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Abstract
The paper deals with the existence of normalized solutions for the following Schrodinger—
Poisson system with L2-constraint:

—Au+ku+u(10g|-|*u2)u:(e“2—1—uz)u,xeRz,
fRzuzdx:c,

where > 0, A € R will arise as a Lagrange multiplier and the nonlinearity enjoys crit-
ical exponential growth of Trudinger-Moser type. By specifying explicit conditions on the
energy level ¢, we detect a geometry of local minimum and a minimax structure for the
corresponding energy functional, and prove the existence of two solutions, one being a
local minimizer and one of mountain-pass type. In particular, to catch a second solution
of mountain-pass type, some sharp estimates of energy levels are proposed, suggesting a
new threshold of compactness in the L2-constraint. Our study extends and complements the
results of Cingolani—Jeanjean (SIAM J Math Anal 51(4): 3533-3568, 2019) dealing with the
power nonlinearity a|u|P~2u in the case of @ > 0 and p > 4, which seems to be the first
contribution in the context of normalized solutions. Our model presents some new difficul-
ties due to the intricate interplay between a logarithmic convolution potential and a nonlinear
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term of critical exponential type and requires a novel analysis and the implementation of new
ideas, especially in the compactness argument. We believe that our approach will open the
door to the study of other L2-constrained problems with critical exponential growth, and the
new underlying ideas are of future development and applicability.

Keywords Planar Schrédinger—Poisson system - Logarithmic convolution potential -
Normalized solution - Critical exponential growth - Trudinger—Moser inequality

Mathematics Subject Classification 35J20 - 35J62 - 35Q55

1 Introduction

In this paper, we study the following planar Schrodinger—Poisson equation with L?-constraint

_ . 2y — (o _ 1 _ 2) 2
{ Au—l—)\u—l—u(log| |*u)u (e I —u”)u, x e R, (1.1)

Jr2 u?dx = c,
where u > 0, ¢ > 0 is a given constant, A € R appears as a Lagrange parameter and is part
of the unknowns. Particularly, the nonlinearity has critical exponential growth in the sense

of Trudinger—Moser, which is a novelty for L?-constrained problems. Here, we recall that
the nonlinear term f is said to have critical exponential growth if f satisfies

(f1) f € C(R, R) and there exists «g > 0 such that

[t|>o00 eat? +o0, forall @ < «p,

fol {0, forall @ > ag,
which is the maximal growth allowing to treat the problem variationally in H'(R?), see
Adimurthi and Yadava [2] and also de Figueiredo, Miyagaki and Ruf [22].

Solutions having a priori prescribed L?-norm are referred to as normalized solutions in
the literatures. Physicists are often interested in normalized solutions because the L?-norm of
such solutions is a preserved quantity of the evolution and their variational characterization
can help to analyze the orbital stability or instability, see, for example, [5, 39, 40]. Besides
that its solutions have a priori prescribed mass, another interesting feature of (1.1) is that
a logarithmic convolution potential appears, which is unbounded and changes sign. As one
will see, for prescribed ¢ > 0, a solution of problem (1.1) can be obtained as a critical point
of the functional ® : X — R defined by

_! 2ac 4+ P 6ol
d(u) = [Vul|~dx + log |x — ylu”(x)u”(y)dxdy
2 R2 4 R2 JR2

1 4
_7/ o1 = )ax (12)
2 R2 2

Se={ueX:|ul3=cl, (1.3)

on the constraint

where
X = {u € H'(R?) :/ log(1 + |xu’dx < oo}. (1.4)
R2
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This problem arises when one looks for solutions of the Schrodinger-Poisson system of the

type
[—Au—l—ku—i—ud)u:f(u), x € RV, (15)

Ap = u?, x eRN

with N > 2,1 € R\ {0} and f € C(R, R), which has a strong physical meaning because it
originates in quantum mechanics models (see e.g. [8, 13, 33]) and in semiconductor theory
[7, 34, 35]. The second equation (1.5) determines only up to harmonic functions, and it is
natural to choose ¢ as the negative Newton potential of u?, i.e., the convolution of u? with
the fundamental solution I'y of the Laplacian, which is given by

5 log |x], N =2,
|x|>7N, N >3,

Iy(x) = {

NQ2—N)oy

and wy is the volume of the unit N-ball. With this formal inversion, system (1.5) is converted
into an equivalent nonlocal equation

— AuA+ru+ p(Cy s udu = fu), xeRV, (1.6)

In the last decades, this equation has been extensively investigated by using variational
methods. The majority of the literature focuses on the study of (1.6) with N = 3, it seems
that it is impossible to summarize it for the case that A > 0 is a fixed and assigned a parameter
since the related literature is too large, we just refer to [5, 6, 28, 38] for the case that A appears
as a Lagrange parameter.

In contrast with the higher-dimensional case N = 3, much less is known for (1.6) with
N = 2. In this case, the applicability of variational methods is not straightforward because
the corresponding energy functional is not well-defined on H'(R?) under the effect of the
logarithmic convolution potential. This direction of research was likely brought to the atten-
tion of the community of nonlinear PDEs by the paper [21] published in 2016. In that paper,
Cingolani and Weth, inspired by Stubbe [41], developed a variational framework to deal with
(1.6) with N = 2, within the smaller Hilbert space X defined by (1.4), and proved the exis-
tence of ground state solutions when f(u) = |92y for q > 4. The key tool to prove the
compactness is a new smart strong compactness condition (modulo translation) for Cerami
sequences in the periodic setting. This tool was subsequently used by Du-Weth [23] for the
case that f(u) = |u|?2u for 2 < q < 4, and by Chen-Shi-Tang [14] for the more general
case that f(u) ~ |u|9~2u for g > 2. In recent papers [17] and [18], we introduced another
axially symmetric variational framework within a natural constraint

Eqs =X N{ue H' R 1 ux) :=u(x1, x2) = u(lxi1, |x2]), Yx e R*}, (1.7

and proved respectively the existence of axially symmetric solutions for (1.6) with N = 2
when f (1) ~ |u|972u for ¢ > 2 and when f has critical exponential growth satisfying (f1).

Compared with the above case where A > 0 is fixed, the search of normalized solutions
for (1.6) with N = 2 is more challenging due to the extra need to respect the L2-constraint,
which is our focus of the present paper. It seems that the first contribution to this topic was
made recently by Cingolani-Jeanjean [20], in which the existence of normalized solutions
for the following equation with the power nonlinearity

_ . 2 — p—2 2
{ Au+ru+ p(log| - | *u®)u =alulP~*u, x € R?, (1.8)

Jr2 u?dx = c,
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was established, and a complete analysis of the various cases on parameters 1, a € R and
p > 2 that may happen for (1.8) was provided. In the study of (1.8), an important role is
played by the so-called L2-critical exponent 4. If p > 4 or2 < p < 4, one speaks of an L2-
supercritical case or an L2-subcritical case. Precisely, it was proved that (1.8) has a ground
state provided that & > 0 and one of the following three conditions: i) a < 0 and p > 2; ii)
a>0and p < 4;iii)a > 0, p =4 and ¢ < 2/(aC4), under which the associated energy
functional is bounded from below on the constraint S, for any ¢ > 0 and a global minimum
on S, can be achieved, where the constant C4 > 0 comes from the Gagliardo-Nirenberg
inequality (see (2.9) later). In all the other cases, although it is not possible to find a global
minimizer, the interplay between a logarithmic convolution potential and a power function
adds some richness to the geometric picture of the associated energy functional. In particular,
when p,a > 0 and p > 4, it was proved that there exists an explicit value co = co(u, @, p)
such that for ¢ € (0, cp), (1.8) has two normalized solutions, one being a local minimizer
and one of mountain-pass type. This is reminiscent of the recent work by Soave [39], where
a similar structure has been observed for the following Schrédinger equation with combined
nonlinearities of power type:

—Au+ru=yluld?u + [ulP2u, x e RV,
2 (1.9)
fRNu dx =c,
. 2N/(N —=2), N =3,
* . __
withN > 1,y >0and2 < g <2+4+4/N < p < 2" := {+ ’ N=1.2 see also

subsequent papers [26, 27, 30, 42] for extensions from p < 2* to Sobolev critical exponent
p = 2*. However, the appearance of the nonlocal convolution term (log || * uz) u in (1.8)
exhibits some serious mathematical differences to a local nonlinear term of the form |u|7~2u.
To address this trouble, Cingolani and Jeanjean used the combination of the fibration method
of Pohozaev (relying on the decomposition of L2-Pohozaev manifold used in [39]) and the
strong compactness condition developed by Cingolani—Weth [21], where some new estimates
of energy on the dilated function su(s-) for u € L? and s > 0 belonging to S, were given.
It is worth mentioning that the argument strongly depends on the order p of power function
and is not adequate for the following problem

— . 2 = 2
{ Au+du+p(log|-|*u”)u = f(u), x € R, (1.10)

Jr2 u?dx = c,

with the more general nonlinear term f, even the sum of power functions with super-cubic
growth. In the recent preprint paper, Alves—Boer—Miyagaki [3] considered (1.10) with critical
exponential growth satisfying (f1) with og = 4. In particular, if f also satisfies

(f2) f(0) = 0 and there exists T > 3 such that lim;_,¢ LSO 0;

[t
(f3) there exists 6 > 6 such that f(¢)r > 0F(t) > 0, Vt # 0, where F(¢) := fot f(s)ds;
(f4) there exist g > 4 and v > vg such that F(z) > v|t|7, V1 € R,

it was proved that for any ¢ € (0, 1), there are implicit parameters (o, vo > 0 such that
problem (1.10) has a solution for u € (0, o) and v > vg. Note that this statement is of
perturbative nature in two respects: i) (g is sufficiently small such that (1.10) can be viewed
as a perturbative form of the planar Schrodinger equation; ii) vo is sufficiently large such
that the obtained mountain-pass level is small enough from which the compactness can be
obtained in the same way as that of (1.8).

