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ABSTRACT
This paper is concerned with the initial boundary value problem for viscoelastic Kirchhoff-like plate equations with rotational inertia, memory,
p-Laplacian restoring force, weak damping, strong damping, and nonlinear source terms. We establish the local existence and uniqueness of
the solution by linearization and the contraction mapping principle. Then, we obtain the global existence of solutions with subcritical and
critical initial energy by applying potential well theory. Then, we prove the asymptotic behavior of the global solution with positive initial
energy strictly below the depth of the potential well. Finally, we conduct a comprehensive study on the finite time blow-up of solutions with
negative initial energy, null initial energy, and positive initial energy strictly below the depth of the potential well and arbitrary positive initial
energy, respectively.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0149240

I. INTRODUCTION
In this paper, we study the following viscoelastic Kirchhoff-like plate equation with rotational inertia, memory, p-Laplacian restoring

force, weak damping, strong damping, and nonlinear source terms:

utt − Δutt + Δ2u − ∫
t

0
g(t − τ)Δ2u(τ) dτ

− Δpu + ut − Δut = ∣u∣q−2u, x ∈ Ω, t > 0,
(1.1)

with initial conditions
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.2)

and simply supported boundary conditions
u(x, t) = Δu(x, t) = 0, x ∈ ∂Ω, t > 0, (1.3)
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where Δpu = div(∣∇u∣p−2
∇u) andΩ is a bounded domain in RN with a smooth boundary ∂Ω. Moreover, the memory kernel g and the growth

exponents p, q satisfy the following assumptions:

(A1) g ∈ C1
(R+) ∩ L1

(R+), g(t) ≥ 0, g′(t) ≤ 0, t ∈ [0,∞),
and

κ ∶= 1 − ∫
∞

0
g(t) dt > 0, (1.4)

(A2) 2 ≤ p <∞ if N ≤ 2, 2 ≤ p ≤
2N − 2
N − 2

if N > 2,

(A3) p < q <∞ if N ≤ p, p < q ≤
Np + 2N − 2p

2N − 2p
if N > p.

Viscoelastic materials possess the properties between those of elastic solids and viscous fluids that can be modeled by partial differential
equations. In recent years, different kinds of second-order viscoelastic equations have received considerable attention; see, e.g., Refs. 1–8 and
the references therein. Equation (1.1) is a fourth-order nonlinear hyperbolic equation and can be used to describe small-deflection vibra-
tions of viscoelastic thin homogeneous and isotropic plates.9,10 The unknown function u(x, t) represents the deflection (namely, the normal
component of the displacement vector) at time t of a filament having position x in a given reference configuration.9,10 In order to better
understand the physical background of Eq. (1.1), we sketch the derivation of Eq. (1.1), which can be derived from the Mindlin–Timoshenko
plate model,9,10

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ρh̵utt − K div(∇u +Ψ) = f ,
ρh̵3

12
Ψtt −DS + K(∇u +Ψ) = H,

where ρ is the density, h is the thickness, K = kYh̵
2(1+r) is the shear modulus, D = Yh̵3

12(1−r2
)

is the flexural rigidity, 0 < r < 1
2 is Poisson’s ratio, Y is

Young’s modulus, and k is the shear correction coefficient. Unlike the Kirchhoff plate model, the Mindlin–Timoshenko plate model takes into
account transverse shear effects. In the two-dimensional case, Ψ = (ψ,φ), where ψ = ψ(x1, x2, t) and φ = φ(x1, x2, t) correspond to rotation
angles of the filament. According to the theory of elasticity, the stress tensor S = AΨ, where

A =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

∂x1x1 +
1 − r

2
∂x2x2

1 + r
2

∂x1x2

1 + r
2

∂x1x2

1 − r
2

∂x1x1 + ∂x2x2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

For viscoelastic thin plates, S can be expressed in the form11

S = AΨ − ∫
t

0
g(s)AΨ(t − s) ds.

Thus, in nonconservative systems, we can arrive at the following viscoelastic Mindlin–Timoshenko plate model:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ρh̵utt − K div(∇u +Ψ) = f (u) − μ2ut ,
ρh̵3

12
Ψtt −D(AΨ − ∫

t

0
g(s)AΨ(t − s) ds)

+K(∇u +Ψ) = H(−Ψ) − μ3Ψt ,

(1.5)

where μ2, μ3 ≥ 0 are the damping coefficients. Substitution of (1.5)2 into (1.5)1 gives

ρh̵utt +
ρh̵3

12
divΨtt −D div(AΨ − ∫

t

0
g(s)AΨ(t − s) ds)

− div H(−Ψ) + μ2ut + μ3divΨt = f (u).
(1.6)

Taking the Kirchhoff limit k→∞, we have Ψ = −∇u. Under a normalization of coefficients, (1.6) becomes

utt − μ1Δutt + Δ2u − ∫
t

0
g(t − τ)Δ2u(τ) dτ

− divH(∇u) + μ2ut − μ3Δut = f (u),

where μ1 =
h̵2

12 . Since the qualitative properties of solutions in this paper are independent of the coefficients in the equation, we take
μ1 = μ2 = μ3 = 1 for the sake of convenience. Thus, by H(∇u) = ∣∇u∣p−2

∇u and f (u) = ∣u∣q−2u, Eq. (1.1) is derived. The above derivation
is still valid for the higher-dimensional case. As for the one-dimensional case, Eq. (1.1) can be obtained from the Timoshenko beam model.12
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From above discussions, the terms −Δutt , −∫
t

0 g(t − τ)Δ2u(τ) dτ, −Δpu, and ∣u∣q−2u in Eq. (1.1) stand for the rotational inertia, viscoelas-
ticity, restoring force, and external force, respectively. In the absence of the restoring force −Δpu, (1.1) reduces to a viscoelastic Kirchhoff plate
equation, and various versions of such a model equation have been extensively investigated (see, e.g., Refs. 13–20 and the references therein,
and some of them will be introduced later).

Muñoz Rivera et al.19 estimated the decay rates for the viscoelastic Kirchhoff plate equation,

utt − μ1Δutt + Δ2u − ∫
t

0
g(t − τ)Δ2u(τ) dτ = 0, x ∈ Ω, t > 0,

where Ω ⊂ R2 is a bounded open set with a smooth boundary. Under certain assumptions on the memory kernel g, they proved that the
total energy function of the solution decays to zero with the same rate of decay of g, which means that the memory effect produces strong
dissipation capable of making uniform rate of decay for the energy. In the case μ1 = 0 (namely, the rotational inertia is neglected), Muñoz
Rivera and Fatori18 considered the viscoelastic Kirchhoff plate equation with a strong damping term,

utt + Δ2u − ∫
t

0
g(t − τ)Δ2u(τ) dτ − μ3Δut = 0.

Under some assumptions on g, they established the global existence, uniqueness, and exponential decay of solutions with sufficiently small
initial data. Cavalcanti et al.16 studied the viscoelastic Kirchhoff plate equation with a weak damping term,

utt + Δ2u − ∫
t

0
g(t − τ)Δ2u(τ) dτ −M(∫

Ω
∣∇u∣2 dx)ut = 0,

where M ∈ C1
([0,∞)) and Ω ⊂ RN

(N ≥ 1) is an open set. On the basis of certain assumptions on g, they obtained the global existence and
uniqueness of solutions and the exponential decay of the energy by density arguments.

Alabau-Boussouira et al.14 investigated the following abstract equation, including the viscoelastic Kirchhoff plate equation as a concrete
model:

utt + Au − ∫
t

0
g(t − τ)Au(τ) dτ = ∇F(u), t > 0, (1.7)

under appropriate assumptions on the linear operator A, the memory kernel g, and the Gâteaux differentiable functional F. Their main
results showed that the energy of any mild solution to (1.7), with sufficiently small initial data, decays at infinity with the same expo-
nential or polynomial rate as the memory kernel function g does. Subsequently, Alabau-Boussouira and Cannarsa13 considered (1.7) with
F = 0 and presented a general method, which gives energy decay rates in terms of the asymptotic behavior of g at infinity. Lasiecka
and Wang17 also studied (1.7) under the assumptions different from those in Ref. 14 and derived a general result on the decay of non-
negative energy. Moreover, they provided the estimates on the decay rates with a general nonlinearity. Prüss20 studied the following model
equation:

utt + Au − ∫
t

0
g(t − τ)Au(τ) dτ = f ,

where g can be singular at t = 0 in contrast to Ref. 14 to obtain the exponential or polynomial decay of mild solutions with the same rate of
g by using the frequency domain method. Furthermore, this work also extended these results to the model

utt + Au − ∫
t

0
g(t − τ)Au(τ) dτ = f (u, ut),

where the initial data are required to be sufficiently small. Combining the models in Refs. 14 and 20, Cannarsa and Sforza15 investigated the
model equation

utt + Au − ∫
t

0
g(t − τ)Au(τ) dτ = ∇F(u) + f ,

where g is weaker than that in Ref. 14. They obtained the existence and uniqueness of mild and strong solutions and derived the exponential
decay of the energy with sufficient small initial data and linear external force by using the multiplier method.

Concerning viscoelastic Kirchhoff-like plate equations, Jorge Silva and Ma21 investigated

utt + αΔ2u − ∫
t

−∞
g(t − τ)Δ2u(τ) dτ − Δpu − Δut + f (u) = h(x).

For non-negative energy, they obtained the global well-posedness and regularity of solutions and proved the exponential decay of
the energy.

