⊆ W 1,p
0 (Ω) is bounded. So, we may assume that

un
w−→ u in W 1,p

0 (Ω), un → u in Lr(Ω). (6)

The functional ψ1 is sequentially weakly lower semicontinuous. So, from (6) we have

ψ1(u) ≤ lim inf
n→∞ ψ1(un) = 0. (7)

Moreover, again from (6), we obtain

‖u‖p = 1,

∫
Ω

ξ(z)|u|rdz = 0. (8)
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From (7) and (8) it follows that

ψ1(u) = 0,

⇒
∫

Ω

a(z)|Du|pdz = λ̂a
1‖u‖p

p,

⇒ u = ϑû1, with ϑ �= 0.

Using now (8) we have ∫
Ω

ξ(z)ûr
1dz = 0,

which contradicts hypothesis H0. Therefore m > 0. �

We introduce the following two sets:

L = {λ ≥ λ̂a
1(p); problem (Pλ)has a positive solution},

Sλ = set of positive solutions of (Pλ).

Proposition 3.2. If hypotheses H0 hold, then L �= ∅ and for all λ ∈ L we have
Sλ ⊆ int C+.

Proof. Let λ ≥ λ̂a
1(p) and consider the following minimization problem

β∗
λ = inf

{
ψλ(u);

1
r

∫
Ω

ξ(z)|u|rdz = 1, u ∈ W 1,p
0 (Ω)

}
. (9)

We first show that if ε > 0 is small and λ ∈ (λ̂a
1(p), λ̂a

1(p) + ε) then β∗
λ > −∞.

Arguing by contradiction, suppose that for some λ > λ̂a
1(p) we can find {un}n∈N ⊆

W 1,p
0 (Ω) such that

ψλ(un) → −∞,
1
r

∫
Ω

ξ(z)|un|rdz = 1 for all n ∈ N. (10)

Using (3), we have

1
p
[λ̂a

1(p) − λ]‖un‖p
p ≤ ψλ(un) → −∞.

Since λ > λ̂a
1(p), we must have

‖un‖p → ∞. (11)

Let yn = un

‖un‖p
for n ∈ N. Then ‖yn‖p = 1 for all n ∈ N. We can find n0 ∈ N

such that

ψλ(un) ≤ 0 for all n ≥ n0,
⇒ ψλ(yn) ≤ 0 for all n ≥ n0,
⇒ ĉ ‖Dyn‖p

p ≤ λ for all n ≥ n0,

⇒ {yn}n∈N ⊆ W 1,p
0 (Ω) is bounded.

We may assume that

yn
w−→ y in W 1,p

0 (Ω), yn → y in Lr(Ω). (12)
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Using (12) we have

ψλ(y) ≤ lim inf
n→∞ ψλ(yn) ≤ 0,

1
r

∫
Ω

ξ(z)|yn|rdz =
1

‖un‖r
p

for all n ∈ N (see (10)).

Passing to the limit as n → ∞, we obtain

ψλ(y) ≤ 0,
1
r

∫
Ω

ξ(z)|y|rdz = 0. (13)

So, if

mλ = inf
{

ψλ(v) :
1
r

∫
Ω

ξ(z)|v|rdz = 0, v ∈ W 1,p
0 (Ω)

}
,

then from (13), we see that mλ ≤ 0. On the other hand, mλ̂a
1(p) = m > 0 and

from Proposition 7.18 of Dal Maso [5, p.79], we know that the mapping λ �→ mλ

is continuous on [λ̂a
1(p),∞). So, we can find ε > 0 such that mλ > 0 for all λ ∈

(λ̂a
1(p), λ̂a

1(p) + ε), a contradiction. We infer that

β∗
λ > −∞ for all λ ∈ (λ̂a

1(p), λ̂a
1(p) + ε).

We now consider a minimizing sequence {un}n∈N ⊆ W 1,p
0 (Ω) for problem (9),

when λ ∈ (λ̂a
1(p), λ̂a

1(p) + ε). We have

ψλ(un) ↓ β∗
λ and

1
r

∫
Ω

ξ(z)|un|rdz = 1 for all n ∈ N. (14)

Claim. {un}n∈N ⊆ W 1,p
0 (Ω) is bounded.

Arguing by contradiction, assume that at least for a subsequence, we have

‖un‖ → ∞. (15)

Let yn = un

‖un‖p
for n ∈ N. From (14) and (15) it follows that

ψλ(yn) → 0 as n → ∞.