Clearly, the perturbative argument excludes many concrete models, and circumvents the
added difficulties arising from the logarithmic nature of convolution kernel and the critical
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exponential growth of nonlinearity compared to (1.8) and (1.10) with u = 0. To our knowl-
edge, it still remains open exactly how the interplay between the logarithmic convolution
term (log RE: u2) u and the nonlinear term f satisfying (f1) effects the geometry struc-
ture of the corresponding functional, which is unbounded from below on S, for all ¢ > 0
since limjy|— oo LGOI — 4 o0 if (f1) holds.

[ul®
Motivated by the study of (1.8) in the L>-critical case that a|u|”~2u with ¢ > 0 and
p > 4, considered in [20], a natural question arises:

(Q) Is it possible to obtain an analogous structure of local minima for planar Schrodinger—
Poisson problems with critical exponential growth?

In the present paper, we will give an affirmative answer to above question. More precisely,
after the search for a structure of local minima, differently from the perturbative argument
of [3], by specifying explicit conditions on ¢, we study the existence of multiple normalized
solutions for (1.10) with critical exponential growth, and achieve a significant extension of
nonlinearity from the power type to the critical exponential type. To better illustrate our
approach, we provide a concrete nonlinear model f(u) = (e“z e u2> u, which clearly
satisfies condition (f1). This model is somehow inspired by Cassani—Tavares—Zhang [12] for
the study of positive solutions to the Bose—Einstein type systems in R?.

Compared to (1.8) with a > 0 and p > 4 considered in [20], additional difficulties arise
in the study of (1.1) since the combination of the logarithmic nature of convolution kernel
and the critical exponential growth of nonlinearity mixes things up.

Indeed, first, a nonlinear term of exponential type behaves like infinite series of powers
nonlinear interactions, the interplay between it and the nonlocal term (log| - | * u?) u is
more intricate, which strongly effects the geometry structure of ® on S.. Even if such a
geometry may somehow be expected for sufficiently small values of ¢ > 0 along the research
lines of [20] considering (1.8) with a|u|? 24 (a > 0and p > 4), the arguments of [20] are
insufficient to find an explicit existence range of ¢ for (1.1). It requires us to develop more
robust arguments in the search for a geometry of local minima for ® on S... Note that such
a structure suggests the possibility to search for another solution lying at a mountain pass
level, as well as a solution characterizing as a local minima. If such a structure exists, then
the next most complicated part lies in the compactness analysis for minimizing sequences
and (PS) sequences, since it is not clear whether

im [ ful® (e“"%—l)dx=/ lii|* (e“ﬁz—l)dx (1.11)
n—00 Jp2 R2

fors > 2 if u,—u in X, despite the compactness of embedding X «— L9 (R2) for all q > 2.
This fact prevents us from using the compactness argument of [20]. These difficulties
enforce the implementation of new ideas since the approach due to Cingolani—Jeanjean [20],
treating the power case f(u) = alu|P~2u, is not available for (1.1).

In particular, instead of working directly in space X, we shall take advantage of the axially
symmetric variational framework within E,s defined by (1.7), endowed with the norm given
by

il 2,y = (V23 + l)'2, where Jlull? = f log(2 + [xDu?(n)dx,  (1.12)
R

and work with the constraint

~

Sei=EqNSe={ueEy: ull3=c}. (1.13)
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As in our paper [18], if « is a critical point of ® restricted to S, then u is a critical point of
® on S,. As one will observe, besides helping to overcome the lack of compactness caused
by the critical exponential growth, this type of axially symmetric setting is of extremely
benefit to the proof of the L2-convergence of minimizing sequences and (PS) sequences,
which is a well-identified obstacle dealing with the L?-constrained problems due to the lack
of compactness for the embedding HrLd (R?) — LZ(R?).

Our main results read as follows.

Theorem 1.1 For any pu > 0, there exists ¢ = c1(u) > 0 such that, for any ¢ € (0, c),
(1.1) has a couple solution (uc, Ac) € S¢ X R such that

e € &y Ue =0, D) =m(c) = inf {q)(u) ue S, [V} < n/3}. (1.14)

Theorem 1.2 For any ;v > 0, there exists co = co(u) > 0 such that, for any ¢ € (0, cp),
(1.1) has a second couple solution (iic, A:) € Se X R such that

0 < @) < m(c) + 2. (1.15)

Remark 1.3 The condition ¢ € (0, ¢1) in Theorem 1.1 enters in the study of a geometry of
local minima of @, while the condition ¢ € (0, ¢g) in Theorem 1.2, which appears to be more
delicate, is used in order to further ensure that a minimax structure of the mountain-pass type
exists and the obtained energy level is less than m(c) + 27 that is a threshold of compactness,
which is an essential and striking ingredient in our compactness argument.

Define the L2-Pohozaev functional P : X — R by
2 4
P(u)=/ |Vu|2dx—ﬂ—/ |:(u2—1)e”2+l—u—]dx. (1.16)
R2 4 R2 2

As one will see in Lemma 3.4, any solution to (1.1) satisfies the L2-Pohozaev identity
Pu) = 0.

Let us now sketch our research strategies and point out key elements for the proofs of
Theorems 1.1 and 1.2.

First, we search for a geometry of local minima for ® on SC = S, N E4s under explicit
conditions on c. For this, we introduce a crucial set Ay /3 = {u € Ey; : ||Vu||% < 1 /3} such
that for any u € SC N9Ay3, P(u) > 0 and there exists 7, € (0, 1) such that P(t,u,,) = 0,
with this important property and subtle estimates of energy, for any 1 > 0, we succeed in
finding an explicit value ¢; = ¢j(u) > 0 such that for any ¢ € (0, ¢1), ® has a geometry of
local minima

m(c):= inf &< inf . 1.17)
ScNAr 3 ScNdAzs3

In our argument, the upper bound 77 /3 is not essential but brings a convenience in obtain-
ing the explicit existence range ¢ € (0, c1) and proving the compactness in the following
discussion. In this regard, our strategy is totally different from that of [20], since the boundary
of the corresponding auxiliary set used in [20] depends on the mass ||u ||% = c as well as the
order p of power function in (1.8), instead of being given in advance like us.

Second, we prove that the local minima m (c) defined by (1.17) is attained, that is, letting
{u,} C 3} N Ay/3 be such that ®(u,) — m(c), we verify that u, — u in E,, proving
Theorem 1.1. The crucial ingredient of the proof is to obtain the boundedness of {||u, || x},
or more precisely, prove that ||u,,||i = fRZ log(2 + |x|)u% (x)dx < C for some C > 0 due
to the fact that {u,} C §C M Ay,3 and the definition of || - ||x given by (1.12). Note that at
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this stage, the sign of m(c¢) can not be judged under the unpleasant effect of a nonlinear term
of exponential type. This fact results in the failure of the method used in [20] relying on the
strong compactness condition. Indeed, following the lines of [20], it is essential to verify
that u,, — u € L?>(R%)\{0} pointwise a.e. on R? such that the strong compactness condition
works which leads to the boundedness of {||u,, || «} up to translations. But it seems impossible
to make it in our case since the vanishing of {u,} can not be ruled out when the situation of
m(c) = 0 may occur. Somewhat surprisingly, our axially symmetric variational framework
allows us to avoid the obstacle since the boundedness of {||u, ||i} follows directly from the
specific inequality related with the coupling term of equation restricted on E

/ / log (2 + [x — y|) u?(x)v*(y)dxdy
R2 JR2

> 1/ uz(x)dx/ log(2 + |x)v?(x)dx. (1.18)
4 R2 R2

This also explains why we work with E,s N S, at the beginning. The remaining proof of
convergence is standard, since (1.11) follows directly from Trudinger-Moser inequality (see
Lemma 2.3) due to the fact that ||Vun||% <mn/3 <2x foralln € N.

Last but not least, we further specify an explicit range on ¢ to guarantee the existence
of another solution of mountain-pass type, proving Theorem 1.2, which is the heart of the
paper. Several crucial steps are summarized as follows.

Step 1. Construct a (PS) sequence {u,,} & Possessing additional property
P(un,) — 0 at a mountain pass level M (c). The condltlon that P(u,) — O helps to
deduce the boundedness of {||Vu,|2}.

This step is reminiscent of the one developed by Jeanjean [25] but here the fact that & has
a structure of local minimum instead of a direct mountain-pass geometry and the appearance
of a logarithmic convolution potential make the proof more delicate.