The works mentioned above well established the corresponding theories of global well-posedness, regularity, and asymptotic behavior of
solutions to such a viscoelastic model equation. In order to achieve these, some restrictions on the initial energy reflected by nonlinear source
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terms and the initial data are natural and necessary. The above restrictions on the energy positive definitely and the initial data small enough
motivate the present paper to consider the cases without positive definitely energy and focus on describing the effects of the initial data on
the dynamical behavior of solutions. The main purpose of the present paper is to discuss the relationship between the initial data and the
qualitative dynamical properties of solutions in order to establish some sufficient conditions for the local and global existence, uniqueness,
asymptotic behavior, and finite time blow-up of solutions to problems (1.1)–(1.3). Generally speaking, the source term and the initial data
have a strong influence on the dynamical properties of solutions to the nonlinear evolution equations. As mentioned above, the results of
Refs. 17 and 21 require the source term to satisfy certain conditions to ensure that the total energy function is always non-negative. Although
the results of Refs. 14, 15, and 20 do not need the total energy function to be non-negative, the initial data are strictly restricted to the
sufficiently small ones. This paper aims to provide a rigorous mathematical description for the initial data. To this end, the potential well
theory (see, e.g., Refs. 22–31) is employed, which plays an essential role in the proofs of the main results. Since the total energy function
associated with problems (1.1)–(1.3) is not always non-negative, we have to overcome the additional technical difficulties in energy estimates.

The rest of this paper is organized as follows. In Sec. II, we state some notations and definitions related to problems (1.1)–(1.3) and
present the main results of this paper. In Sec. III, we are engaged in the Proof of Theorem 2.3, namely, the local existence and uniqueness of
solutions. In Sec. IV, we finish the Proof of Theorem 2.4, namely, the global existence of solutions with subcritical and critical initial energy.
In Sec. V, we complete the Proof of Theorem 2.5, namely, the asymptotic behavior of solutions with positive initial energy strictly below the
depth of the potential well. In Sec. VI, we perform the Proofs of Theorems 2.6–2.8, namely, the finite time blow-up of solutions with negative
initial energy, null initial energy, and positive initial energy strictly below the depth of the potential well and arbitrary positive initial energy,
respectively.

II. NOTATIONS AND MAIN RESULTS
Throughout this paper, in order to simplify the notations, we denote

∥ ⋅ ∥p ∶= ∥ ⋅ ∥Lp
(Ω), ∥ ⋅ ∥ ∶= ∥ ⋅ ∥2, (u,w) ∶= ∫

Ω
uwdx,

(u,w)∗ ∶= (u,w) + (∇u,∇w), ∥u∥2
∗ ∶= ∥u∥

2
+ ∥∇u∥2,

and
(g ○ Δu)(t) ∶= ∫

t

0
g(t − τ)∥Δu(t) − Δu(τ)∥2 dτ.

Moreover, C denotes a generic constant that may vary even in the same formula, and Ci (i = 1, 2, 3, 4) represent the best Sobolev constants of
the embeddings H2

(Ω) ∩H1
0(Ω)↪W1,p

0 (Ω), W1,p
0 (Ω)↪ Lq

(Ω), H2
(Ω) ∩H1

0(Ω)↪ L2
(Ω), and H2

(Ω) ∩H1
0(Ω)↪ H1

0(Ω), respectively.

Definition 2.1 (weak solution). A function u ∈ C([0, T); H2
(Ω) ∩H1

0(Ω)) with ut ∈ C([0, T); H1
0(Ω)) is called a weak solution to

problems (1.1)–(1.3), provided that for u(0) = u0 in H2
(Ω) ∩H1

0(Ω) and ut(0) = u1 in H1
0(Ω), there holds

(ut(t),w)∗ + ∫
t

0
(Δu(τ),Δw) dτ − ∫

t

0
∫

s

0
g(s − τ)(Δu(τ),Δw) dτds

+ ∫

t

0
(∣∇u(τ)∣p−2

∇u(τ),∇w) dτ + (u(t),w)∗

= (u1,w)∗ + (u0,w)∗ + ∫
t

0
(∣u(τ)∣q−2u(τ),w) dτ

for any w ∈ H2
(Ω) ∩H1

0(Ω) and t ∈ (0, T). Here, T is the maximum existence time of solutions.

Remark 2.2. Definition 2.1 implies that

⟨utt(t),w⟩∗ = (∣u(t)∣q−2u(t),w) − (Δu(t),Δw) + ∫
t

0
g(t − τ)(Δu(τ),Δw) dτ

− (∣∇u(t)∣p−2
∇u(t),∇w) − (ut(t),w)∗

for a.e. t ∈ (0, T), where ⟨⋅, ⋅⟩∗ denotes the duality pairing between H2
(Ω) ∩H1

0(Ω) and its dual space.

We define the total energy function associated with problems (1.1)–(1.3),

E(t) ∶=
1
2
∥ut(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δu(t)∥2

+
1
2
(g ○ Δu)(t)

+
1
p
∥∇u(t)∥p

p −
1
q
∥u(t)∥q

q,
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the potential energy functional

J(u(t)) ∶=
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δu(t)∥2

+
1
2
(g ○ Δu)(t) +

1
p
∥∇u(t)∥p

p −
1
q
∥u(t)∥q

q,

and the Nehari functional
I(u(t)) ∶= (1 − ∫

t

0
g(τ) dτ)∥Δu(t)∥2

+ (g ○ Δu)(t) + ∥∇u(t)∥p
p − ∥u(t)∥

q
q.

Thus, all nontrivial stationary solutions belong to the Nehari manifold, defined by

N ∶= {u ∈ H2
(Ω) ∩H1

0(Ω)/{0}∣I(u) = 0}.

We introduce the potential well
W ∶= {u ∈ H2

(Ω) ∩H1
0(Ω)∣J(u) < d, I(u) > 0} ∪ {0},

its outside set
V ∶= {u ∈ H2

(Ω) ∩H1
0(Ω)∣J(u) < d, I(u) < 0},

and the depth of the potential well

d ∶= inf
u∈N

J(u).

We also define
d ∶= max{d1, d2, d3}

and
d̃ ∶= max{d4, d5},

where

d1 ∶=
q − 2

2q
κ

q
q−2 C

−
2q

q−2
1 C

−
2q

q−2
2 , (2.1)

d2 ∶=
q − 2

2q
κC−2

1 C
−

2q
q−p

2 , (2.2)

d3 ∶=
q − p

pq
C
−

pq
q−p

2 , (2.3)

d4 ∶= d1 +
q − p

pq
κ

p
q−2 C

−
2p

q−2
1 C

−
pq

q−2
2 ,

and
d5 ∶= d2 + d3.

The relationships between d and d and between d and d̃ will be discussed later. Moreover, we introduce

H3(Ω) ∶= {u ∈ H3
(Ω) ∩H1

0(Ω)∣Δu ∈ H1
0(Ω)},

which is a Hilbert space equipped with an inner product and norm (see Ref. 21),

(u,w)H3(Ω) ∶= (∇Δu,∇Δw), ∥u∥H3(Ω) ∶= ∥∇Δu∥.

The main results of this paper are stated as follows.

Theorem 2.3 (local existence and uniqueness). Let (A1)–(A3) be fulfilled. Assume that u0 ∈ H2
(Ω) ∩H1

0(Ω) and u1 ∈ H1
0(Ω). Then,

there exists a time T > 0 such that problems (1.1)–(1.3) admit a unique weak solution u, which satisfies

E(t) + ∫
t

0
(∥uτ(τ)∥2

∗ −
1
2
(g′ ○ Δu)(τ) +

1
2

g(τ)∥Δu(τ)∥2
) dτ = E(0) (2.4)

for all t ∈ [0, T). Moreover, if T =∞, the solution exists globally in time. If T <∞, the solution blows up in finite time, i.e.,

lim
t→T
∥u(t)∥r =∞ (2.5)

for all r ≥ 1 such that r > N(q−p)
p .
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Theorem 2.4 (global existence for subcritical and critical initial energy). Let (A1)–(A3) be fulfilled. Assume that u0 ∈ H2
(Ω) ∩

H1
0(Ω), u1 ∈ H1

0(Ω). Then, we have the following:

(i) If E(0) < d and I(u0) > 0 or ∥Δu0∥ = 0, then the solution u to problems (1.1)–(1.3) is global, and u(t) ∈W for all t ∈ [0,∞).
(ii) If E(0) = d and I(u0) ≥ 0, then problems (1.1)–(1.3) admit a unique global solution u(t) ∈W for all t ∈ [0,∞).

The following theorem shows the asymptotic behavior of the solution u to problems (1.1)–(1.3) with positive initial energy strictly below
the depth of the potential well, i.e., E(0) < d. Later, we shall illustrate d < d in Proposition 4.2.

Theorem 2.5 (asymptotic behavior for the positive initial energy strictly below the depth of the potential well). In addition to the
assumptions of Theorem 2.4, suppose that there exists a constant ρ > 0 such that g′(t) ≤ −ρg(t) for all t ∈ [0,∞). If E(0) < d and I(u0) > 0 or
∥Δu0∥ = 0, then the solution u to problems (1.1)–(1.3) possesses the following property:

∥Δu(t)∥2
+ ∥ut(t)∥2

∗ ≤ αe−βt (2.6)

for all t ∈ [0,∞) and some constants α,β > 0.