This implies that {yn}n∈N ⊂ W 1,p
0 (Ω) is bounded and so we may assume that

yn
w−→ y in W 1,p

0 (Ω), yn → y in Lr(Ω). (16)

Then from (16) and the sequential weak lower semicontinuity of ψλ(·), we have

ψλ(y) ≤ lim infn→∞ ψλ(yn) = 0, ‖y‖p = 1, 1
r

∫
Ω

ξ(z)|y|rdz = 0,
⇒ mλ ≤ 0.

But from the first part of the proof we have

mλ > 0 for all λ ∈ (λ̂a
1(p), λ̂a

1(p) + ε),

a contradiction. This proves the Claim.
On account of the Claim, we may assume

un
w−→ û in W 1,p

0 (Ω), un → û in Lr(Ω). (17)
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Using (17), we can say that

ψλ(û) ≤ lim inf
n→∞ ψλ(un) = β∗

λ,
1
r

∫
Ω

ξ(z)|û|rdz = 1,

⇒ ψλ(û) = β∗
λ and

1
r

∫
Ω

ξ(z)|û|rdz = 1 (see (9)). (18)

Replacing û ∈ W 1,p
0 (Ω) with |û| ∈ W 1,p

0 (Ω), we see that we may assume that
û ≥ 0, û �= 0. From (18) and the Lagrange multiplier rule (see [19, p.422]), we can
find η ∈ R such that

〈ψ′
λ(û), h〉 = η

∫
Ω

ξ(z)ûr−1hdz for all h ∈ W 1,p
0 (Ω). (19)

In (19) we use the test function h = û ∈ W 1,p
0 (Ω) and obtain∫

Ω

a(z)|Dû|pdz − λ‖û‖p
p = η

∫
Ω

ξ(z)ûrdz,

⇒ pψλ(û) = ηr,

⇒ η =
p

r
β∗

λ (see (18)).

From (19) we have

− Δa
pû − λûp−1 =

p

r
β∗

λξ(z)ûr−1 in Ω. (20)

Let ũ =
(

p
rβ∗

λ

)1/(r−p)
û ∈ W 1,p

0 (Ω). We have

−Δa
pũ − λũp−1

=
(p

r
β∗

λ

) p−1
r−p

(−Δa
pû − λûp−1)

=
(p

r
β∗

λ

) r−1
r−p

ξ(z)ûr−1 (see (20))

= ξ(z)ũr−1 in Ω,

⇒ ũ ∈ Sλ for all λ ∈ (λ̂a
1, λ̂

a
1 + ε).

We have proved that

(λ̂a
1, λ̂

a
1 + ε) ⊂ L �= ∅.

Let u ∈ Sλ. Then

−Δa
pu = λup−1 + ξ(z)ur−1 in Ω.

Theorem 7.1 of Ladyzhenskaya and Uraltseva [14] implies that u ∈ L∞(Ω). Then,
applying the nonlinear regularity theory of Lieberman [15], we have that

u ∈ C+\{0}.

We have

−Δa
pu + ‖ξ‖∞‖u‖r−p

∞ up−1 ≥ 0 in Ω.

Invoking Lemma 1 of Liu and Papageorgiou [16], we obtain

u ∈ int C+.

Therefore for all λ ∈ L, Sλ ⊆ int C+. �
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Let λ∗ = sup L.

Proposition 3.3. If hypotheses H0 hold, then λ∗ < ∞.

Proof. Let Ω̂+ be a connected component of Ω+. Let λ̂1(Ω̂+) be the principal eigen-
value of (−Δa

p,W 1,p
0 (Ω̂+)) and let û+ ∈ W 1,p

0 (Ω̂+) ∩ L∞(Ω̂+) ∩ C0,α
loc (Ω̂+) be the

corresponding Lp-normalized positive eigenfunction for λ̂a
1(Ω̂+). Using Proposition

2.4 of Papageorgiou, Vetro and Vetro [21], we have

û+(z) > 0 for all z ∈ Ω. (21)

We know that λ̂a
1 < λ̂a

1(Ω̂+). Let λ > λ̂a
1(Ω̂+) and suppose that λ ∈ L. Let u ∈ Sλ ⊆

int C+. Then u(z) > 0 for all z ∈ Ω̂+. Consider the following function defined on
Ω̂+:

R(û+, u) = |Dû+|p − a(z)|Du|p−2(Du,D

(
ûp

+

up−1

)
)RN .