To detect a minimax structure of ® | §.-weuse several critical point theorems on a manifold,
developed recently by us in [16] con%1der1ng problem (1.9). Our approach is applicable to
more general nonlinearities and totally different from that of [20] dealing with f(u) =
alu|P~2u inthe case of a > 0 and p > 4. Noting that the situation m (c) = 0 can not be ruled
out in advance, it is from the specific inequality (1.18) that we deduce the boundedness of
{llun || }, and thus {||u, || x } is bounded and there exists u € S, such that, up to a subsequence,
u,—i in Egs and u, — i in LS (R?) for s > 2. However, it is insufficient to show that i is
a solution to (1.1) since it is unclear whether

/Rz /Rz log |x — yluz (X)[u,(y) — @ (y)v(y)dxdy =0, Vv e CPR?). (1.19)

This requires to further prove the strong convergence. Inspired by the Brezis-Nirenberg
problem, the crucial point in proving the compactness is to obtain a good energy estimate of
the obtained (PS) sequence, which is what to do next.

Step 2. Establish a precise upper estimate of the energy level M (c¢), given by

M(c) < m(c) + 2m, (1.20)

such that the compactness of the obtained (PS) sequences still holds.

In the unconstrained case (1.5), this kind of sharp upper estimate is known, see our
papers [15, 17], and the usual way to derive such strict inequality is through the use of
testing functions, that is a sequence of Moser-type functions introduced by de Figueiredo,
Miyagaki and Ruf [22], related with the Trudinger—-Moser inequality. But, there seems no an
analogue in our case due to the need to respect L2-constraint and the logarithmic nature of
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convolution kernel. This step gives firstly a counterpart in that direction, whose proof
is rather complicated, and requires a lot of subtle energy estimates as well as a better
understanding of structure for ¢ on S., see Remark 1.4 for further description.

Step 3. Prove the limit (1.11) and then u#,, — u in E,,, up to a subsequence.

To ensure that the Trudinger—Moser inequality ii) of Lemma 2.3 works in the proof of
(1.11), one needs to control appropriately the value of ||Vu, ||% from above, which is why
one requires a sharp upper estimate of M (c) before. Unfortunately, it seems impossible to
obtain ||Vu,,||% < 4m for large n. Instead, we prove ||V (u, — 12)||§ < 4 for large n in a
tactfully round-about way, of these arguments, two main difficulties are to prove P(i) > 0
and ® (i) > m(c), see the proof of (4.98), and then show indirectly (1.11) with the Young’s
inequality.

Remark 1.4

i) To obtain a constrained (PS) sequence with additional property, the approach in [20],
treating (1.8) with f(u) = alulP~2u in the case of ¢ > 0 and p > 4, not only
relied on the decomposition of the L?-Pohozaev manifold into three disjoint subsets,
but used the Ghoussoub minimax principle [24], where the former just works for an
easy calculating form of nonlinearity, and the later requires technical topological, very
complicated, arguments based on o-homotopy stable family of compact subsets. This
approach was also applied to problem (1.9) with mixed nonlinearities, see [27, 29, 30, 39,
40, 42], nevertheless, it is not available in our case due to the complex behaviors of the

2 .
terms (log [ -] % uz) u and (e“ —1- u2> u. In contrast, our method does not require the

decomposition of the L2-Pohozaev manifold, and our tool to detect the minimax struc-
tures just depends on the general deformation lemma on a manifold, and is technically
simpler than topological arguments involved in the Ghoussoub minimax principle [24].

ii) Note that (1.20) gives a new threshold of compactness for planar Schrodinger—Poisson
systems with critical exponential growth in the L2-constraint. To obtain the strict inequal-
ity (1.20), roughly speaking, we use a nice superposition of a minima obtained in
Theorem 1.1 and a modified sequence of Moser-type functions with finer supports where
the supports would be disjoint, see Lemma 4.4 for more details. The idea behind the proof
is that the interaction decreases the involved energy value. Even if this idea is somehow
inspired by [42] concerning the Sobolev critical situation in the higher dimensions, the
mathematical strategies and proof techniques are different, for example, the variational
characterizations of a minima are various in the use of testing functions; our tool of
energy estimate is the neatly combination of the Gagliardo-Nirenberg inequality and the
Trudinger-Moser inequality instead of the Sobolev inequality; extra efforts are always
required to overcome the unpleasant effect due to the logarithmic nature of convolution
kernel.

iii) We believe that our approach may be adapted to attack more L2-constrained problems
with critical exponential growth, and the new underlying ideas and the strategy of energy
estimates are of future development and applicability.

The paper is organized as follows. Section 2 is devoted to some preliminaries. In particular,
we present several critical point theorems on a manifold, we have developed recently in [16],
which play a crucial role in the proofs of theorems. In Sect. 3, we consider the existence of a
local minima for ® on E,;; N S,, and give the proof of Theorem 1.1. In Sect.4, we study the
existence of a critical point of mountain-pass type for ® on E;; NS, and finish the proof of
Theorem 1.2.

Throughout the paper, we make use of the following notations:
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e H!(R?) denotes the usual Sobolev space equipped with the inner product and norm
(u, v) 2/ (Vu - Vo +uv)dx, full = @,w)'? Vu,veH R?;
R2

Hrlad (R?) denotes the space of spherically symmetric functions belonging to H ' (R?):

HYg(R?) = {u € H'R?) | u(x) = u(|x]) ae. in R?};
L*(R?)(1 < s < 00) denotes the Lebesgue space with the norm ||u||y = (IRZ |u|sdx)l/s;
For any u € H'(R*)\{0}, u; (x) := u(rx) fort > 0;
Forany x € RZandr > 0, B, (x) := {y e RZ: |y — x| < r}and B, = B-(0);
C1, Ca, - -+ denote positive constants possibly different in different places, which are
dependent on ¢ > 0.

2 Preliminary results

As in [17], we define the following symmetric bilinear forms

(u,v) — Ar(u,v) ::/ / log (2 + |x — yDu(x)v(y)dxdy, 2.1
R2 JRRZ

(u,v) — Ar(u,v) ::/ / log (1 + 2 )u(x)v(y)dxdy, 2.2)
R? JR? lx — yl

(u,v) — Ag(u,v) ;= A1(u, v) — Ar(u, v) = /2 leoglx — ylu(x)v(y)dxdy, (2.3)
R* JR

where the definition is restricted, in each case, to measurable functions u, v : R?> — R
such that the corresponding double integral is well defined in Lebesgue sense. Noting that
0 <log(1+r) <rforr > 0,it follows from the Hardy—Littlewood—Sobolev inequality(see
[31] or [32, p. 98]) that

1
[Az(u, v)| < 2/ / lu(x)v(y)ldxdy < Collullaszliviiasz (24)
r2 JR2 |X — Yl

with a constant Cop > 0. Using (2.1), (2.2) and (2.3), we define the following energy func-
tionals:

I : H'(R?) — [0, oo],
L) = A (u? u?) = / / log 2+ [x — y|) u? (x)u?(y)dxdy,
R2 JR2
L : LY3®R?) - [0, o),
2 2 2 2 2
Dh(u) :=Ay(u", u ):/ / log (1 + )u (x)u”(y)dxdy,
R2 JR? [x =yl
Ip: H'(R*) — R U {oo},

Io(u) := Ag(u?, u?) = f f log |x — y| u* (x)u? (y)dxdy.
R2 JR2

Here I, only takes finite values on L3/3(R?). Indeed, (2.4) implies

|L@)| < Collullgs. ¥Yue LY ®R?). 2.5)
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Let | - || be defined by (1.12). Then [|lul| x := (|| Vul|5+[lu]|?)"/? is anorm on X, where X
is defined in (1.4). Moreover, it follows from Rellich’s Theorem (see [37, Theorem XIII.65])
that the embedding X — L* (R?) is compact for s € [2, 00), and so the embedding E 5 <>
L5 (R?) is also compact for s € [2, 00). Since

log(2+ x = y]) < log2+ x| + Iy]) < log(2 + [x|) +log2 + y]), ¥x,y € B2, (2.6)
we have
[A(uv, wz)| < /Rz /]RZ [log(2 + |x]) 4+ log(2 + [yD] [u(x)v ()| [w(y)z(y)|dxdy
< llullslvlislwlzlizllz + lull2lvli2lwlllizlls, Yu,v,w,z€ X, (2.7)

According to [21, Lemma 2.2], we have Iy, I and I are of class c'on X, Io=1LHL -1
and
(I(u), v) = 4A; (®, uv), Yu,veX, i=01,2. 2.8)

Lemma 2.1 [4, Gagliardo—Nirenberg inequality] There holds

lull} < N3N Vuly™ for s > 2. (2.9)
where Cy > 0 is a constant determined by s.
Lemma 2.2 [43] Forany u € Hrlad(Rz) andry > 0,

1/2 1/2

el “IVully™, ¥ x| = ro. (2.10)

lu(x)] < %
Lemma2.3 [1, 10, 11]
i) Ifu € HY(R?), then

e”2—1 dx < oo;
L)

i) ifu e H'(R?), ||Vu||2 < a < 4 and |u|l < B < oo, then there exists a constant

C(a, B), which depends only on o and B, such that

/ (e”z - 1) dx < C(a, B). 2.11)
RZ

Lemma 2.4 [17, Lemma 2.2] There holds
1
A2 v?) > Zuun%nvni, Vi, v € Egs. (2.12)
Corollary 2.5 [17, Corollary 2.3] There holds
I 1 20,12
1) 2 2l ull, Vu € Eo. (2.13)

Lemma 2.6 [17, Lemma 2.4] If u is a critical point of © restricted to E 5, then u is a critical
point of ® on X.