Theorem 2.6 (blow-up for non-positive initial energy). Let (A1)–(A3) be fulfilled, and

∫

∞

0
g(τ) dτ ≤

q(q − 2)
q(q − 2) + 1

. (2.7)

Assume that u0 ∈ H2
(Ω) ∩H1

0(Ω), u1 ∈ H1
0(Ω), and either one of the following cases occurs:

(i) E(0) < 0;
(ii) E(0) = 0 and (u0, u1)∗ > 0.

Then, the solution to problems (1.1)–(1.3) blows up in finite time.

The following theorem shows the finite time blow-up of the solution u to problems (1.1)–(1.3) with positive initial energy strictly below
the depth of the potential well, i.e., 0 < E(0) < θd̃. Here, d̃ < d will be discussed in Proposition 4.2. In addition, as θ < 2(q−p)

p(q−2)(≤ 1) will be

required in the following theorem, we also need to figure out that θd̃ < d.
Theorem 2.7 (blow-up for the positive initial energy strictly below the depth of the potential well). Let (A1)–(A3) be fulfilled, and

∫

∞

0
g(τ) dτ ≤

(q − 2)(1 − θ)(q − θ(q − 2))
(q − 2)(1 − θ)(q − θ(q − 2)) + 1

, (2.8)

where 0 < θ < 2(q−p)
p(q−2) . Assume that u0 ∈ H2

(Ω) ∩H1
0(Ω), u1 ∈ H1

0(Ω), 0 < E(0) < θd̃, and I(u0) < 0. Then, the solution to problems (1.1)–(1.3)
blows up in finite time.

Theorem 2.8 (blow-up for arbitrary positive initial energy). Let (A1)–(A3) be fulfilled,

∫

t

0
Ϛ(s)∫

s

0
e

s−τ
2 g(s − τ)Ϛ(τ) dτds ≥ 0, Ϛ ∈ C1

([0,∞)), t > 0, (2.9)

and

∫

∞

0
g(τ) dτ < min{

q − 2
q

,
q(q − 2)

q(q − 2) + 1
}. (2.10)

Assume that u0 ∈ H2
(Ω) ∩H1

0(Ω), u1 ∈ H1
0(Ω), E(0) > 0, (u0, u1)∗ > 0, ψ(u0) < 0, and

∥u0∥
2
∗ ≥

2q(C2
3 + C

2
4)

min{κq − 2,𝜚}E(0), (2.11)

where
ψ(u(t)) ∶= ∥Δu(t)∥2

+ ∥∇u(t)∥p
p − ∥u(t)∥

q
q (2.12)

and

𝜚 ∶= q − 2 − (q − 2 +
1
q
)(1 − κ).

Then, the solution to problems (1.1)–(1.3) blows up in finite time.
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Remark 2.9 (remark on the memory kernel in the blow-up theorems). In fact, (2.7), (2.8), and (2.10) reveal the essential relationship
between the viscoelasticity of thin plates, the restoring force, and the external force, which leads to the finite time blow-up of solution. According to
Ref. 19, (1.4) is the premise that the viscoelastic term produces strong dissipation effect. Consequently, once the memory kernel satisfies either one
of (2.7), (2.8), and (2.10), strong dissipation effect of the viscoelastic term brings obstacles to the finite time blow-up. Thus, by means of the growth
exponents of the restoring force and the external force, (2.7), (2.8), and (2.10) show that how strong is the dissipation effect at most to guarantee
the finite time blow-up.

Remark 2.10 (unsolved problems). Our results on the global existence and asymptotic behavior of solutions to problems (1.1)–(1.3) are
restricted to the cases E(0) ≤ d and E(0) < d, respectively. For the case of higher initial energy, since the invariance of W is inaccessible, whether
the solution still exists globally and decays is now unsolved. Moreover, because the initial data and the initial energy are not accurate enough to
make the expected energy estimates difficult to obtain, the estimates on the blow-up time of solutions are also unsolved.

III. LOCAL EXISTENCE AND UNIQUENESS (PROOF OF THEOREM 2.3)
In order to prove the local existence and uniqueness of solutions to problems (1.1)–(1.3), we shall first handle the existence, uniqueness,

and regularity of solutions to the initial boundary problem for the corresponding linear equation by Galerkin approximations and study the
continuity of solutions in time by density arguments. Thus, by the contraction mapping principle, we prove the local existence and uniqueness
of solutions to the original nonlinear problems (1.1)–(1.3) in the sense of Definition 2.1. To deal with the nonlinearity in the problem, we need
the following lemma.

Lemma 3.1. For any u(x, t) and v(x, t) with (x, t) ∈ Ω × [0, T), if u ≠ v and p ≥ 2, then

∣∣u∣p−2u − ∣v∣p−2v∣ ≤ (p − 1)(∣u∣ + ∣v∣)p−2
∣u − v∣.

Proof. Set f (u) ∶= ∣u∣p−2u and ũ ∶= u − v. Then, by the property of the Gâteaux derivative, we see that

f (u) − f (v) = f (v + ũ) − f (v) = ∫
1

0
d f (v + sũ; ũ) ds

for all s ∈ (0, 1). From

d f (v + sũ; ũ) = lim
τ→0

f (v + sũ + τũ) − f (v + sũ)
τ

=
d

dτ
f (v + sũ + τũ)∣

τ=0
,

we further deduce that

f (u) − f (v) = ∫
1

0

d
dτ
(∣v + sũ + τũ∣p−2

(v + sũ + τũ))∣
τ=0

ds

= ∫

1

0
(p − 1)∣v + sũ + τũ∣p−2ũ∣τ=0

ds

= ∫

1

0
(p − 1)∣su + (1 − s)v∣p−2

(u − v) ds

≤ (p − 1)(∣u∣ + ∣v∣)p−2
∣u − v∣.

◻

In order to handle the nonlinear model in the present paper, we first consider the initial boundary value problem for the linear version
of (1.1),

vtt − Δvtt + Δ2v − ∫
t

0
g(t − τ)Δ2v(τ) dτ

− Δpv + vt − Δvt = ∣u∣q−2u, x ∈ Ω, t > 0,

(3.1)

v(x, 0) = u0(x), vt(x, 0) = u1(x), x ∈ Ω, (3.2)

v(x, t) = Δv(x, t) = 0, x ∈ ∂Ω, t > 0. (3.3)
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Later, in Lemma 3.3, we shall show the existence of solutions to the linear problem, i.e., problems (3.1)–(3.3). In the Proof of Lemma 3.3,
the estimates only support v ∈ L∞(0, T; H2

(Ω) ∩H1
0(Ω)) with vt ∈ L∞(0, T; H1

0(Ω)), which is not enough to give the solution with
higher regularity demonstrated by (3.6). Hence, we need Lemma 3.2 to ensure that the expected (3.6) can be achieved, provided
vt(t) ∈ H1

0(Ω).

Lemma 3.2. Let (A1)–(A3) be fulfilled. Suppose that v ∈ L2
(0, T; H2

(Ω) ∩H1
0(Ω)) with vt ∈ L2

(0, T; H1
0(Ω)) is a solution to problems

(3.1)–(3.3) with u0 ∈ H2
(Ω) ∩H1

0(Ω), u1 ∈ H1
0(Ω), and u ∈ C([0, T); H2

(Ω) ∩H1
0(Ω)). Then, there holds

(vtt(t) − Δvtt(t) + Δ2v(t) − ∫
t

0
g(t − τ)Δ2v(τ) dτ, vt(t))

=
1
2

d
dt
(∥vt(t)∥2

∗ + (1 − ∫
t

0
g(τ) dτ)∥Δv(t)∥2

+ (g ○ Δv)(t))

−
1
2
(g′ ○ Δv)(t) +

1
2

g(t)∥Δv(t)∥2.

(3.4)

Proof. Extend v to be zero outside (0, T). Let ṽ ∶= ζv, where the truncation function

ζ(t) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if t ∈ R/(0, T),
1
δ

t if t ∈ (0, δ),

1 if t ∈ [δ, T − δ),

−
1
δ

t +
T
δ

if t ∈ [T − δ, T).

(3.5)

Set the mollification of v to be
ṽε ∶= ηε ∗ ṽ,

where the mollifier ηε(t) ∶= 1
ε η(

t
ε), ε > 0, and η(t) is a non-negative even C∞-function on the real line with compact support and ∫Rη(t)

dt = 1. According to the regularization theory, we have ṽε ∈ C∞(R; H2
(Ω) ∩H1

0(Ω)) [but ṽε ∈ C2
(R; H2

(Ω) ∩H1
0(Ω)) is enough here], and

as ε→ 0,
ṽε → ṽ in L2

(R; H2
(Ω) ∩H1

0(Ω)),

ṽεt → ṽt in L2
(R; H1

0(Ω)).