Integrating over Ω̂+ and using the nonlinear Picone’s inequality of Jaros [12], we
have

0 ≤
∫

Ω̂+

R(û+, u)dz

= ‖Dû+‖p

Lp(Ω̂+)
−

∫
Ω̂+

(−Δa
pu)

ûp
+

up−1
dz

(using the nonlinear Green’s identity, see [19, p.34])

= ‖Dû+‖p

Lp(Ω̂+)
−

∫
Ω̂+

[λup−1 + ξ+(z)ur−1]
ûp

+

up−1
dz

= ‖Dû+‖p

Lp(Ω̂+)
λ‖û+‖p

Lp(Ω̂+)
−

∫
Ω̂+

ξ+(z)ur−pûp
+dz

= −
∫

Ω̂+

ξ+(z)ur−pûp
+dz < 0,

a contradiction. Therefore λ /∈ L. We conclude that λ∗ ≤ λ̂a
1(Ω̂+) < ∞. �

Next, we show that L is connected (an interval).

Proposition 3.4. If hypotheses H0 hold, λ ∈ L and μ ∈ (λ̂a
1, λ), then μ ∈ L and

given uλ ∈ Sλ we can find uμ ∈ Sμ such that uλ − uμ ∈ int C+.

Proof. Since λ ∈ L, we have Sλ �= ∅. Let uλ ∈ Sλ ⊆ int C+. We have

− Δa
puλ = λup−1

λ + ξ(z)uλur−1
λ

≥ μup−1
λ + ξ(z)uλur−1

λ in Ω. (22)

We introduce the Carathéodory function kμ(z, x) defined by

kμ(z, x) =
{

μ(x+)p−1 + ξ(z)(x+)r−1 if x ≤ uλ(z)
μuλ(z)p−1 + ξ(z)uλ(z)r−1 if x > uλ(z).

(23)

We set Kμ(z, x) =
∫ x

0
kμ(z, s)ds and consider the C1-functional γμ : W 1,p

0 (Ω) →
R defined by

γμ(u) =
1
p

∫
Ω

a(z)|Du|pdz −
∫

Ω

Kμ(z, u)dz for all u ∈ W 1,p
0 (Ω).
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Using hypotheses H0 and (23), we obtain

γμ(u) ≥ ĉ

p
‖Du‖p

p − c1 for somec1 > 0, allu ∈ W 1,p
0 (Ω),

hence γμ(·) is coercive.
Also, using the Sobolev embedding theorem, we see that γμ(·) is sequentially

weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find
uμ ∈ W 1,p

0 (Ω) such that

γμ(uμ) = inf{γμ(u); u ∈ W 1,p
0 (Ω)}. (24)

Recall that uλ ∈ int C+. Using Proposition 4.1.22 of [19, p.274], we can find
t ∈ (0, 1) small such that

0 ≤ tû1 ≤ uλ in Ω. (25)

Then we have

γμ(tû1) ≤ tp

p [λ̂a
1 − μ] + ‖ξ‖∞

r tr‖û1‖r
r

(see (23), (25) and recall that‖û1‖p = 1).

Since μ > λ̂a
1, we can write

γμ(tû1) ≤ c2t
r − c3tp for some c2, c3 > 0.

But p < r. So, choosing t ∈ (0, 1) even smaller if necessary, we have

γμ(tû1) < 0,
⇒ γμ(uμ) < 0 = γμ(0) (see (24)),
⇒ uμ �= 0.

From (24), we have

〈γ′
μ(uμ), h〉 = 0 for all h ∈ W 1,p

0 (Ω),

⇒ 〈Aa
p(uμ), h〉 =

∫
Ω

kμ(z, uμ) for all h ∈ W 1,p
0 (Ω). (26)

In (26) we first choose the test function h = −u−
μ ∈ W 1,p

0 (Ω). We obtain

ĉ ‖Du−
μ ‖p

p ≤ 0,
⇒ uμ ≥ 0, uμ �= 0.

Next, we choose the test function (uμ − uλ)+ ∈ W 1,p
0 (Ω) and obtain

〈Aa
p(uμ), (uμ − uλ)+〉
=

∫
Ω

[μup−1
λ + ξ(z)ur−1

λ ](uμ − uλ)+dz (see (23))

≤ 〈Aa
p(uλ), (uμ − uλ)+〉 (see (22))

⇒ uμ ≤ uλ (see Proposition 2.1).