Lemma 2.7 [21, Lemma 2.6] Let {u,}, {v,} and {w,} be bounded sequences in X such that
uy,—u € X. Then for every ¢ € X, we have

Al(vnwnv ¢(Mn — I/_l)) — 0.
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Lemma 2.8 Ifu e HY(R?), then

2 4 2%l — 2 k!
wPtax < 282 * 2D gk + IVul3, YkeN, (2.14)
R2 2 2

(k —2)mk-1 27 k=T
/ e”z—l—uz—ﬁ dx
RZ 2
IVull$ 2632 V|3 o 42k + 1) + 1 <|IM||2||VM|I2>k
T 2m(r = [ Vuly) m? =k DKk +3)! 7 ’
YueS., |Vul3<m (2.15)

and

4
2 u? _i
/Rz[(u l)e +1 2}d)c

_ (27— Vull3) ||Vu||2 2c3/2||Vu|| Z (k+2) [ (k+1)+1] <||u||2||Vu||2>k

2 (7 — | Vul2)” (k + 1)k +3)! P
VueS., |Vull3 <. (2.16)
Proof : For the proof of Lemma 2.8, we refer to [19, Lemma 2.4]. O

Let H be a real Hilbert space whose norm and scalar product will be denoted respectively
by || - ||z and (-, -) . Let E be a real Banach space with norm || - || g. We assume throughout
this section that

E< H<— E* 2.17)

with continuous injections, where E* is the dual space of E. Thus H is identified with its dual
space. We will always assume in the sequel that £ and H are infinite dimensional spaces.
We consider the manifold

={ueckE:|ullg=1}. (2.18)

M is the trace of the unit sphere of H in E and is, in general, unbounded. Throughout the
paper, M will be endowed with the topology inherited from E. Moreover M is a submanifold
of E of codimension 1 and its tangent space at a given point u € M can be considered as a
closed subspace of E of codimension 1, namely

WM :={veE:(uv)g=0} (2.19)

We consider a functional ¢ : E — R which is of class C! on E. We denote by ¢|m the
trace of ¢ on M. Then | is a C' functional on M, and for anyu € M,

(ply ), v) = (¢’ (), v), YveT,M. (2.20)
In the sequel, for any u € M, we define the norm ||(p|’M(u) || by

lely@l| = sup (@' @), )l (221
vel,M,|vllg=1

Let E x R be equipped with the scalar product
((, 1), (v, 0))Exr := W, V) + 70, ¥ (u,1),(0,0) € EXR,

and corresponding norm

I, Dl Exr =/ lully; + 72, V@, 1) € E xR,
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Next, we consider a functional & : E x R — R which is of class C' on E x R. We denote
by @ |y xR the trace of @ on M x R. Then ¢@|y xR is a ¢! functional on M x R, and for any
(u,7) e M xR,

(@ yxr @, ), (0, 0)) = (F'(u, T), (v,0)), ¥ (v,0) € Tu,r)(M x R), (2.22)
where ~
TuoyM xR) :={(v,0) € ExR: (u,v)y = 0}. (2.23)
In the sequel, for any (1, 7) € M x R, we define the norm ||<Z)|;VIXR(M, t)|| by
lolysr@, = sup @', T), (v, 0))]. (2.24)
(v,0)€T(,r) (MXR),[[(v,0) | Exr=1
Lemma 2.9 [9]Let{u,} C M beabounded sequence in E. Then the following are equivalent:
@) llely @)l — 0asn — oo;
(i) @' (up) — (@' (un), up)u, — 0in E' as n — oo.
Lemma 2.10 [16] Let ¢ € CY(E,R) and K C E. If there exists p > 0 such that

a:= inf @) <b:= inf o(v), (2.25)
veMNK veMN(K,\K)
where K, == {ve E:|lv—u|g <p, Yu € K}, then,forevery § € (0,p/2) and w €
M N K such that
pw) <a+e, (2.26)

there exists u € M such that
(i) a—2e <) <a+2e
i) [lu —wlg =< 25;
(iii) | ol) )| < 8e/8.
Corollary 2.11 [16] Let ¢ € CYE,R)and K C E. If there exist p > 0 and it € M N K such
that
7) = inf inf , 2.27
o) velﬂr}ngo(v) = veMr%r(lK,,\K)(p(v) ( )
then ¢}, (1) = 0.

Lemma 2.12 [16] Assume that 6 € R, ¢ € CYE x R,R) and T ¢ M x Ris a closed set.
Let

o= {)7 cC(0,1], M xR) : 7(0) € T, (7 (1)) < é} . (2.28)
If ¢ satisfies
a:= inf max ¢(y(1)) > b := sup max {¢(7(0)), (7 (1))}, (2.29)
yel te(0,1] fef‘

then, for every ¢ € (0, (@ — b)/2), 8 > 0 and y, € T such that

sup @(7x(t) <a+e, (2.30)
tel0,1]

there exists (v, T) € M x R such that

(i) a—2e <@, 1) <a-+?2e

(i) minsepo,11 (v, T) — P (Dl Exr < 28;
(iii) @1y, D] < F-
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3 Proof of Theorem 1.1

In this section, we consider the existence of a local minima for & on E,;; N S,, and give the
proof of Theorem 1.1.
Let ¢; = ¢1 () > 0 be the unique root of the following equation with respect to 7:

197 pr? | 202 Sk + )[4+ D +1] [T\
W‘Tﬂm,; U+ Dk +3)! (\/E) - G

Let ¢ = ¢2(u) > 0 be the unique root of the following equation:

c= \/> (¢), (3.2)

where 1(c) > 0 is the unique root of the following equation with respect to 7:

2 (k= D[4k =2) + 1] (rwé)“ . 2 (4n2 = 3mc? 4 o4

T (k —2)k! b2 2 (7 — t2)3

1. (33)

Lemma3.1 Let yu > 0. If lull3 = c, [ Vul3 = % and P(u) <0, then ¢ > c|.

Proof Since ||u||% =c, ||Vu||% = % and P(u) < 0, then it follows from (1.16) and (2.16)
that

2
vuld < 2+ [(uz—l) ‘ +1—*]dx
4 R2
_net | (2m = |Vuld) IVul
4 2 (n’ — IVul?)?

2c”zllwll (k +2) [k + 1) + 1] [ JellVul2\*
Z (k+ 1)(k + 3)! ( )

2 3/2 k+2 k
_uc* 5t 2 k+2)[4Pk+1D)+1] ( [<
_T+5+3J37k§) (k+ Dk +3)! (V§> oG9

w|

T

which implies

19 20232 X (k+2) [#F Uk + 1) + ¢
Lo Z( [#Rw+h+1] Fe\ 53)
72 34/371 (k+ D)k +3)! R4

which, together with (3.1), implies that ¢ > ¢y. O

For any p > 0, we define

Api={u € Eg : ||[Vul3 < p} (3.6)
and
m(c) := inf &, 3.7
3gﬁAﬂ/3

By Lemma 3.1, we have the following corollary immediately.

Corollary3.2 Let u > Oand ¢ € (0, ¢1). Ifu € S, N Ay 3, then P(u) > 0.
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For any u € 30, we denote g, : (0, +00) — R the function defined by

2 2 4.4
ot M e 1 22 20 tTu

Clearly g, is C* on (0, +00), and we obviously have

1 we? 1 2.2 *ut
Fon 2 2 22 :
&m—;bnwh—jf—ﬁéi@u_neu+1—7ﬁ¢4
1
= ;P([ut), Vit>0. (3.9)

Lemma3.3 Letu > 0andc € (0,cy). Ifu € 3} N 0 Ay /3, then there exists t, € (0, 1) such
that P(t,u;,) = 0.

Proof Sinceu € SC M0 Ay,3, then Corollary 3.2 shows that g, (1) > 0. On the other hand, by

391, g,) — —“TCZ < 0ast — 0. Hence, there exists 7, € (0, 1) such that g, (z,) = 0,
thatis P(t,u,,) = 0. O

Lemma 3.4 Ifthere existu € E,5 and ) € R satisfy (1.1), then P(u) = 0, where P is defined
by (1.16).

Proof By (1.1) and the Pohozaev identity in [15, Theorem 1.4], we have

/ |Vu|2dx + )»llull% + [,l./ f log |x — yluz(x)MZ(y)dxdy — (e“z —1- uz) wrdx =0
R2 RrR2 JR2 R2

(3.10)
and
2 2 K4 2 u? 2 u
7 log [x —ylu”(x)u”(y)dxdy+=—llul;+Allull3— e —1—u"—— )dx=0.
R2 JR2 4 R2 2
(3.11)
Combining (3.10) with (3.11), we obtain
2 e 2 2 u?
P(u):/ |Vu| dx———/ (" =1)e" +1——|dx=0. (3.12)
R2 4 R2 2
The proof is now complete. ]

Proof of Theorem 1.1 Let {u,} C 30 N Ay /3 be aminimizing sequence of ® for m(c). Clearly,
{lu,|} C J§C N Ay/3 is also a minimizing sequence for m(c). Without loss of generality, we
can assume that u, > 0. Then we have

T
lunll3 = c, [Vunll3 < 3> Plun) =mc) +ol). (3.13)

Next, we split the proof into several steps.