Since
(ṽεtt(t) − Δṽεtt(t) + Δ2ṽε(t) − ∫

t

0
g(t − τ)Δ2ṽε(τ) dτ, ṽεt(t))

=
1
2

d
dt
(∥ṽεt(t)∥2

∗ + ∥Δṽε(t)∥
2
) − ∫

t

0
g(t − τ)(Δṽε(τ),Δṽεt(t)) dτ

and

∫

t

0
g(t − τ)(Δṽε(τ),Δṽεt(t)) dτ

= ∫

t

0
g(t − τ)(Δṽε(τ) − Δṽε(t),Δṽεt(t)) dτ + ∫

t

0
g(t − τ)(Δṽε(t),Δṽεt(t)) dτ

= −
1
2∫

t

0
g(t − τ)

d
dt
∥Δṽε(τ) − Δṽε(t)∥2 dτ +

1
2∫

t

0
g(t − τ)

d
dt
∥Δṽε(t)∥2 dτ

= −
1
2

d
dt
((g ○ Δṽε)(t) − ∫

t

0
g(τ) dτ∥Δṽε(t)∥2

) +
1
2
(g′ ○ Δṽε)(t) −

1
2

g(t)∥Δṽε(t)∥2,

we get

(ṽεtt(t) − Δṽεtt(t) + Δ2ṽε(t) − ∫
t

0
g(t − τ)Δ2ṽε(τ) dτ, ṽεt(t))

=
1
2

d
dt
(∥ṽεt(t)∥2

∗ + (1 − ∫
t

0
g(τ) dτ)∥Δṽε(t)∥2

+ (g ○ Δṽε)(t))

−
1
2
(g′ ○ Δṽε)(t) +

1
2

g(t)∥Δṽε(t)∥2.

Taking ε→ 0 first, the above formula still holds for ṽ. Finally, by taking δ → 0 in (3.5) and restriction to (0, T), we obtain (3.4). ◻
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Lemma 3.3 (existence and uniqueness of solutions to linear equations). Let (A1)–(A3) be fulfilled. Assume that u0 ∈ H2
(Ω) ∩H1

0(Ω),
u1 ∈ H1

0(Ω), and u ∈ C([0, T); H2
(Ω) ∩H1

0(Ω)). Then, the linear problems (3.1)–(3.3) admit a unique solution
v ∈ L∞(0, T; H2

(Ω) ∩H1
0(Ω)) with vt ∈ L∞(0, T; H1

0(Ω)), which satisfies

1
2
∥vt(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δv(t)∥2

+
1
2
(g ○ Δv)(t) +

1
p
∥∇v(t)∥p

p

+ ∫

t

0
(∥vτ(τ)∥2

∗ −
1
2
(g′ ○ Δv)(τ) +

1
2

g(τ)∥Δv(τ)∥2
) dτ

=
1
2
∥u1∥

2
∗ +

1
2
∥Δu0∥

2
+

1
p
∥∇u0∥

p
p + ∫

t

0
(∣u(τ)∣q−2u(τ), vτ(τ)) dτ

(3.6)

for all t ∈ [0, T).

Proof. According to the spectral theory of a compact operator (see Ref. 32, Theorem 6.3) and the Hilbert–Schmidt theory (see Ref. 32,
Theorem 6.6), we can choose {ω j}

∞
j=1 given by eigenfunctions of Δ2 with a simply supported boundary condition as an orthogonal basis of

H2
(Ω) ∩H1

0(Ω), which is also an orthonormal basis of L2
(Ω) with the corresponding eigenvalues {λj}. Denote Wn ∶= {ω1,ω2, . . . ,ωn}. Set

u0n ∶=
n

∑
j=1
(u0,ω j)ω j

and
u1n ∶=

n

∑
j=1
(u1,ω j)ω j

such that
u0n → u0 in H2

(Ω) ∩H1
0(Ω) (3.7)

and
u1n → u1 in H1

0(Ω) (3.8)

as n→∞. For all n ≥ 1, we seek n functions ξ1n, ξ2n, . . . , ξnn ∈ C2
[0, T) to construct the approximate solutions to problems (3.1)–(3.3),

vn(t) ∶=
n

∑
j=1

ξ jn(t)ω j , n = 1, 2, . . . , (3.9)

which satisfy

(vntt(t) − Δvntt(t) + Δ2vn(t) − ∫
t

0
g(t − τ)Δ2vn(τ) dτ − Δpvn(t)

+ vnt(t) − Δvnt(t),w) = (∣u(t)∣q−2u(t),w), t > 0, (3.10)

vn(0) = u0n, vnt(0) = u1n, (3.11)

for any w ∈Wn. Let ξn(t) ∶= (ξ1n(t), ξ2n(t), . . . , ξnn(t))T . Then, by taking w = ωi (i = 1, 2, . . . , n) in (3.10), the vector function ξn solves

Λnξ′′n (t) +Λnξ′n(t) +Ln(t, ξn(t)) = Fn(t), t > 0, (3.12)

ξn(0) = ((u0,ω1), (u0,ω2), . . . , (u0,ωn))
T , (3.13)

ξ′n(0) = ((u1,ω1), (u1,ω2), . . . , (u1,ωn))
T , (3.14)

where Λn ∶= diag(1 + λ
1
2
1 , 1 + λ

1
2
2 , . . . , 1 + λ

1
2
n ), Ln : [0, T) ×Rn

→ Rn is the map defined by

Ln(t, ξn(t)) ∶= (L 1n(t, ξn(t)),L 2n(t, ξn(t)), . . . ,L nn(t, ξn(t)))T ,

Lin(t, ξn(t)) ∶=
⎛

⎝

n

∑
j=1

ξ jn(t)Δ2ω j ,ωi
⎞

⎠
− ∫

t

0
g(t − τ)

⎛

⎝

n

∑
j=1

ξ jn(τ)Δ2ω j ,ωi
⎞

⎠
dτ

+
⎛

⎝

RRRRRRRRRRR

n

∑
j=1

ξ jn(t)∇ω j

RRRRRRRRRRR

p−2 n

∑
j=1

ξ jn(t)∇ω j ,∇ωi
⎞

⎠
, i = 1, 2, . . . , n,
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and Fn : [0, T)→ Rn is defined by

Fn(t) ∶= ((∣u(t)∣q−2u(t),ω1), (∣u(t)∣q−2u(t),ω2), . . . , (∣u(t)∣q−2u(t),ωn))
T

.

By the standard theory for ODEs, the Cauchy problem (3.12)–(3.14) admits a solution ξn ∈ C2
[0, Tn)with Tn ≤ T. In turn, this gives a solution

un(t) defined by (3.9) and satisfying (3.10) and (3.11).
Taking w = vnt(t) in (3.10), we obtain

1
2

d
dt
(∥vnt(t)∥2

∗ + ∥Δvn(t)∥2
) − ∫

t

0
g(t − τ)(Δvn(τ),Δvnt(t)) dτ

+
1
p

d
dt
∥∇vn(t)∥p

p + ∥vnt(t)∥2
∗

= (∣u(t)∣q−2u(t), vnt).

(3.15)

Note that

∫

t

0
g(t − τ)(Δvn(τ),Δvnt(t)) dτ

= ∫

t

0
g(t − τ)(Δvn(τ) − Δvn(t),Δvnt(t)) dτ + ∫

t

0
g(t − τ)(Δvn(t),Δvnt(t)) dτ

= −
1
2∫

t

0
g(t − τ)

d
dt
∥Δvn(τ) − Δvn(t)∥2 dτ +

1
2∫

t

0
g(t − τ)

d
dt
∥Δvn(t)∥2 dτ

= −
1
2

d
dt
((g ○ Δvn)(t) − ∫

t

0
g(τ) dτ∥Δvn(t)∥2

)

+
1
2
(g′ ○ Δvn)(t) −

1
2

g(t)∥Δvn(t)∥2.
(3.16)

Substituting (3.16) into (3.15) and integrating with respect to t, we deduce that

1
2
∥vnt(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δvn(t)∥2

+
1
2
(g ○ Δvn)(t) +

1
p
∥∇vn(t)∥p

p

+ ∫

t

0
(∥vnτ(τ)∥2

∗ −
1
2
(g′ ○ Δvn)(τ) +

1
2

g(τ)∥Δvn(τ)∥2
) dτ

=
1
2
∥vnt(0)∥2

∗ +
1
2
∥Δvn(0)∥2

+
1
p
∥∇vn(0)∥

p
p + ∫

t

0
(∣u(τ)∣q−2u(τ), vnτ(τ)) dτ

(3.17)

for all t ∈ [0, T). By (1.4) in (A1), we have

1 − ∫
t

0
g(τ) dτ ≥ κ > 0. (3.18)

By the assumption g(t) ≥ 0 in (A1), we discover
(g ○ Δu)(t) ≥ 0 (3.19)

for any u ∈ L2
(0, T; H2

(Ω) ∩H1
0(Ω)). By the assumptions g′(t) ≤ 0 and g(t) ≥ 0 in (A1), we have

− (g′ ○ Δu)(t) + g(t)∥Δu(t)∥2
≥ 0 (3.20)

for any u ∈ L2
(0, T; H2

(Ω) ∩H1
0(Ω)). From (A2) and (A3) and the inequalities of Hölder, Sobolev, and Cauchy, it follows that

∫

t

0
(∣u(τ)∣q−2u(τ), vnτ(τ)) dτ ≤ ∫

t

0
∥u(τ)∥q−1

2q−2∥vnτ(τ)∥ dτ

≤ C sup
t∈[0,T)

∥Δu(t)∥2q−2
+

1
2∫

t

0
∥vnτ(τ)∥2 dτ. (3.21)

Hence, by virtue of (3.17)–(3.21), (3.7), and (3.8), we get

1
2
∥vnt(t)∥2

∗ +
κ
2
∥Δvn(t)∥2

+
1
p
∥∇vn(t)∥p

p ≤ C (3.22)

for all t ∈ [0, T), where C is independent of n.
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Therefore, there exist a subsequence of {vn} (always relabeled as the same, and we shall not repeat) and a function v such that as n→∞,

vn⇀v weakly star in L∞(0, T; H2
(Ω) ∩H1

0(Ω))

and
vnt⇀vt weakly star in L∞(0, T; H1

0(Ω)).