So, we have proved that

uμ ∈ [0, uλ], uμ �= 0. (27)

From (27), (23) and (26) it follows that

uμ ∈ Sμ ⊆ int C+ and μ ∈ L.
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Consider the function x �→ ξ(z)xr−1, x ≥ 0. Let ρ = ‖uλ‖∞. Since ξ ∈ L∞(Ω)
and r > p, we can find ξ̂ρ > 0 such that for a.a. z ∈ Ω the function x �→ ξ(z)xr−1 +
ξ̂ρx

p−1 is nondecreasing on [0, ρ]. We have

−Δa
puλ + ξ̂ρu

p−1
λ

= λup−1
λ + ξ(z)ur−1

λ + ξ̂ρu
p−1
λ

= μup−1
λ + (λ − μ)up−1

λ + ξ(z)ur−1
λ + ξ̂ρu

p−1
λ

≥ μup−1
λ + ξ(z)ur−1

λ + ξ̂ρu
p−1
λ (see (27))

= −Δa
puμ + ξ̂ρu

p−1
ρ in Ω.

Since uλ ∈ int C+ we see that 0 ≺ (λ − μ)up−1
λ and so, using Proposition 3.2 of

Gasinski and Papageorgiou [10], we infer that

uλ − uμ ∈ int C+.

The proof is now complete. �

According to the above proposition, we have

(λ̂a
1, λ

∗) ⊂ L ⊂ [λ̂a
1, λ

∗].

We will show that for λ ∈ (λ̂a
1, λ

∗) we have multiplicity of positive solutions. For
this purpose, we introduce the energy functional ϕλ : W 1,p

0 (Ω) → R of problem (Pλ)
defined by

ϕλ(u) =
1
p

∫
Ω

a(z)|Du|pdz − λ

p
‖u‖p

p − 1
r

∫
Ω

ξ(z)|u|rdz for all u ∈ W 1,p
0 (Ω).

Evidently, ϕ ∈ C1(W 1,p
0 (Ω)).

Proposition 3.5. If hypotheses H0 hold and λ ≥ λ̂a
1, then ϕλ(·) satisfies the C-

condition.

Proof. We consider a sequence {un}n∈N ⊂ W 1,p
0 (Ω) such that

|ϕλ(un)| ≤ c4 for somec4 > 0, alln ∈ N, (28)

(1 + ‖un‖)ϕ′
λ(un) → 0 in W−1,p′

(Ω)asn → ∞. (29)

From (29) we have
∣∣〈Aa

p(un), h〉 −
∫

Ω

λ|un|p−2unhdz −
∫

Ω

ξ(z)|un|r−2unhdz
∣∣ ≤ εn‖h‖

1 + ‖un‖
for all h ∈ W 1,p

0 (Ω), withεn → 0+. (30)

In (30) we use the test function h = un ∈ W 1,p
0 (Ω) and obtain

∣∣ ∫
Ω

a(z)|Dun|pdz − λ ‖un‖p
p −

∫
Ω

ξ(z)|un|rdz
∣∣ ≤ εn for all n ∈ N,

⇒
∫

Ω

ξ(z)|un|rdz ≤ εn +
∫

Ω

a(z)|Dun|pdz + λ ‖un‖p
p for all n ∈ N. (31)
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From (28) we have

r

p

∫
Ω

a(z)|Dun|pdz − λr

p
‖un‖p

p ≤ rc4

∫
Ω

a(z)ξ(z)|un|rdz,

⇒ r

p

∫
Ω

a(z)|Dun|pdz − λr

p
‖un‖p

p

≤ rc4 + εn +
∫

Ω

a(z)|Dun|pdz + λ ‖un‖p
p for all n ∈ N(see (31)),

⇒
[
r

p
− 1

] (∫
Ω

a(z)|Dun|pdz − λ ‖un‖p
p

)
≤ c5,

for some c5 > 0, all n ∈ N. (32)

Suppose that ‖un‖p → ∞ and let yn = un

‖un‖p
for all n ∈ N. As before we may

assume that un ≥ 0 for every n ∈ N (just replace un by |un|). So, we have

‖yn‖p = 1, yn ≥ 0 for all n ∈ N.