Step 1. By (1.2), (2.5), (3.13) and Lemma 2.8, it is easy to verify that 1 (u,) is bounded.
Hence, we then deduce by Corollary 2.5 that {||u ||} is bounded, so {u,} is bounded in E ;.
We may thus assume, passing to a subsequence if necessary, that u,—u in E,, u, — u in
LS (Rz), s € [2,00) and u, — u a.e. on R2. Furthermore, we have

- _ T
nm@=mm6=a|wmﬁs§. (3.14)
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Step 2. Set v, := u, — u. Then by Step 1, ||v,|ls = Ofors € [2, +00) and v,—0in E ;.
It follows from (2.1)-(2.4), (2.7), (3.13), (3.14) and Lemma 2.3 ii) that

IVuall3 = | Vuull3 — [ Vill3 + o(1), (3.15)
To(un) = Io(@) 4 To(vy) + 2A0(@@%, v2) + o(1) (3.16)

/Rz (euﬁ —1) —(ev?z—l)—(e‘?2 —1)‘dx

— 2,72 2
5/ (tn] + [ [un "5+ dx+/ % vy Pdx
R2 R2

and

_ u2 42 _
= [ Gl 171wl (57 = ) ax [l + @DIunlas
R2 R2

(e = 1) toaa +
R

1
2 -2 2 _
< [/2 (e 1) dx] (et 4 + 114 lvnlls
R

1

202 2 2
+ [/Rz (e v l)dx:| lall? + o(1)
= o(1). (3.17)
Hence, by (1.2), (3.15), (3.16), (3.17) and the Brezis—Lieb lemma, we have

®(uy) = <1>(ﬁ)+<1>(vn)+%Ao(ﬁ2,uﬁ)+o(1). (3.18)
Step 3. By (2.4), (3.13), (3.14) and (3.18), we deduce
m(©) +0(1) = ®(uy) = O(@) + (uy) + T Ao, v7) + 0(1)
= m(e) + ®(v,) + T Ao, v}) + o(1)
zm(c)+q>(vn)+%Al(ﬁz,v5)+o(1). (3.19)

(3.19) shows that ®(v,) < o(1). Hence it follows from (1.2), (2.5), (2.9) and Lemma 2.3
that

4
2 v

”VUHH% + EIl(vn) <o(l)+ ﬁIZ(Un) +/ en —1— U% — ) dx
2 2 R2 2

4
w 4 2 s’V
< o) + S Collvnlly/3 +/Rz (e”" —l—v, - 7”) dx

1% 2
< SCoCi3l1 Vvl llunll3 + / (e = 1) vidr + o)
R

A

"
< SCoCia I Vunll2llunly
1
5 2
+C} [/ (2 - l)dx} 1V vn ll2llvall2 + o(1)
R2
= o(1). (3.20)
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It follows from (3.20) that |[Vv, |3 = o(1) and I (v,) = o(1), and so ®(v,) = o(1). It
follows from (3.19) that A (&2, v;) = o(l), and so by Lemma 2.4, v, — 0in E, i.e.
u, — uin E,. Since u, > 0, it follows that u > 0.

Step 4. Obviously u € A,/3 and ®(it) = m(c). Next, we show that ||Vi[3 < Z. Let

-
us assume by contradiction that | Vi ||% = % Then we see directly from Corollary 3.2 that

necessarily P(u#) > 0. But then we consider ¢y with 75 < 1 close to 1. Recording (3.9), it
follows that tpit,, € Az/3 and @ (tpity) < P (i) = m(c), providing a contradiction. Hence,
Corollary 2.11 implies that d>|:§ (u) = 0, and so there exists a Lagrange multiplier A, € R

such that (®'(#)+A.it, ¢) = Oforany ¢ € E,z. By Lemma?2.6, we have (®' (it)+Acit, ¢) = 0
for any ¢ € X, thatis

— Adi + 1 (log x| * it?) it — (ef‘z —-1- ﬁz) i = —Acit, x €R% (3.21)

This completes the proof. O

4 Proof of Theorem 1.2

In this section, we consider the existence of a critical point of mountain-pass type for ® on
Sc = E45 N'S,, and give the proof of Theorem 1.2.

Lemma4.1 Let n > 0 and c € (0, ¢2). Forany u € S., the following exist:

() A unique s; > 0 such that s;} is a strict local minimum point for g,.

(ii) A unique s, > 0 such that s,; is a strict local maximum point for g,,.

Proof Forany u € S, lett := 1/||Vu|/> and ii := tu,. Then ||V12||% = landti; = (t7)use
for ¢ > 0. Therefore, we only prove this lemma for u € SA'C with | Vu ||% =1.
Fix u € S, with | Vu|% = 1, we have

g, (1) = ;P(tut), Vi >0. .1

Let .. > 0 such that

4 22 4 4y 2P tyu
ty /RZ (1= t7u” + tju®) " —l—*T dx = 1. 4.2)

It follows that

4 4
t
2> t_2/ [(1 R o L g TM] dr, 0<t <t  (43)
R2
and
tut

2 < rzf [(1 — 2 4t e -1 - T] dx, t, <t < +o0. (4.4)
R2

By (3.9) and (4.3), one has

1 e 22 t4ut
/ 1) = — t2 _ _ t72/ t2 2 _ 1 “u l _ d
8u(0) t{ e - (FPu> = 1) "™ + — |
L{, ucr 172 2 04 Ay 22 t4u*
> - — — — 1—1¢ t Y _1-—|d
Z7 { 7 2 e ( u-+t'u )e 2 X
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1 e
>E<t2—7),0<t<t*. 4.5)

If t, < 7, then from (2.14) and (4.2), we have

4 4
t
1= t*_4/ [(1 — t2u® + t}ut) P - %] dx
R2

Z (k 2 g
k=3
00 N2 Tgk—101 2 k=2 o) 2\ k=2

Xy 2D [#7G =2) 1] (t*‘/g> + LZ(k -1 (t—>

T = (k —2)k! b4 21 = T

2e S (k= D2[# k=2 +1] (22 2 (4n? =32 + 1))
= ‘ (25) + ) we)

= (k —2)k! b1 21 (m —12)

Combining (3.3) with (4.6), we deduce 7, > n(c). It follows from (3.3) that n(c) is decreasing
on ¢ > 0. Hence, by (3.2), we have

net _ne

2 > =n (cz) <n (c) <t*, Ve 0,c). 4.7

Hence, (4.7) shows that there exists § > 0 such that 12— & > 0 forany t € (t, — §, ty).
Hence, by (4.5), we infer that g/, (t) > O for any ¢ € (t,. — 8, t*) and thus g, (¢) is increasing
in (t, — 8, ty).

Taking into account that the function g, (t) — +o0o ast — 0+ and g,(t) — —oo as
t — +oo, we conclude that there exists at least a critical point sj < t, which is a local
minimum point of g, and a critical point s, > f, which is a local maximum point of g,.
Since s, > t, from (4.4) we derive that

—\4 4
(SM—)Z < (Su—)—z /2 [(1 _ (Su—)zuz + (Su—)4u4) e(S;)zuz —1- %] dx
R

o0

(k —1)? 2k
o 3. (4.8)
k=3 :

Moreover, from (3.9), (4.8) and the fact that g/, (s, ) = 0, we derive that

oo [, &k-1Dek-3) 20ty He?
ulWy ) = — u - T u T
Sl = =5 [(s) ;3 o luell 3 Cs) 1
k—1)2
(—)2 [( )’ —Z( a3 <u>2<’“>} <0. (4.9)
k=3

Therefore s, is a strict maximum point for g,,.

We have to show that s, is unique. By contradiction we assume that there exists 5, > 0,
another critical point of g, which is a local maximum point.

First, we observe that if 0 < §; < t,, then from g/,(5,7) = 0 and (4.3) we obtain

- L |y g k=DCk=3) s— 20—y M
g = (u>2[(s”) > . lll3 G40 + =

k=3
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-2 [(“)2 3 D g (‘;)"“k—”} -0, (4.10)
( Lt ) k=3 '
which is a contradiction. This implies that §, > f,, and thus arguing as before we have
g/ (5;7) < 0. We derive the existence of another critical point: 6, € (5,7, s, ) orfy € (s;, ;).
Wthh is a local minimum for g,,. Taking into account (4.4), we again deduce g/, (6,) < 0,
which is a contradiction. Therefore the point s, is unique.
Now a direct adaptation of the argument used for s, leads us to conclude that s;" is the
unique local minimum point for g, . O

Lemma4.2 Let u > 0. For any c € (0, c1), there exists k. > 0 such that

M(c) = 1nf max D(y(t)) = ke > sup max {P(y(0)), (y (1))}, 4.11)
yelc1€[0,1 yel,
where .
e = {V € C([0, 1], 8¢) : ¥y (0) = uc, (¥ (1)) < m(c) — 1} , (4.12)

and u. is determined by Theorem 1.1.