According to the Aubin–Lions lemma, we have
vn → v in L2

(0, T; H1
0(Ω)). (3.23)

We claim that for all t ∈ [0, T),

∫

t

0
(∣∇vn(τ)∣p−2

∇vn(τ),∇w) dτ → ∫
t

0
(∣∇v(τ)∣p−2

∇v(τ),∇w) dτ

as n→∞. Indeed, by Lemma 3.1 and the inequalities of Hölder and Minkowski, we get

∣(∣∇vn(t)∣p−2
∇vn(t) − ∣∇v(t)∣p−2

∇v(t),∇w)∣

≤ C∫
Ω
(∣∇vn(t)∣p−2

+ ∣∇v(t)∣p−2
)∣∇vn(t) −∇v(t)∣∣∇w∣ dx

≤ C(∥∇vn(t)∥p−2
2p−2 + ∥∇v(t)∥

p−2
2p−2)∥∇w∥2p−2∥∇vn(t) −∇v(t)∥.

We further deduce from (A2) and the Sobolev inequality that

∣(∣∇vn(t)∣p−2
∇vn(t) − ∣∇v(t)∣p−2

∇v(t),∇w)∣

≤ C(∥Δvn(t)∥p−2
+ ∥Δv(t)∥p−2

)∥Δw∥∥∇vn(t) −∇v(t)∥.

Accordingly, the assertion follows from (3.23).
Integrating (3.10) with respect to t, we get

(vnt(t),w)∗ + ∫
t

0
(Δvn(τ),Δw) dτ − ∫

t

0
∫

s

0
g(s − τ)(Δvn(τ),Δw) dτds

+ ∫

t

0
(∣∇vn(τ)∣p−2

∇vn(τ),∇w) dτ + (vn(t),w)∗

= (u1n,w)∗ + (u0n,w)∗ + ∫
t

0
(∣u(τ)∣q−2u(τ),w) dτ.

Taking n→∞, we obtain

(vt(t),w)∗ + ∫
t

0
(Δv(τ),Δw) dτ − ∫

t

0
∫

s

0
g(s − τ)(Δv(τ),Δw) dτds

+ ∫

t

0
(∣∇v(τ)∣p−2

∇v(τ),∇w) dτ + (v(t),w)∗

= (u1,w)∗ + (u0,w)∗ + ∫
t

0
(∣u(τ)∣q−2u(τ),w) dτ.

By virtue of (3.7) and (3.8), we have v(0) = u0 in H2
(Ω) ∩H1

0(Ω) and vt(0) = u1 in H1
0(Ω). Therefore, v is a solution to problems (3.1)–(3.3).

In addition, thanks to Lemma 3.2 and

(vtt(t) − Δvtt(t) + Δ2v(t) − ∫
t

0
g(t − τ)Δ2v(τ) dτ

− Δpv(t) + vt(t) − Δvt(t), vt(t)) = (∣u(t)∣q−2u(t), vt(t)),

we get
d
dt
(

1
2
∥vt(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δv(t)∥2

+
1
2
(g ○ Δv)(t) +

1
p
∥∇v(t)∥p

p)

+ ∥vt(t)∥2
∗ −

1
2
(g′ ○ Δv)(t) +

1
2

g(t)∥Δv(t)∥2

= (∣u(t)∣q−2u(t), vt(t)).

Integrating this equality with respect to t, we obtain (3.6).
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Next, we prove the uniqueness of solutions. Suppose that v and v̄ are two solutions to problems (3.1)–(3.3). Set ṽ ∶= v̄ − v. Then,

(ṽtt(t) − Δṽtt(t) + Δ2ṽ(t) − ∫
t

0
g(t − τ)Δ2ṽ(τ) dτ − Δpv̄(t) + Δpv(t)

+ ṽt(t) − Δṽt(t),w) = 0.

By the arguments similar to Lemma 3.2, we have

(ṽtt(t) − Δṽtt(t) + Δ2ṽ(t) − ∫
t

0
g(t − τ)Δ2ṽ(τ) dτ, ṽt(t))

=
1
2

d
dt
(∥ṽt(t)∥2

∗ + (1 − ∫
t

0
g(τ) dτ)∥Δṽ(t)∥2

+ (g ○ Δṽ)(t))

−
1
2
(g′ ○ Δṽ)(t) +

1
2

g(t)∥Δṽ(t)∥2.

Hence,
d
dt
(

1
2
∥ṽt(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δṽ(t)∥2

+
1
2
(g ○ Δṽ)(t))

+ (∣∇v̄(t)∣p−2
∇v̄(t) − ∣∇v(t)∣p−2

∇v(t),∇ṽt(t))

+ ∥ṽt(t)∥2
∗ −

1
2
(g′ ○ Δṽ)(t) +

1
2

g(t)∥Δṽ(t)∥2
= 0.

(3.24)

Taking into account (3.20), we deduce from (3.24) that

d
dt
(

1
2
∥ṽt(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δṽ(t)∥2

+
1
2
(g ○ Δṽ)(t))

≤ ∣(∣∇v̄(t)∣p−2
∇v̄(t) − ∣∇v(t)∣p−2

∇v(t),∇ṽt(t))∣.

From Lemma 3.1, (A2), and the inequalities of Hölder, Minkowski, Sobolev, and Cauchy, it follows that

∣(∣∇v̄(t)∣p−2
∇v̄(t) − ∣∇v(t)∣p−2

∇v(t),∇ṽt(t))∣

≤ C(∥∇v(t)∥p−2
2p−2 + ∥∇v̄(t)∥

p−2
2p−2)∥∇ṽ(t)∥2p−2∥∇ṽt(t)∥

≤ C∥Δṽ(t)∥2
+

1
2
∥∇ṽt(t)∥2.

We can deduce from (1.4) in (A1) that

1 ≥ 1 − ∫
t

0
g(τ) dτ > 0. (3.25)

Hence,

d
dt
(

1
2
∥ṽt(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δṽ(t)∥2

+
1
2
(g ○ Δṽ)(t))

≤ C(
1
2
∥ṽt(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δṽ(t)∥2

+
1
2
(g ○ Δṽ)(t)),

which combined with Gronwall’s inequality, ṽ(0) = 0, ṽt(0) = 0, (3.18), and (3.19) tells us that

1
2
∥ṽt(t)∥2

∗ +
κ
2
∥Δṽ(t)∥2

≤ 0 (3.26)

for all t ∈ [0, T), which implies that ṽ ≡ 0, i.e., v ≡ v̄ for all t ∈ [0, T). The Proof of Lemma 3.3 is completed. ◻

In order to show that under the conditions of Lemma 3.3, problems (3.1)–(3.3) can have a unique solution
v ∈ C([0, T); H2

(Ω) ∩H1
0(Ω)) with vt ∈ C([0, T); H1

0(Ω)), we discuss the regularity of solutions to problems (3.1)–(3.3) with u0 ∈ H3(Ω)
and u1 ∈ H2

(Ω) ∩H1
0(Ω) in the following lemma.

Lemma 3.4 (regularity of solutions to linear equations). Let (A1)–(A3) be fulfilled. Assume that u0 ∈ H3(Ω), u1 ∈ H2
(Ω) ∩H1

0(Ω), and
u ∈ C([0, T); H2

(Ω) ∩H1
0(Ω)). Then, problems (3.1)–(3.3) admit a unique solution v ∈ L∞(0, T; H3(Ω))with vt ∈ L∞(0, T; H2

(Ω) ∩H1
0(Ω))

and vtt ∈ L2
(0, T; H1

0(Ω)), which satisfies (3.6) for all t ∈ [0, T).
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Proof. As in the Proof of Lemma 3.3, we construct the approximate solutions vn(t) to problems (3.1)–(3.3), where

u0n → u0 in H3(Ω)

and
u1n → u1 in H2

(Ω) ∩H1
0(Ω).

We see from the Proof of Lemma 3.3 that estimate (3.22) holds. Taking w = ωi in (3.10), multiplying by λ
1
2
i ξ
′
in(t), and summing for i, we

obtain
1
2

d
dt
(∥∇vnt(t)∥2

+ ∥Δvnt(t)∥2
+ ∥∇Δvn(t)∥2

)

− ∫

t

0
g(t − τ)(∇Δvn(τ),∇Δvnt(t)) dτ

− (∣∇vn(t)∣p−2
∇vn(t),∇Δvnt(t)) + ∥∇vnt(t)∥2

+ ∥Δvnt(t)∥2

= − (∣u(t)∣q−2u(t),Δvnt(t)).

(3.27)

By the arguments similar to the proof of (3.16), we have

∫

t

0
g(t − τ)(∇Δvn(τ),∇Δvnt(t)) dτ

= −
1
2

d
dt
((g ○ ∇Δvn)(t) − ∫

t

0
g(τ) dτ∥∇Δvn(t)∥2

)

+
1
2
(g′ ○ ∇Δvn)(t) −

1
2

g(t)∥∇Δvn(t)∥2.

Substituting this equality into (3.27), we get

1
2

d
dt
(∥∇vnt(t)∥2

+ ∥Δvnt(t)∥2
+ (1 − ∫

t

0
g(τ) dτ)∥∇Δvn(t)∥2

+ (g ○ ∇Δvn)(t)) − (∣∇vn(t)∣p−2
∇vn(t),∇Δvnt(t)) + ∥∇vnt(t)∥2

+ ∥Δvnt(t)∥2
−

1
2
(g′ ○ ∇Δvn)(t) +

1
2

g(t)∥∇Δvn(t)∥2

= − (∣u(t)∣q−2u(t),Δvnt(t)).