Multiplying (32) with 1
‖un‖p

p
, we obtain

[
r

p
− 1

] (∫
Ω

a(z)|Dyn|pdz − λ

)
≤ c5

‖un‖p
p
,

⇒ {yn}n∈N ⊆ W 1,p
0 (Ω) is bounded (see hypotheses H0).

We may assume that

yn
w−→ y in W 1,p

0 (Ω), yn → y in Lr(Ω), ‖y‖p = 1, y ≥ 0. (33)

Multiplying (30) with 1

‖un‖p−1
p

, we obtain

〈Aa
p(yn), h〉 − λ

∫
Ω

yp−1
n hdz = ‖un‖r−p

p

∫
Ω

ξ(z)yr−1
n hdz + ε′

n‖h‖, with ε′
n → 0+.(34)

We examine relation (34) and we see that the left-hand side is bounded. Since
r > p and ‖un‖p → ∞, we must have∫

Ω

ξ(z)yr−1
n hdz → 0 for all h ∈ W 1,p

0 (Ω),

⇒
∫

Ω

ξ(z)yr−1hdz = 0 for all h ∈ W 1,p
0 (Ω). (35)

Since |Ω\(Ω+ ∪ Ω−)|N = 0 (see hypotheses H0), from (35) it follows that
y(z) = 0 for a.a. z ∈ Ω, which contradicts (33). Therefore

{un}n∈N ⊂ Lp(Ω) is bounded.

But then from (32), we infer that

{un}n∈N ⊂ W 1,p
0 (Ω) is bounded.

So, we may assume that

un
w−→ u in W 1,p

0 (Ω), un → u in Lr(Ω). (36)
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In (30) we use the test function h = un − u ∈ W 1,p
0 (Ω), pass to the limit as

n → ∞ and use (36). We obtain

lim
n→∞〈Aa

p(un), un − u〉 = 0,

⇒ un → u in W 1,p
0 (Ω) (see Proposition 2.1),

⇒ ϕλ(·) satisfies the C − condition.

The proof is now complete. �

Now we can prove the multiplicity result when λ ∈ (λ̂a
1, λ

∗).

Proposition 3.6. If hypotheses H0 hold and λ ∈ (λ̂a
1, λ

∗), then problem (Pλ) has at
least two solutions

uλ, ûλ ∈ int C+.

Proof. Let ϑ ∈ (λ, λ∗). Then ϑ ∈ L and we can find uϑ ∈ Sϑ ⊆ int C+. On account
of Proposition 3.4, we can find uλ ∈ Sλ ⊆ int C+ such that

uϑ − uλ ∈ int C+. (37)

Let μ ∈ (λ̂a
1, λ) and consider the following auxiliary Dirichlet problem{ −Δa

pu(z) = μu(z)p−1 − ‖ξ‖∞u(z)r−1 in Ω,
u|∂Ω = 0, u > 0.

}
(38)

Let σμ : W 1,p
0 (Ω) → R be the energy functional for problem (38) defined by

σμ(u) =
1
p

∫
Ω

a(z)|Du|pdz +
‖ξ‖∞

r
‖u‖r

r − μ

p
‖u‖p

p for all u ∈ W 1,p
0 (Ω).

Evidently, σμ ∈ C1(W 1,p
0 (Ω)). Moreover, since r > p, we see that σμ(·) is coercive.

Also, it is sequentially weakly lower semicontinuous. So, we can find uμ ∈ W 1,p
0 (Ω)

such that

σμ(uμ) = inf{σμ(u) : u ∈ W 1,p
0 (Ω)}. (39)

As before, we can always replace uμ by |uμ| and so we may assume that uμ ≥ 0.
Since μ > λ̂a

1 and r > p, for t ∈ (0, 1) small, we have

σμ(tû1) < 0,
⇒ σμ(uμ) < 0 = σμ(0) (see (39)),
⇒ uμ �= 0.

From (39) we have

〈σ′
μ(uμ), h〉 = 0,

⇒ 〈Aa
p(uμ), h〉 =

∫
Ω

[μup−1
μ − ‖ξ‖∞ur−1

μ ]hdz for all h ∈ W 1,p
0 (Ω),

⇒ uμ is a solution of problem (38).