Proof Set k. := inqu(?(sL-mAn/}) @ (u). By Theorem 1.1 and Corollary 3.2, k. > m(c) =
®(u.). Let y € I'. be arbitrary. SAince y(0) = u., and ®(y (1)) < m(c) — 1, necessarily
in view of Theorem 1.1, y (1) ¢ Sc N Ay/3. By continuity of y (¢) on [0, 1], there exists a
fo € (0, 1) such that y (fo) € 3(S. N Ayz/3), and so max;e(o,1] P(y(¢)) > k.. Thus, (4.11)
holds. ]

To apply Lemma 2.12, we let E = E, s and H = L%(R?). Define the norms of E and H
by

1/2
1/2 1
lulle == (IVull® + l2)72 el :Z$</Rz“2dx> . YueE. (413

By Lemma 2.6, after identifying H with its dual, we have E < H < E™* with continuous
injections. Set

M:::ueE:HuH%:/ u2dx:c}. (4.14)
RZ
Obviously, Lemma 2.3 shows that ® € C 1 (E,R), and
(@ (), u) = / Va2 dx + pulo(u) — / (e”z 1 u2) uldx. (4.15)
R2 R2

Set Fu) := (e R —) and f(u) = ( W u2) u. Tnspired by [25], let us
define a continuous map S : E,;s x R — E, by

B(v,1)(x) :=e'v(e'x) forv € Eqs, t € R, x € R?, (4.16)
and consider the following auxiliary functional:
2t 2
~ e w et 1
Dd(v,t) := P(B(v, 1)) = 7||Vv||% + ZIO(U) T T /RZ F(e'v)dx.  (4.17)

We see that @’ is of class C!, and for any (w, s) € E 5 x R,

<&>’(v, 1, (w, s)> - (é’(v, 0, (w, 0)> + <&>/(v, 0, (0, s)>
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=¥ / Vv - Vwdx + /L/ / log |x — y|v2(x)v(y)w(y)dxdy
R2 R2 JR2

1 wuets

- /Rz fe'v)e' wdx + ¥ s|| V|3 — -

s t t !
+ 5 /R2 [2F(e'v) — f(e'v)e'v]dx

= (CD’(,B(v, 1)), B(w, t)) + sP(B(v,1)). (4.18)
Let
u(x) := B, Hx) =eve'x), ¢x):=pBw,)(x)=ewex). (4.19)
Then 1 1
u,P)n = f/ u(x)¢(x)dx = f/ v(x)w(x)dx = (v, w)y. (4.20)
C JR2 C JR2
This shows that
¢ €T (S,) & (w,s)e f(u,,)(ﬁc x R), Vi,s e R. 4.21)
It is easy to verify that
log (2 + e*'f'r> > e Mlog2+7r), Yr>0, 1R 4.22)
It follows from (1.12), (4.18), (4.19), (4.21) and (4.22) that
Pl = [(&@.0. 0,1 < | .0 (4.23)
and
@/, = ' (u),
|t 0] yp iz 00l
1
= sup ——=[(®'(B(v.1)). B(w. 1))
9eTu(So) \/IVRI5 + 19112
1 -
= Sip ‘<<I>’(v, 1), (w, O)>’
0TS ([ IVOI5 + 1112
< sup L K&D/(v t), (w 0)>‘
- (w,O)Ef(u,,)(S}XR) ”(w’ O)HEXR e ’
<eldr oo (4.24)

Lemma4.3 Let o > 0. Then for any c € (0, c1), there exists a sequence {u,} C S, such that
D (uy) > M(c) > m(c), d>|:§ (uy) = 0 and P(u,) — 0. (4.25)
Proof Set
Foi= {7 €C0. 1.8 x B) : 7(0) = (ue, 0, ®F(1) < mle) — 1} 426)
and

M(c) := inf max ®(J(1)). 4.27)
jel, tel0,1]
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For any y € T, it is easy to see that y = B o 7 € I, defined by (4.12). Let «. :=
sup, cr, max {@(y(0)), D(y(1))}. Then it follows from (4.11) that

max ®(7(1)) = max ®(y(1) > ke > k. > max {®(y(0)), D(y(1))}
1€10,1] 1€[0,1]

max {&(7(0). S (1)}
It follows that M (c) > M(c), and
M(c) = inf max $F (1) > ke > k. > sup max[&)()?(())), @(;7(1))}. (4.28)
jer, 1€l0.1] sef

This shows that (2.29) holds.

On the other hand, for any y € ', let y(¢) := (y(¢), 0). It is easy to verify that y € I,
and ®(y (1)) = ®(7 (1)), and so, we trivially have M (c) < M(c). Thus M(c) = M(c).

For any n € N, (4.11) implies that there exists y,, € I'. such that

1
max P (y, (1)) < M(c) + —. (4.29)
1€[0,1] n
§et Vn(t) := (yn(t), 0). Then apply Lemma 2.12 to @, there exists a sequence {(vy, t;)} C
Sc x R satisfying

(i) M(c)— 2 < ®(vn, 1) < M(c) + 2;
(i) minseo,1) (Vs tn) — (Y (@), Ol Exr < %;

ol ’ 8
Gii) |l onem)| = 2
Let u, = B(vy,, ty). It follows from (4.23), (4.24) and (i)-(iii) that (4.25) holds. ]

Now we define the following Moser type functions w,, (x) supported in B;(0)

Jlogn, 0<Ix| <1/n;

L J oga/ixp .
wn(0) = —— 1 L, In < x| <1; (4.30)
0, lx] > 1.
Computing directly, we get that
1Vunl = [ 19w, Par =1, 31
RrR2
1/n 1 1 2 1
llwn 2 =f |wn|2dx=10gn/ rdr+/ log”(1/r) 4,
R2 0 1/n logn
- ! ! ! (4.32)
" 4logn  4n2logn  2n?%’ '
8/3 8/3 _ 1
||w,,||8/3—/Rz|wn| dx_0<10g4/3n>’ n — 0o, (4.33)
1
llwa |13 = f log(2 + [x)|w, [*dx = O ( ) , n— 0 (4.34)
R2 logn

and

1
o (w,)| = ’/ / log [x — y|lw?(x)w?(y)dxdy| < 0( > ) n—oo. (4.35)
R?2 JR? log=n

@ Springer



Multiple normalized solutions... Page210f32 50

Lemma4.4 Let ;v > 0. Then for any c € (0, c1), there holds
M(c) <m(c)+2m. (4.36)
Proof Let u, be determined by Theorem 1.1. By Theorem 1.1 and Lemma 3.4, we have
lucll3 = ¢, ®ue) =m(c), uc(x) >0, VxeR? (4.37)

and

4
Since u,. € Eq, it follows from (2.4), (2.7), (4.30), (4.32), (4.33) and (4.34) that

2 4
—ee =2 4 o, — / <e"? S P - %) dx. (4.38)
R2

/ / log |x — yluc(x)wn(X)uc(y)wn(y)dxdy’ =0 ( ) , n—o00, (439
R?2 JR? logn
1
/ f log |x — y|u§(x)w§(y)dxdy‘ =0 ( ) . n— oo, (4.40)
R2 JR? logn
1
/ / log |x — yluc(x)wn(x)wﬁ(y)dxdy‘ =0 <T> , n— 0o, (4.41)
R2 JR? log3? n
1
/RZ U wydx = O <@> , n— 00 (4.42)
and
2 1
/Rz (e”c —1- ug) Uewndx = O (W) . n— oo (4.43)

By (1.1), (4.32) and (4.37), one has

/RZ Vu, - Vw,dx = A&Z |:—pL /]1%2 log |x — y|u§(y)dy + (e“3 —1- u%) — Ac] ucw,dx

(4.44)
and
e+ twn B = ¢+ 2wy 3421 [ e, d
R
1
:c+2t/ ucwpdx + > [0( )} n— oo. (4.45)
R2 logn
Let T := |luc + twy|2/+/c. Then
2 2t 5 1
=1+ — ucwydx +1°1 0O , n— 00 (4.46)
c Jr2 logn
and for any p > 1,
2 2pt 2
TP =1—- — ucwpdx +1t° |0 , N — 0. 4.47)
c Jr2 logn
Now, we define
Whi(x) i=uc(tx) + tw,(tx). (4.48)
Then one has
IVWoill5 = IV (e + tw)ll3, Wil =772 5= 4.4
n,tlly = c n)ll2, n,tlly = uc+twn”2—c7 (4.49)
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Io(Wn,1) = /R . /R Jog lx = yllue () + 1w (1) Plue(ty) + twn (1) Pdxdy

= 14 / / log [x — yl[ue (x) + twy () P[ue (y) + tw, (y)Pdxdy — ¢* log T
T R2 JR2

(4.50)
and
W4
/ Wi —1 - W,%t — 2L ) dx
R2 ’ 2
1 4 rwy)?
== |:e(uc+tw,1)2 1= (ue + tw,,)z _ M] dx 4.51)
¢ JR2 2

From (4.42) and (4.46), one has

2t 1
2=1+ —/ ucwydx + £? [0 ( >j| <1l4+t+ t2, for large n € N. (4.52)
c Jr2 logn

Now, we define W, () by

12 1 2uw? R
v, (1) = > "2 - e "—l—twn—it w, |dx, Vit >0. (4.53)
We claim that
2 1 4 1
sup | W, (t) +t° (O | — +t7( O 3
>0 logn log“n
b4 logn
<2m — log , forlarge n € N. (4.54)
2logn 32

There are three cases to distinguish. In the sequel, we agree that all inequalities hold for large
n € N without mentioning.