(3.28)

In (3.28), we have

−(∣∇vn(t)∣p−2
∇vn(t),∇Δvnt(t)) = −

d
dt
(∣∇vn(t)∣p−2

∇vn(t),∇Δvn(t))

− (p − 1)(∣∇vn(t)∣p−2
∇vnt(t),∇Δvn(t)).

Recalling (A1), we observe

−
1
2
(g′ ○ ∇Δvn)(t) +

1
2

g(t)∥∇Δvn(t)∥2
≥ 0.

Hence, (3.28) turns into
d
dt
(

1
2
∥∇vnt(t)∥2

+
1
2
∥Δvnt(t)∥2

+
1
2
(1 − ∫

t

0
g(τ) dτ)∥∇Δvn(t)∥2

+ (g ○ ∇Δvn)(t) − (∣∇vn(t)∣p−2
∇vn(t),∇Δvn(t)))

≤ I1 + I2,

(3.29)

where
I1 ∶= −(∣u(t)∣q−2u(t),Δvnt(t))

and
I2 ∶= (p − 1)(∣∇vn(t)∣p−2

∇vnt(t),∇Δvn(t)).

From (A2) and (A3) and the inequalities of Hölder, Sobolev, and Cauchy, it follows that
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I1 ≤ ∥u(t)∥
q−1
2q−2∥Δvnt(t)∥

≤ C∥Δu(t)∥q−1
∥Δvnt(t)∥

≤ C∥Δu(t)∥2q−2
+

1
2
∥Δvnt(t)∥2. (3.30)

Moreover, from (A2) and the inequalities of Hölder and Sobolev, we deduce that

I2 ≤ (p − 1)∥∇vn(t)∥p−2
2p−2∥∇vnt(t)∥2p−2∥∇Δvn(t)∥

≤ C∥Δvn(t)∥p−2
∥Δvnt(t)∥∥∇Δvn(t)∥.

Thus, there exists a constant ϵ1 > 0 to be determined such that

I2 ≤ (
C

(2ϵ1)
1
2
∥Δvn(t)∥p−2

∥Δvnt(t)∥)((2ϵ1)
1
2 ∥∇Δvn(t)∥).

We further deduce from Cauchy’s inequality that

I2 ≤
C2

4ϵ1
∥Δvn(t)∥2p−4

∥Δvnt(t)∥2
+ ϵ1∥∇Δvn(t)∥2.

Taking ϵ1 =
κ
4 , we obtain

I2 ≤ C∥Δvn(t)∥2p−4
∥Δvnt(t)∥2

+
κ
4
∥∇Δvn(t)∥2. (3.31)

Due to the fact that (A1) implies (g ○ ∇Δvn)(t) ≥ 0, we deduce from (3.29)–(3.31), (3.22), and (3.18) that

1
2
∥∇vnt(t)∥2

+
1
2
∥Δvnt(t)∥2

+
κ
2
∥∇Δvn(t)∥2

− (∣∇vn(t)∣p−2
∇vn(t),∇Δvn(t))

≤C∫
t

0
(

1
2
∥∇vnt(t)∥2

+
1
2
∥Δvnt(t)∥2

+
κ
4
∥∇Δvn(τ)∥2

) dτ + C.

(3.32)

For the fourth term on the left-hand side of (3.32), we deduce from (A2) and the inequalities of Hölder, Sobolev, and Cauchy that there exists
a constant ϵ2 > 0 to be determined such that

∣−(∣∇vn(t)∣p−2
∇vn(t),∇Δvn(t))∣ ≤ ∥∇vn(t)∥p−1

2p−2∥∇Δvn(t)∥

≤ C∥Δvn(t)∥p−1
∥∇Δvn(t)∥

≤ (
C

(2ϵ2)
1
2
∥Δvn(t)∥p−1

)((2ϵ2)
1
2 ∥∇Δvn(t))

≤ C(ϵ2)∥Δvn(t)∥2p−2
+ ϵ2∥∇Δvn(t)∥2.

Taking ϵ2 =
κ
4 , we deduce from (3.22) that

C +
κ
4
∥∇Δvn(t)∥2

− (∣∇vn(t)∣p−2
∇vn(t),∇Δvn(t)) ≥ 0. (3.33)

Thus, (3.32) turns into

1
2
∥∇vnt(t)∥2

+
1
2
∥Δvnt(t)∥2

+
κ
2
∥∇Δvn(t)∥2

− (∣∇vn(t)∣p−2
∇vn(t),∇Δvn(t))

≤ C∫
t

0
(

1
2
∥∇vnt(τ)∥2

+
1
2
∥Δvnt(τ)∥2

+
κ
2
∥∇Δvn(τ)∥2

− (∣∇vn(τ)∣p−2
∇vn(τ),∇Δvn(τ))) dτ + C.

Using Gronwall’s inequality, we have

1
2
∥∇vnt(t)∥2

+
1
2
∥Δvnt(t)∥2

+
κ
2
∥∇Δvn(t)∥2

− (∣∇vn(t)∣p−2
∇vn(t),∇Δvn(t)) ≤ C,
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which together with (3.33) gives
1
2
∥∇vnt(t)∥2

+
1
2
∥Δvnt(t)∥2

+
κ
4
∥∇Δvn(t)∥2

≤ C, (3.34)

where C is independent of n.
Taking w = vntt(t) in (3.10), we obtain

∥vntt∥
2
∗ +

1
2

d
dt
∥vnt(t)∥2

∗ = (∣u(t)∣
q−2u(t), vntt(t)) + (∇Δvn,∇vntt)

− ∫

t

0
g(t − τ)(∇Δvn(τ),∇vntt(t)) dτ

− (∣∇vn(t)∣p−2
∇vn(t),∇vntt(t)).

From (A1)–(A3) and the inequalities of Hölder, Sobolev, and Cauchy, it follows that there exist constants ϵi > 0 (i = 3, 4, 5, 6) to be determined
such that

(∣u(t)∣q−2u(t), vntt(t)) ≤ ∥u(t)∥q−1
2q−2∥vntt(t)∥

≤ (
1

(2ϵ3)
1
2
∥u(t)∥q−1

2q−2)((2ϵ3)
1
2 ∥vntt(t)∥)

≤
1

4ϵ3
∥Δu(t)∥2q−2

+ ϵ3∥vntt(t)∥2,

(∇Δvn(t),∇vntt(t)) ≤ ∥∇Δvn(t)∥∥∇vntt(t)∥

≤ (
1

(2ϵ4)
1
2
∥∇Δvn(t)∥)((2ϵ4)

1
2 ∥∇vntt(t)∥)

≤
1

4ϵ4
∥∇Δvn(t)∥2

+ ϵ4∥∇vntt(t)∥2,

− ∫

t

0
g(t − τ)(∇Δvn(τ),∇vntt(t)) dτ

≤ ∫

t

0
g(t − τ)∥∇Δvn(τ)∥ dτ∥∇vntt(t)∥

≤ (
1

(2ϵ5)
1
2
∫

t

0
g(t − τ)∥∇Δvn(τ)∥ dτ)((2ϵ5)

1
2 ∥∇vntt(t)∥)

≤
1

4ϵ5
(∫

t

0
g(t − τ)∥∇Δvn(τ)∥ dτ)

2
+ ϵ5∥∇vntt(t)∥2

≤
1

4ϵ5
(1 − κ)2⎛

⎝
ess sup

t∈[0,T)
∥∇Δvn(t)∥

⎞

⎠

2

+ ϵ5∥∇vntt(t)∥2,

and

−(∣∇vn(t)∣p−2
∇vn(t),∇vntt(t)) ≤ ∥∇vn(t)∥p−1

2p−2∥∇vntt(t)∥

≤ C∥Δvn(t)∥p−1
∥∇vntt(t)∥

≤ (
C

(2ϵ6)
1
2
∥Δvn(t)∥p−1

)((2ϵ6)
1
2 ∥∇vntt(t)∥)

≤ C(ϵ6)∥Δvn(t)∥2p−2
+ ϵ6∥∇vntt(t)∥2.

Taking ϵi =
1
5 (i = 3, 4, 5, 6), we further deduce from (3.22) and (3.34) that

1
5∫

t

0
∥vnττ(τ)∥2

∗ dτ +
1
2
∥vnt(t)∥2

∗ ≤ C, (3.35)

where C is independent of n.
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From (3.34) and (3.35), we conclude that there exist a subsequence of {vn} and a function v such that as n→∞,

vn⇀v weakly star in L∞(0, T; H3(Ω)), (3.36)

vnt⇀vt weakly star in L∞(0, T; H2
(Ω) ∩H1

0(Ω)), (3.37)

and
vntt⇀vtt weakly in L2

(0, T; H1
0(Ω)). (3.38)

Therefore, v is a solution to problems (3.1)–(3.3). In addition, by testing (3.1) with vt(t), we see that there holds (3.6) for all t ∈ [0, T). Suppose
that v and v̄ are two solutions to problems (3.1)–(3.3). Set ṽ ∶= v̄ − v. Then, (3.24) holds again for this proof. By the same arguments as in the
proof of (3.26), we have v ≡ v̄ for all t ∈ [0, T). Thus, the Proof of Lemma 3.4 is finished. ◻

Lemma 3.3 tells us that if u0 ∈ H2
(Ω) ∩H1

0(Ω) and u1 ∈ H1
0(Ω), then problems (3.1)–(3.3) admit a unique solution

v ∈ L∞(0, T; H2
(Ω) ∩H1

0(Ω)) with vt ∈ L∞(0, T; H1
0(Ω)). Making use of Lemma 3.4, we now in Lemma 3.5 employ the density argu-

ments to show that under the conditions of Lemma 3.3, problems (3.1)–(3.3) can have a unique solution v ∈ C([0, T); H2
(Ω) ∩H1

0(Ω))
with vt ∈ C([0, T); H1

0(Ω)). Although Lemma 3.4 itself can also achieve this conclusion, it requires higher regularity of the initial data, i.e.,
u0 ∈ H3(Ω) and u1 ∈ H2

(Ω) ∩H1
0(Ω).