As before (see the proof of Proposition 3.2), using the nonlinear regularity
theory of Lieberman [16], we inder that

uμ ∈ int C+.
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From Diaz and Saa [6] (see also Fragnelli, Mugnai and Papageorgiou [8]), we obtain
that this positive solution uμ is unique.

Claim: u − uμ ∈ int C+ for all u ∈ Sλ ⊆ int C+.
We first show that uμ ≤ u for all u ∈ Sλ. To this end, we introduce the

Carathéodory function eμ(z, x) defined by

eμ(z, x) =
{

μ(x+)p−1 − ‖ξ‖∞(x+)r−1 if x ≤ u(z)
μu(x)p−1 − ‖ξ‖∞u(z)r−1 if x > u(z). (40)

We set Eμ(z, x) =
∫ x

0
eμ(z, s)ds and consider the C1-functional σ̂μ : W 1,p

0 (Ω) → R

defined by

ˆσmu(u) =
1
p

∫
Ω

a(z)|Du|pdz −
∫

Ω

Eμ(z, u)dz for all u ∈ W 1,p
0 (Ω).

Using hypotheses H0 and (40), we see that

σ̂μ(u) ≥ ĉ
p ‖Du‖p

p − c6 for some c6 > 0, all u ∈ W 1,p
0 (Ω),

⇒ σ̂μ(·) is coercive.

Also, by the Sobolev embedding theorem, σ̂μ(·) is sequentially weakly lower
semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find ũμ ∈ W 1,p

0 (Ω)
such that

σ̂μ(ũμ) = inf{σ̂μ(v) : v ∈ W 1,p
0 (Ω)}. (41)

Recall that u ∈ Sλ ⊆ int C+. So, using Proposition 4.1.22 of Papageorgiou,
Rădulescu and Repovš [19, p.274], we can find t ∈ (0, 1) small such that

0 ≤ tû1(z) ≤ u(z) for all z ∈ Ω.

Since μ > λ̂a
1 and r > p, taking t ∈ (0, 1) even smaller if necessary, we obtain

that

σ̂μ(tû1) < 0 (see (40)),
⇒ σ̂μ(ũμ) < 0 = σ̂μ(0) (see (41)),
⇒ ũμ �= 0.

From (41) we have

〈σ̂μ
′(ũμ), h〉 = 0 for all u ∈ W 1,p

0 (Ω),

⇒ 〈Aa
p(ũμ), h〉 =

∫
Ω

eμ(z, ũμ)hdz for all u ∈ W 1,p
0 (Ω). (42)

In (42) let h = −ũ−
μ ∈ W 1,p

0 (Ω). Then

ĉ ‖Dũ−
μ ‖p

p ≤ 0 (see hypothesesH0 and (40)),

⇒ ũμ ≥ 0, ũμ �= 0.
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Next, in (42) we use the test function (ũμ − u)+ ∈ W 1,p
0 (Ω). We obtain

〈Aa
p(ũμ), (ũμ − u)+〉

=
∫

Ω

[μup−1 − ‖ξ‖∞ur−1](ũμ − u)+dz (see (40))

≤
∫

Ω

[λup−1 − ‖ξ‖∞ur−1](ũμ − u)+dz

≤
∫

Ω

[λup−1 + ξ(z)ur−1](ũμ − u)+dz

= 〈Aa
p(u), (ũμ − u)+〉 (since u ∈ Sλ),

⇒ ũμ ≤ u.

So, we have proved that

ũμ ∈ [0, u], ũμ �= 0. (43)

From (43), (40) and (42), we infer that

ũμ is a positive solution of (38),

⇒ ũμ = uμ (uniqueness of the solution),

⇒ uμ ≤ u for all u ∈ Sλ(see (43)).

Now let ρ = ‖u‖∞ and let ξ̂ρ > 0 be such that for a.a. z ∈ Ω the function
x �→ ξ(z)xr−1 + ξ̂ρx

p−1 is nondecreasing (recall that ξ ∈ L∞(Ω) and r > p). We
have

− Δa
puμ + ξ̂up−1

μ

= μup−1
μ − ‖ξ‖∞ur−1

μ + ξ̂up−1
μ

≤ μup−1
μ + ξ(z)ur−1

μ + ξ̂up−1
μ

= λup−1
μ − (λ − μ)up−1

μ + ξ(z)ur−1
μ + ξ̂up−1

μ

≤ λup−1 + ξ(z)ur−1 + ξ̂up−1 (see (43))

= −Δa
pu + ξ̂up−1 in Ω(sinceu ∈ Sλ).