Casei) 1 € [0, N/zn]. Then by (4.35) and (4.53), we have

2 2
t 1 1 t 3
0= 55 /nv (efzwrzz B 5:%3) dr<> <22 (4.55)

It follows that

sup [\Iln(t)+t2 (0 (L))w (0( L ))]
0<1<27 logn log®n

1
<27 — il log Ogn, for large n € N. (4.56)
2logn 32

Caseil) f € [«/ 27, A/ 671). Then it follows from (4.30), (4.35) and (4.52) that

1 22 202 Ly 4
?/Rz<e’w"—l—twn—§t w, | dx
1

2,2 1 1,2
- Fwpdy > — Qmr)~ 't 10gn_ 4.57
=202 /Bl/n ¢ = Ten2¢ @7

@ Springer



Multiple normalized solutions... Page230f32 50

Using (4.53) and (4.57), we are led to

2
t 1 2,2 R A
\Dn(z)zf—ﬁfw(e’wn—l—twn—it w, | dx

tz 1 @r)~ 12 logn
= 5 — We = gDn(t). (458)

Choosing #, > 0 be such that ¢}, (#,) = 0, then we have

logn Q)12 logn
=— n . 4.59
32mn2’ (4.59)
It follows that
log(327) — log(l
12 = 4 [1 4 log(32m) = log( Og")] (4.60)
2logn
and
2
@n(t) < n(ty) = 5 — +——, Y1 >0. (4.61)
2 logn
Using (4.60) and (4.61), we are led to
2
1 b4 b4 elogn
H<=Z-— =2 — 1 ,
o) =S " ogn = logn %8 321
which, together with (4.58), yields
W, () <2 b4 1 elogn
T — ——1o .
= logn g 32w
It follows that
2 1 4 1
sup v,)y+t*(O0O\— ) )+ O 5
2n <t<+/61 logn lOg n
1
<" 98" " forlarge n € N. (4.62)

2logn °8 32

Caseiii) t € (/61 +oo) Then it follows from (4.30),(4.35) and (4.52) that

(
oo (o) (05
e, (1ol
Sl (0(:5)
- sz e (o) (o)

T —1,2 1 1
s @2u) 7 logn 12 19) 14 0
2 4n2(1+t+12)e + < (logn)> + log® n

L S VR S (4.63)
T2 421+t +12) " " '

| /\

IA
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T
" 202(1 + V67 + 67)

where we have used the fact that the function
2

Pn T2 4n2(1 4t +12)

<3m

3
18" 4 6ra, + 3672b, < 3T (4.64)

—-1,2
e(ZJ'r) t~logn +ant2+bnt4

is decreasing on t € («/ 6, +oo> for large n. In fact,

(I4+1+1%)tlogn — (1+20)7 L0122

logn.
an? (141 +12)°

¢,(1) = (1 4 2ay)t + 4b,t° —

Assume that s, > 0 such that ¢, (s,,) = O for large n. Then

(1 + 5, + s,zl) splogn — (1 4 2sp,)m n
e

)’15,2, logn
n? ’

2
4[(1+2a,)sp +4bys) | (1+s,+s7) " =
which yields

tog [4 (1 + 24,05, + 4bys3) (1 + 5 +57)]
2logn

2
n

=47 31+

s

log [(14 51+ 52) sn logn—(1+2sn)rr]] 465)

2logn

This implies that lim,;,_, o s,% = 4. So ¢,(t) is decreasing on t € (\/ 6, +oo) for large n.
From (4.64), one has

sup [wn<r>+z2 (0 (L>>+z4 (0( L ))}
Vér<t<+oo logn log™n

T logn
og ,
2logn 32

<2m — for large n € N. (4.66)

Cases i)—iii) show that (4.54) holds. It is easy to verify the following inequality:
(I+09>1+qt7 "+, Vi >0, g>2. (4.67)
By (4.35), (4.39)-(4.41), we have

Io(ue + twy) = /Rz /Rz log [x — yl[ue(x) + 1w, ()P [ue(y) + twy (y)*dxdy
— Io(ue) + 1 Io(wy) + 41 / : / log|x — ylug (x)ue(y)wy (y)drdy
R? JR

+ 412 f / log |x — ylue (x)wy (X)uc(y)wy (y)dxdy
R2 JR2

+2t2/ / log |x —y|ug(x)wr21(y)dXdy
R2 JR2

+4t3/ / log [x — ylue (x)wy (x)w, (y)dxdy
R2 JR?

= Io(uc)+4t/ / log |x — y|uZ (xX)ue(y)wy, (y)dxdy
R2 JR2
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w2lo( N eilo(—L |+#o( (4.68)
logn log*? n log?n /]’ .

From (1.2), (4.31), (4.37)—~(4.44), (4.46)—(4.53), (4.54),(4.67) and (4.68), we have

D (Wy,1)
1 " 1 w2,
= —IVWusl3 + S lo(Wyy) — = m—l—w2 2L d
IV Wil + S o (W) 2/Rz(e 2t ) dx

1 2 " e
= EHV(uc + 1wy |5 + rﬂlo(uc +tw,) — e logt

1

272

4
|:e(ug+twn)2 —1—(uc+ [wn)2 _ M] dx

1 2 ut™* we? 1 2 2 u?
=< E||Vuc”2 + 4 To(ue) — TIOgT - ﬁ R2 e'c —1— u. — EL dx

2 4.4

t 5 1 2w? AL /

—||V - — Wn — “)d t Vu, - Vw,d
+2|| wy I3 21:2]]1;2(8 » 2 x + - Uc - Vwydx

4 2 -2 u? 2
t log |x — yluZ(x)uc(Y)w,(y)dxdy — ™7t e'c — 1 —u;)ucw,dx
R2 JR2 R2

coo ()] o (e )]+ o (22 )]

1 — ‘L'_4 2
%Io(uc) —Eloge

1— -2 4
+ ! / <e%—l—u2—u—)dx
2 R2 2

—p (=) / f log |x — ylug (X)uc(y)w, (y)dxdy
RZ JR?
+ (1 — 1'_2) t /]1;2 (e”3 —1- u?) Ucwypdx — At /11;2 U w,dx
w2 Lo ()]0 Lo (m) [+ o ()]
logn log’/? n log? n
2
<m(c)+ WV, — )»ct/ ucw,dx — Ke |:£/ ucwpdx + 2 (0 ( ! >>]
R2 4 |cJr2 logn
— plo(uc) [5/ ucwydx + ¢ (0< )]
¢ Jr2
4
[ fmse o (] o1
c Jr2 logn 2
_M[ﬁf ucwpdx + 12 < ( ) ] / / log |x — ylug (x)ue(y)wa (y)dxdy
¢ Jre logn R2

2t
+ |:—/ ucwydx + 12 ( ( >)i| e g _ 1— u?) U wydx
c Jr2 logn
logn log3/2 n log’n

= CD(ML) + \Ijn(t) -
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<m(c) + W () + 1 (0 <L)> 0 [0 (#)] L [0 ( 1 )}
= n logn 10g3/2n lngn
2
_ 4pt (/ ucwndx) / / log |x — y|u3(x)uc(y)wn(y)dxdy
C R2 r2 JR2
2
+ 2L |:/ (eu% —1 - Mg) Mcwndx] </ qundx>
C R2 -

<m(c) + W, (1) + £ [0 (Lﬂ +* [0( 12 )} V>0, (4.69)
logn log” n

which, together with (4.54), implies that there exists 7 € N such that

sup ® (Wi ;) < m(c) + 2m. (4.70)

t>0

It follows from (4.46), (4.48), (4.49), (4.53) and (4.69) that Wj ; € §C forallt > 0, Wi,0 = u,
and ®(Wy,) < m(c) — 1 for large ¢ > 0. Thus, there exists 7 > 0 such that

®(W;7) < m(c) — 1. @.71)

Let v (¢) := Wj; ;7. Then y;; € I defined by (4.12). Hence, it follows from (4.11) and (4.70)
that (4.36) holds. ]

Lemma4.5 Let u,—i in H' (R?) and
/ (e = 1—u2)uldy = Ko 4.72)
R2

for some constant Koy > 0. Then there hold.

(i) Forany ¢ € C§° (R?),
lim (e“5 - uﬁ) Updx = / (eﬁz - iﬂ) iipdx. 4.73)

(1) Suppose u,, — u in L4 (Rz)for some q > 2. Then

4 ) —4
lim <e"5 - LL”) dx = / <e”2 - - LL) dx.  (4.74)
n—o00 Jp2 2 R2 2

Proof (i) is a direct consequence of [22, Lemma 2.1]. (ii) can be proved by a similar fashion
as [17, Assertion 2]. O

Proof of Theorem 1.2 In view of Lemmas 4.3 and 4.4, we can deduce that for any ¢ € (0, cp),
there exists a sequence {u,} C S, such that

D (uy) = M(c) € (0,2 + m(c)), CI>|:§'(M,1) — 0 and P(u,) — 0. (4.75)

From (1.2), (1.16) and (4.75), one has

1 2 H 1 u? 2 ui
E”VMV[HZ + zlo(un) 51, e'n —1 —u, — > dx = M(c) + o(1) (4.76)

R

and

2 4
Vi3 — £ —/ [(uﬁ —1)e“ +1— ”i] dx = o(1). 4.77)
4 R2 2
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By (2.5), (2.9), (4.76) and (4.77), one deduces

1 1 2 2 2, Uy
M(c) +o(l) = —|Vun |3+ = lo(un)+—+ . (un—3)e"+3+2un+7 dx
R

4 16
/ W2k dx

1 iz
> annn% + N = C1 1 Vun 2, (4.78)