Lemma 3.5 (continuity of solutions to linear equations). Under the conditions of Lemma 3.3, problems (3.1)–(3.3) admit a unique solution
v ∈ C([0, T); H2

(Ω) ∩H1
0(Ω)) with vt ∈ C([0, T); H1

0(Ω)), which satisfies (3.6) for all t ∈ [0, T).

Proof. For u0 ∈ H2
(Ω) ∩H1

0(Ω) and u1 ∈ H1
0(Ω), there exist {v0n} ⊂ H3(Ω) and {v1n} ⊂ H2

(Ω) ∩H1
0(Ω) such that

v0n → u0 in H2
(Ω) ∩H1

0(Ω) (3.39)

and
v1n → u1 in H1

0(Ω). (3.40)

According to Lemma 3.4, for each n ∈ N+, problems (3.1)–(3.3) admit a unique solution vn ∈ L∞(0, T; H3(Ω)) with vnt ∈ L∞(0, T; H2
(Ω)

∩H1
0(Ω)) and vntt ∈ L2

(0, T; H1
0(Ω)), where vn(x, 0) = v0n(x) and vnt(x, 0) = v1n(x). Thus,

(vntt(t) − Δvntt(t) + Δ2vn(t) − ∫
t

0
g(t − τ)Δ2vn(τ) dτ − Δpvn(t)

+ vnt(t) − Δvnt(t) − ∣u(t)∣q−2u(t),w) = 0.
(3.41)

Taking w = vnt(t) in (3.41) and using the same arguments as in the Proof of Lemma 3.3, we retrieve (3.22) here. Taking w = −Δvnt(t)
in (3.41), we conclude from the arguments similar to Lemma 3.2 that

(vntt(t) − Δvntt(t) + Δ2vn(t) − ∫
t

0
g(t − τ)Δ2vn(τ) dτ − Δpvn(t),−Δvnt(t))

=
d
dt
(

1
2
∥∇vnt(t)∥2

+
1
2
∥Δvnt(t)∥2

+
1
2
(1 − ∫

t

0
g(τ) dτ)∥∇Δvn(t)∥2

+ (g ○ ∇Δvn)(t) − (∣∇vn(t)∣p−2
∇vn(t),∇Δvn(t)))

−
1
2
(g′ ○ ∇Δvn)(t) +

1
2

g(t)∥∇Δvn(t)∥2
− (p − 1)(∣∇vn(t)∣p−2

∇vnt(t),∇Δvn(t)).

Hence, by going back to the Proof of Lemma 3.4, we retrieve (3.34). Taking w = vntt(t) in (3.41) and using same arguments as in the Proof
of Lemma 3.4, we have (3.35) again. Hence, (3.36)–(3.38) hold again for this proof. We infer from Ref. 33 (Theorem 4 in Sec. 5.9) that
v ∈ C([0, T); H2

(Ω) ∩H1
0(Ω)) and vt ∈ C([0, T); H1

0(Ω)). Observing (3.39) and (3.40), we know that v is a solution to problems (3.1)–(3.3).
The remainder of the proof is same as that of the Proof of Lemma 3.3. ◻

Based on the above preparations, we employ the contraction mapping principle to prove the local existence and uniqueness of solutions
to problems (1.1)–(1.3).

Proof of Theorem 2.3. The proof of this theorem is divided into two steps.
Step 1. The local existence and uniqueness of solutions to problems (1.1)–(1.3).
Define

ST ∶= {u ∈ X ∣ ∥u∥X ≤ R, u(0) = u0, ut(0) = u1}

J. Math. Phys. 64, 051511 (2023); doi: 10.1063/5.0149240 64, 051511-16

Published under an exclusive license by AIP Publishing

 14 O
ctober 2023 07:01:59

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

with
X ∶= C([0, T); H2

(Ω) ∩H1
0(Ω)) ∩ C1

([0, T); H1
0(Ω)),

∥u∥2
X ∶= sup

t∈[0,T)
(

1
2
∥ut(t)∥2

∗ +
κ
2
∥Δu(t)∥2

),

and

R2
∶= ∥u1∥

2
∗ + ∥Δu0∥

2
+

2
p
∥∇u0∥

p
p.

By Lemma 3.5, for any u ∈ ST , we can define a map Φ such that v ∶= Φ(u).
We claim that Φ is a contractive map from ST into itself. To confirm this, we observe that a combination of (3.6) and (3.18)–(3.20) gives

1
2
∥vt(t)∥2

∗ +
κ
2
∥Δv(t)∥2

+ ∫

t

0
∥vτ(τ)∥2

∗ dτ

≤
1
2
∥u1∥

2
∗ +

1
2
∥Δu0∥

2
+

1
p
∥∇u0∥

p
p + ∫

t

0
(∣u(τ)∣q−2u(τ), vτ(τ)) dτ

(3.42)

for all t ∈ [0, T). Applying the inequalities of Hölder and Cauchy, we deduce that there exists a constant ϵ > 0 to be determined such that

∫

t

0
(∣u(τ)∣q−2u(τ), vτ(τ)) dτ ≤ ∫

t

0
∥u(τ)∥q−1

2q−2∥vτ(τ)∥ dτ

≤ ∫

t

0
(

1
(2ϵ)

1
2
∥u(τ)∥q−1

2q−2)((2ϵ)
1
2 ∥vτ(τ)∥) dτ

≤
1
4ϵ∫

t

0
∥u(τ)∥2q−2

2q−2 dτ + ϵ∫
t

0
∥vτ(τ)∥2 dτ.

Taking ϵ = 1, we deduce from (A2) and (A3) and the Sobolev inequality that

∫

t

0
(∣u(τ)∣q−2u(τ), vτ(τ)) dτ ≤ C∫

t

0
∥Δu(τ)∥2q−2 dτ + ∫

t

0
∥vτ(τ)∥2 dτ.

Inserting this inequality into (3.42) and considering u ∈ ST , we can obtain

1
2
∥vt(t)∥2

∗ +
κ
2
∥Δv(t)∥2

≤
1
2
∥u1∥

2
∗ +

1
2
∥Δu0∥

2
+

1
p
∥∇u0∥

p
p + C∫

t

0
∥Δu(τ)∥2q−2 dτ

≤
R2

2
+ CR2q−2T.

Hence, there exists a time T > 0 sufficiently small such that ∥v∥2
X ≤ R2. Thus, Φ(ST) ⊆ ST . Next, we prove that such a map is contractive.

Define v̄ ∶= Φ(ū), u, ū ∈ ST . Set ṽ ∶= v̄ − v. Then, by repeating analogous arguments in Lemma 3.2, we have

(ṽtt(t) − Δṽtt(t) + Δ2ṽ(t) − ∫
t

0
g(t − τ)Δ2ṽ(τ) dτ, ṽt(t))

=
1
2

d
dt
(∥ṽt(t)∥2

∗ + (1 − ∫
t

0
g(τ) dτ)∥Δṽ(t)∥2

+ (g ○ Δṽ)(t))

−
1
2
(g′ ○ Δṽ)(t) +

1
2

g(t)∥Δṽ(t)∥2.

Substituting this equality into

(ṽtt(t) − Δṽtt(t) + Δ2ṽ(t) − ∫
t

0
g(t − τ)Δ2ṽ(τ) dτ − Δpv̄(t) + Δpv(t)

+ ṽt(t) − Δṽt(t), ṽt(t)) = (∣ū(t)∣q−2ū(t) − ∣u(t)∣q−2u(t), ṽt(t)),
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we derive
d
dt
(

1
2
∥ṽt(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δṽ(t)∥2

+
1
2
(g ○ Δṽ)(t))

+ (∣∇v̄(t)∣p−2
∇v̄(t) − ∣∇v(t)∣p−2

∇v(t),∇ṽt(t))

+ ∥ṽt(t)∥2
∗ −

1
2
(g′ ○ Δṽ)(t) +

1
2

g(t)∥Δṽ(t)∥2

= (∣ū(t)∣q−2ū(t) − ∣u(t)∣q−2u(t), ṽt(t)).

From (3.20), we further have

d
dt
(

1
2
∥ṽt(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δṽ(t)∥2

+
1
2
(g ○ Δṽ)(t)) ≤ I3 + I4, (3.43)

where
I3 ∶= (∣ū(t)∣q−2ū(t) − ∣u(t)∣q−2u(t), ṽt(t))

and
I4 ∶= ∣(∣∇v̄(t)∣p−2

∇v̄(t) − ∣∇v(t)∣p−2
∇v(t),∇ṽt(t))∣.