Note that 0 ≺ (λ − μ)up−1
μ (recall that uμ ∈ int C+). So, using Proposition 3.2

of Gasinski and Papageorgiou [10], we obtain

u − uλ ∈ int C+ for all u ∈ Sλ. (44)

This proves the Claim.
Now we introduce the Carathéodory function �̂λ(z, x) defined by

�̂λ(z, x) =

⎧⎨
⎩

λuμ(z)p−1 + ξ(z)uμ(z)r−1 if x < uμ(z)
λxp−1 + ξ(z)xr−1 if uμ(z) ≤ x ≤ uϑ(z)
λuϑ(z)p−1 + ξ(z)uϑ(z)r−1 if uϑ(z) < x.

(45)
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We set L̂λ(z, x) =
∫ x

0
�̂λ(z, s)ds and consider the C1-functional β̂λ : W 1,p

0 (Ω) →
R defined by

β̂λ(u) =
1
p

∫
Ω

a(z)|Du|pdz −
∫

Ω

L̂λ(z, u)dz for all u ∈ W 1,p
0 (Ω).

Also let γλ : W 1,p
0 (Ω) → R be the C1-functional introduced in the proof of Propo-

sition 3.4 using (23) (with μ replaced by λ and uλ by uϑ). We see that

β̂λ|[uμ,uϑ] = γλ|[uμ,uϑ] + ˆηλ}with η̂λ ∈ R. (46)

From the proof of Proposition 3.4, we know that uλ is a global minimizer of
γλ(·). Moreover, from (37) and (44), we see that

uλ ∈ intC1
0 (Ω)[uμ, uϑ]. (47)

From (46) and (47) we infer that

uλ is a local C1
0 (Ω) -minimizer of β̂λ(·). (48)

Let �λ(z, x) be the Carathéodory function defined by

�λ(z, x) =
{

λuμ(z)p−1 + ξ(z)uμ(z)r−1 if x ≤ uμ(z)
λxp−1 + ξ(z)xr−1 if x > uμ(z).

(49)

We set Lλ(z, x) =
∫ x

0
�λ(z, s)ds and consider the C1-functional βλ : W 1,p

0 (Ω) → R

defined by

βλ(u) =
1
p

∫
Ω

a(z)|Du|pdz −
∫

Ω

Lλ(z, u)dz for all u ∈ W 1,p
0 (Ω).

From (45) and (47) we see that

βλ|[uμ,uϑ] = β̂λ|[uμ,uϑ].

From (48) we have that

uλ is a local C1
0 (Ω) − minimizer of βλ(·),

⇒ uλ is a local W 1,p
0 (Ω) − minimizer of βλ(·)

(see [20, Proposition A3]). (50)

Using (49) and the nonlinear regularity theory, we can easily show that

Kβλ
⊆ [uμ) ∩ int C+. (51)

So, we may assume that Kβλ
is finite. Otherwise, on account of (51) and (49), we

see that we already have an infinity of positive solutions for problem (Pλ) and so
we are done. Then (50) and Theorem 5.7.6 of [19, p.449] imply that we can find
ρ ∈ (0, 1) small such that

βλ(uλ) = inf{βλ(u) : ‖u − uλ‖ = ρ} = mλ. (52)

Let û+ ∈ W 1,p
0 (Ω) ∩ L∞(Ω̂+) ∩ C0,α(Ω̂+) be as in the proof of Proposition 3.3.

We extend this function to all of Ω by setting u+(z) = 0 for all z ∈ Ω\Ω̂+. We
continue to denote the extended function by û+. We have û+ ∈ W 1,p

0 (Ω) ∩ L∞(Ω).
Since r > p and û+(z) > 0 for all z ∈ Ω, we see that

βλ(tû+) → −∞ as t → +∞. (53)



Vol. 91 (2023) Indefinite Perturbations of the Eigenvalue Problem 369

Note that

βλ|[ûμ) = ϕλ|[ûμ) + η∗
λ with η∗

λ ∈ R (see (49)).

This equality and Proposition 3.5 imply that

βλ(·) satisfies the C − condition. (54)

Then (52), (53) and (54) permit the use of the mountain pass theorem. So, we
can find ûλ ∈ W 1,p

0 (Ω) such that

ûλ ∈ Kβλ
⊆ [uμ) ∩ int C+ (see (51)), βλ(uλ) < mλ ≤ βλ(ûλ).