1 " "w 1
= IVunll3 + 5 1) = T h) + 5 kz

which implies {||Vu, |2} and {I; (u,)} are bounded. Hence, we then deduce by Corollary 2.5
that {||u,||«} is bounded, so the sequence {u,} is bounded in E,;. We may thus assume,
passing to a subsequence again if necessary, that u,—u in E,g, u, — u in L* (R?) for
s € [2, 00) and u,, — i a.e. on R2. Furthermore, we have

Un, U € Sey Up—it in Eqg, tn — it in L°(R?) fors > 2, u, — @ ae.inR% (4.79)

From (2.5), (4.76), (4.77) and the boundedness of {||u, | g, }, one deduces

4
/ (eﬂ—l—u) 2dx<3/ |:<e”3—1—M%)ui—2<e“ﬁ—l—ui—ul>]dx
R2 R2 2

2

3 3
= 6M(0) = 5= Io(un) = 5= +o(1) = €, (4.80)
and
2 2 u4
I (u,) < Cs, / (e”" —1—u, - —”) dx < Cy, (4.81)
RZ 2
By Lemma 2.9, one has
D () + Apty — 0, (4.82)

where

1 1
— h = (P (un), ) = — [nwnn% + plo(uy) —/ (e —1-u?) 2dx]
C R2

llunlls
(4.83)
Since {||u,|lg,} is bounded, it follows from (4.80), (4.81) and (4.83) that {|),|} is also
bounded. Thus, we may thus assume, passing to a subsequence if necessary, that A, — .
Taking into account that u,, — i in L* (R?) for s > 2, it follows from (ii) of Lemma 4.5 that

) Ll4 B —4
lim e —1—u2 -2 dx:/ P L (4.84)
n—o0 Jp2 2 R2 2

To prove that « is a solution to (1.1), it suffices to show that ®'(i) + A.i = 0. For this, we
prove below five assertions in turn.
Assertion 1.

fim [ (e =1 =) uudx = / (¢ —1-a?) dx. (4.85)
n—0o0 Rz Rz

The strategy of the proof is come from [17, Assertion 3]. Noting that u € E, for any
given ¢ > 0, we can choose ¢, € Cy° (R?) C E,q such that ||¢, — i|lg,, < ¢&.Hence, from
(2.7) and the fact that {[[u, |7} = {|Vatn |13 + llun |13} is bounded, we have

|AL U2, un (e — i)

@ Springer



50 Page28o0of32 S.Chenetal.

= /Rz /Rz [10g(2 + [x]) + 10g (2 + |y ]y () |un (D)e (v) — @(y)|dxdy

< Nunl2llunll2lide — illa + lunll3llnllslpe — il < Cse. (4.86)

By (2.4), we also have
| A2 (uy, un (e — iD)| < Cee. (4.87)

Combining (1.2) with (4.82), we obtain
o(1) = (®'(up) + Aputn, ¢pe — it)
= [Vt Vs =)+ B — ]
+ AW, Uy (P — i) — pAL(UE, un (e — i)
_ /Rz (M —1- uf,) (e — i0)dx. (4.88)

From (4.86), (4.87) and (4.88), one has

[R2 (euﬁ 11— uﬁ) U (e — it)dux

< ‘/ [Vitn - V(e — @) + it (be — @)] dx
RZ

+ AL Gy, un (@ — )|
+ iAol un (e — )| + 0(1)
< Nunll gy llpe — ullg,, + C76 + 0(1)
< Cge +o(1). (4.89)

On the other hand, by Lemma 2.3 i), we have

/Rz (eﬁz —1- iﬂ) (e — it)dx

1

-2 2 _ _
5[/ (e —1)dx} lillalige — iilla < Coe.
Rz

(4.90)
Since ¢, € Cgo (Rz), then by Lemma 4.5 i), we have
. ul 2 _ A
Jim | (e 1 u,,) Upedx = /Rz (e 1—i )udbgdx. 4.91)
From (4.89), (4.90) and (4.91), one has
u? i A I
/]RZ [(e n —l—uﬁ)un—(e —l—uz)u]udx
< / (euﬁ —1- u,%> un (e — i)dx| + V <eﬁ2 - 122> (e — it)dx
R2 R2
w42 2 -
+ /RZ [(e 1 un) Up (e 1—u )u] ¢.dx
< (Cg + Co)e + 0(1). 4.92)

Due to the arbitrariness of ¢ > 0, we deduce Assertion 1 from (4.92).
Assertion 2. P(u) > 0.
By (1.2), (2.5), (4.82), (4.85) and Lemma 2.7, we have

0= lim <<D/(Mn) + Anly, it)
n— 00
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_ _ . _ 772 _ _
= Vil + Aclil? + g lim Ao(u,%,u,,u)—/ (e” —1—u2> i2dx
n—oo RZ

= Vi3 + Acllill3 + o lim Ag(uy, i) —/
n—0o0

(eﬁ2 —1- E¢2> i2dx. (4.93)
]R2

By (2.1) and Lemma 2.7, one can deduce

Tim Ay Geg, ) = lim [A1Geg, (e — 07 + 24100y, uil) = A1 Gay, i)

> lim Ay, i?). (4.94)
n—0o0

It follows from (2.5), (4.77), (4.83), (4.84), (4.93) and (4.94) that
0= tim {jvu, 2 - < R SRS
_nggo [| “n”z_T_ - (un— )e + Y X

4
: 2 p 2\ ,2 pe i -2 U
nll)n;OI:HVunHz—/Rz (e“"—l—un)undx:|—T+/lg§2 <e" —1—u —7>dx

2 —4
. ne =2 _ u
lim_ [—hnllunll3 — pwlo(un)] — - /Rz (eu 11— 7) dx

2 _4
_ . uc -2 _ u
—helll3 = Jim To(un) = =~ + /R (e“ —1 - - 3> dx

2 ~4
- . _ ue =2 _ u
< —hellall3 = p Jim Ao(uy, @) = == + /R (e“ —1—i - 3> dx
o pe’ ) i? it
:||V””2_T_ - (@ —1)e +1—7 dx
=P(i). (4.95)

Assertion 3. ®(ir) > m(c).
Since P(u) > 0, then g,/;(l) > 0, where g;(t) = ®(tu,). By Lemma 4.1, there exists
unique 0 < s; <land1 <s; < +o0 such that

gal(sy) < ga(t) < ga(s;) < +00, Vi€ (s7,s7)
That is
@ (s7ugr) < i) < & (s7i, ) <+00, Vi€ st sp). (4.96)
Setv := tu, witht = ﬁﬁ/gﬁn .Thenv € gcﬂAn/g. By Lemma 3.3, there exists t; € (0, 1)
2

such that P(#;v5;) = 0. Noting that t30;; = (f37)its;7. Therefore, s;r = 13T, which, together
with (4.96), implies that

OG@) = ® (sfuyr ) = @ (157;) = m(e).

Assertion 4. [y (e = 1= 42 ) uy (u, — D)dx = o(1).
Set v, = u, — ii. By (2.4), (2.5), (3.15), (3.16), (4.76) and (4.84), we have

1 w 1 2 ut
M(e) +o(1) = 5[ Vuy 13 + Zlotu) =3 /Rz (e”" —1—u? - 7) dx
1 _ i _ _
= 5 (Va3 + 1V ull3) + 7 [fo@ + To(a) + 240, vp)]
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1 B —4
_7/ 1= =L ) dx 4+ 0(1)
2 R2 2

o1 ® woo
= d (i) + Enwnn% + Zlo(wn) + EAO(Mz, v2) +o(1)

1
> S IV, —u)||§+m(c)+%A1(a2,v3)+o(1). (4.97)

Since 0 < M(c) < m(c) + 2x for any ¢ € (0, cp), it follows from (4.97) that there exists
& > 0 such that
IV, — 1Z)||% <4m(1 —3¢), forlargen € N. (4.98)

Choose ¢ € (1,2) such that g>(1 — 38) < (1 — &). Then by (4.98), the Young’s inequality
and Lemma 2.3, we have

q
/ (e”'zi -1- uﬁ) dx < / (eq"% - 1) dx
R2 R?

</ [e(1+g—1)qg2e(1+g)q(u”_g)z —l]dx
R2

=D [e(1+r1>q2<q—1)*‘ﬁ2 _ 1] dx + l/ [e<1+g>q2<un—a>2 _ 1] dx
q R2 q JRrR2
< Cyo. (4.99)

Noting that ¢ /(g — 1) > 1, by (4.79), (4.99) and the Holder inequality, we have

/ (e”'zl -1- u%) uy (uy, — i)dx
RZ
2 2 q 14 _
< [/2 (e”" —-1- u,,) dx] lunllog/q—llun — ttll2g/g—1) = o(1).  (4.100)
R

Hence, Assertion 4 follows directly from (4.100).
Assertion 5. u, — u in E .
By (1.2), (2.1)-(2.3), (2.5), (4.79), (4.82), Lemma 2.7 and Assertion 4, we have

o(l) = ((b/(un) + Aplhp, Uy — it)
— Vi 12 — 1Val2 Ar (42 =2 Ar (42 =
= [Vuulls = Vil + nAy (ug, wp — 0)°) + Ay (ug, (wn — u)in)
— 2 —
— A2 (uﬁ7 up(upy — u)) - / (eu” —-1- ”3) uy (uy — u)dx +o(1)
R2
=\ 12 2 —\2

= |V(un — )13 + Ar (4, (un — 0)°) + o(1), (4.101)
which, together with Lemma 2.4, implies that u,, — i in E;. O
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