From these relations and (49), we conclude that ûλ ∈ int C+ is the second
positive solution of (Pλ), distinct from uλ ∈ int C+. �

Remark 3.7. It is easy to see that the mapping μ �→ uμ is nondecreasing, that is,

μ ≤ μ′ ⇒ uμ ≤ uμ′ .

It remains to decide about the admissibility of the two critical parameters λ̂a
1

and λ∗.

Proposition 3.8. If hypotheses H0 hold, then λ̂a
1, λ

∗ ∈ L.
Proof. We first show that λ̂a

1 ∈ L.
As in the proof of Proposition 3.2, we define

β∗
λ̂a
1

= inf

{
1
p

∫
Ω

a(z)|Du|pdz − λ̂a
1

p
‖u‖p

p : u ∈ W 1,p
0 (Ω),

1
p

∫
Ω

ξ(z)|u|pdz = 1

}
.

Evidently

β∗
λ̂a
1

≥ 0.

Reasoning as in the proof of Proposition 3.2, we show that β∗
λ̂a
1

is attained, that

is, we can find û ∈ W 1,p
0 (Ω) such that

β∗
λ̂a
1

=
1
p

∫
Ω

a(z)|Dû|pdz − λ̂a
1

p
‖û‖p

p,
1
p

∫
Ω

ξ(z)|û|pdz = 1.

Clearly we may assume that û ≥ 0.
If β∗

λ̂a
1

= 0, then
∫

Ω

a(z)|Dû|pdz = λ̂a
1 ‖û‖p

p,

⇒ û = θû1 for some θ > 0,

⇒
∫

Ω

ξ(z)ûr
1dz =

1
θr

> 0,

which contradicts hypotheses H0. Therefore

β∗
λ̂a
1

> 0.
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Via the Lagrange multiplier rule, as in the proof of Proposition 3.2, we show
that

ũ =
[p

r
β∗

λ̂a
1

]1/(r−p)

û ∈ Sλ̂a
1
,

⇒ λ̂a
1 ∈ L.

Next, we show that λ∗ ∈ L.
Let {λn}n∈N ⊂ L be such that λn ↑ λ∗. From the proof of Proposition 3.6, we

know that we can find un ∈ Sλn
⊆ int C+ such that

ϕλn
(un) ≤ 0 for all n ∈ N. (55)

Also, we have

〈ϕ′
λn

(un), h〉 = 0 for all n ∈ N, allh ∈ W 1,p
0 (Ω). (56)

Using (55) and (56) and reasoning as in the proof of Proposition 3.5, we show
that

{un}n∈N ⊂ W 1,p
0 (Ω) is bounded.

So, we may assume that

un
w−→ u∗ in W 1,p

0 (Ω), un → u∗ in Lr(Ω). (57)

We know that

uλ1 ≤ un for all n ∈ N,

⇒ uλ1 ≤ u∗,

⇒ u∗ �= 0. (58)

In (56) we use the test function h = un − u∗ ∈ W 1,p
0 (Ω), pass to the limit as

n → ∞ and use (57). We obtain

lim
n→∞〈Aa

p(un), un − u∗〉 = 0,

⇒ un → u∗ in W 1,p
0 (Ω) (see Proposition 2.1). (59)

Passing to the limit as n → ∞ in (56) and using (59), we have

〈ϕ′
λn

(u∗), h〉 = 0 for all u ∈ W 1,p
0 (Ω),

⇒ u∗ ∈ Sλ∗ ⊆ int C+ (see (58)),

hence λ∗ ∈ L.
The proof is now complete. �

On account of this proposition, we have

L = [λ̂a
1, λ

∗].

Finally, we can state the following global in λ ≥ λ̂a
1 (noncoercive case) existence

and multiplicity theorem for problem (Pλ).

Theorem 3.9. If hypotheses H0 hold and λ ≥ λ̂a
1, then there exists λ∗ > λ̂a

1 such that
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(a) for all λ ∈ (λ̂a
1, λ

∗) problem (Pλ) has at least two positive solutions

uλ, ûλ ∈ int C+;

(b) for λ = λ̂a
1 and for λ = λ∗, problem (Pλ) has at least one positive solution

u∗ ∈ int C+;
(c) for all λ > λ∗ problem (Pλ) has no positive solution.
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