From Lemma 3.1, (A2) and (A3), and the inequalities of Hölder, Minkowski, Sobolev, and Cauchy, it follows that

I3 ≤ C∫
Ω
(∣u(t)∣q−2

+ ∣ū(t)∣q−2
)∣ū(t) − u(t)∣∣ṽt(t)∣ dx

≤ C(∥u(t)∥q−2
2q−2 + ∥ū(t)∥

q−2
2q−2)∥ū(t) − u(t)∥2q−2∥ṽt(t)∥

≤ C(∥Δu(t)∥q−2
+ ∥Δū(t)∥q−2

)∥Δū(t) − Δu(t)∥∥ṽt(t)∥

≤ C∥Δū(t) − Δu(t)∥2
+

1
2
∥ṽt(t)∥2. (3.44)

Likewise, we have

I4 ≤ C(∥∇v(t)∥p−2
2p−2 + ∥∇v̄(t)∥

p−2
2p−2)∥∇ṽ(t)∥2p−2∥∇ṽt(t)∥

≤ C∥Δṽ(t)∥2
+

1
2
∥∇ṽt(t)∥2. (3.45)

Hence, on account of (3.25), we easily see that (3.43) becomes

d
dt
(

1
2
∥ṽt(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δṽ(t)∥2

+
1
2
(g ○ Δṽ)(t))

≤ C(
1
2
∥ṽt(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δṽ(t)∥2

+
1
2
(g ○ Δṽ)(t))

+ C∥Δū(t) − Δu(t)∥2.

By Gronwall’s inequality, ṽ(0) = 0, ṽt(0) = 0, (3.18), and (3.19), we arrive at

1
2
∥ṽt(t)∥2

∗ +
κ
2
∥Δṽ(t)∥2

≤ C∫
t

0
∥Δū(τ) − Δu(τ)∥2 dτ

for all t ∈ [0, T). Therefore,
∥ṽ∥2

X ≤ CT∥ū − u∥2
X ,

which shows that there exists a constant 0 < δ < 1 such that

∥Φ(ū) −Φ(u)∥2
X ≤ δ∥ū − u∥2

X ,

provided that T is sufficiently small. This proves the assertion.
According to the contraction mapping principle, problems (1.1)–(1.3) admit a unique solution satisfying (2.4) on [0, T).
Step 2. Finite time blow-up, i.e., the local solution blows up if the existence time is finite.
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We claim that if T =∞, then u exists globally in time; if T <∞, then

lim
t→T
(∥Δu(t)∥2

+ ∥ut(t)∥2
∗) =∞. (3.46)

Arguing by contradiction, we suppose that T <∞ and lim
t→T
(∥Δu(t)∥2

+ ∥ut(t)∥2
∗) <∞. Then, there exists a sequence {tn}

∞
n=1 such that

lim
n→∞

tn = T and ∥Δu(tn)∥
2
+ ∥ut(tn)∥

2
∗ ≤ C for n ∈ N+. Note that, for each n, problems (1.1)–(1.3) with the initial data u(tn) and ut(tn) admit

a unique solution on [tn, tn + T̃), where T̃ > 0 depends on C only. Thus, T < tn + T̃ for large enough n. This contradicts the definition of the
maximum existence time T.

Finally, we prove (2.5). From (2.4) and (3.18)–(3.20), we can get

1
2
∥ut(t)∥2

∗ +
κ
2
∥Δu(t)∥2

+
1
p
∥∇u(t)∥p

p ≤ E(0) +
1
q
∥u(t)∥q

q, t ∈ [0, T),

which together with (3.46) gives
lim
t→T
∥u(t)∥q =∞.

By the Sobolev inequality and (A2) and (A3), we further have

lim
t→T
∥∇u(t)∥p =∞. (3.47)

In view of
1
p
∥∇u(t)∥p

p ≤ E(0) +
1
q
∥u(t)∥q

q, t ∈ [0, T),

we reach
C∥∇u(t)∥p

p − C ≤ ∥u(t)∥q
q. (3.48)

By the Gagliardo–Nirenberg interpolation inequality, we have

∥u(t)∥q
q ≤ C∥∇u(t)∥qϑ

p ∥u(t)∥
q(1−ϑ)
r , (3.49)

where 1 ≤ r < q and

ϑ ∶=
Np(q − r)

q(Np + rp −Nr)
.

Owing to r > N(q−p)
p , we have 0 < ϑ < p

q . It follows from (3.48) and (3.49) that

C∥∇u(t)∥p−qϑ
p − C∥∇u(t)∥−qϑ

p ≤ ∥u(t)∥q(1−ϑ)
r ,

which together with (3.47) implies that there holds (2.5). ◻

IV. GLOBAL EXISTENCE (PROOF OF THEOREM 2.4)
First of all, in the case 0 < E(0) < d, we show the invariance of W and V, which will be used to classify the initial data for the global

existence and finite time blow-up of solutions.

Lemma 4.1. Let (A1)–(A3) be fulfilled. Assume that u0 ∈ H2
(Ω) ∩H1

0(Ω), u1 ∈ H1
0(Ω), and 0 < E(0) < d. Then, for the solution u(t) to

problems (1.1)–(1.3), there holds

(i) u(t) ∈W for all t ∈ [0, T), provided that I(u0) > 0 or ∥Δu0∥ = 0;
(ii) u(t) ∈ V for all t ∈ [0, T), provided that I(u0) < 0.

Proof. Suppose that u(t) ∉W for some 0 < t < T. Then, by the continuity of u(t) in t, we see that there exists a time 0 < t0 < T such
that u(t0) ∈ N or J(u(t0)) = d. From (2.4) and (3.20), it is obvious that J(u(t0)) = d is impossible. On the other hand, if u(t0) ∈ N , then by
recalling the definition of d, we get J(u(t0)) ≥ d, which contradicts E(0) < d due to (2.4) and (3.20). Hence, u(t) ∈W for all t ∈ [0, T).

The proof of part (ii) is similar to that of part (i). ◻

We now discuss the relationship between d and d and that between d and d̃.

Proposition 4.2. Let (A1)–(A3) be fulfilled. Then, d > d and d > d.
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Proof. By the definitions of J(u) and I(u), we get

J(u) =
q − 2

2q
((1 − ∫

t

0
g(τ) dτ)∥Δu∥2

+ (g ○ Δu)) +
q − p

pq
∥∇u∥p

p +
1
q

I(u).

Let u ∈ N . Then, from (3.18) and (3.19) and (A2), we obtain

J(u) ≥
(q − 2)κ

2q
∥Δu∥2

+
q − p

pq
∥∇u∥p

p

≥
(q − 2)κ

2qC2
1
∥∇u∥2

p +
q − p

pq
∥∇u∥p

p. (4.1)

Since u ∈ N implies

(1 − ∫
t

0
g(τ) dτ)∥Δu∥2

+ (g ○ Δu)(t) + ∥∇u∥p
p = ∥u∥

q
q,

it follows from (A2) and (A3) that

(1 − ∫
t

0
g(τ) dτ)∥Δu∥2

+ ∥∇u∥p
p ≤ C

q
2∥∇u∥q

p.

On the other hand, from (3.18), we get

(1 − ∫
t

0
g(τ) dτ)∥Δu∥2

+ ∥∇u∥p
p ≥ κ∥Δu∥2

+ ∥∇u∥p
p

≥
κ
C

2
1
∥∇u∥2

p + ∥∇u∥p
p.

Hence,
κ
C

2
1
∥∇u∥2

p + ∥∇u∥p
p ≤ C

q
2∥∇u∥q

p,

which gives
∥∇u∥p > max{κ

1
q−2 C

− 2
q−2

1 C
−

q
q−2

2 ,C
−

q
q−p

2 }. (4.2)

From (4.1), we have

J(u) >
(q − 2)κ

2qC2
1
∥∇u∥2

p (4.3)

and
J(u) >

q − p
pq
∥∇u∥p

p. (4.4)

Substituting ∥∇u∥p > κ
1

q−2 C
− 2

q−2
1 C

−
q

q−2
2 into (4.3) and (4.4), respectively, we deduce from the definition of d that d > d1 and d > d2. Substituting

∥∇u∥p > C
−

q
q−p

2 into (4.4), we get d > d3. Consequently, d > d. Moreover, substituting ∥∇u∥p > κ
1

q−2 C
− 2

q−2
1 C

−
q

q−2
2 and ∥∇u∥p > C

−
q

q−p
2 into (4.1),

respectively, we obtain d > d4 and d > d5, i.e., d > d̃. ◻

The following lemma shows a property of the fibering map J(λu), which will facilitate the proof of the global existence of solutions with
critical initial energy.

Lemma 4.3. Let (A1)–(A3) be fulfilled, λ > 0, u ∈ H2
(Ω) ∩H1

0(Ω), and ∥Δu∥ ≠ 0. Then, there exists a unique constant λ0 > 0, depending
on u, such that J(λu) is strictly increasing for all λ ∈ (0, λ0), strictly decreasing for all λ ∈ (λ0,∞), and takes the maximum at λ = λ0.

Proof. From

I(λu) = (1 − ∫
t

0
g(τ) dτ)λ2

∥Δu∥2
+ λ2
(g ○ Δu)(t) + λp

∥∇u∥p
p − λ

q
∥u∥q

q,

we know that there exists a unique constant λ0 > 0, depending on u, such that I(λu) > 0 for all λ ∈ (0, λ0), I(λu) < 0 for all λ ∈ (λ0,∞), and
I(λ0u) = 0. Because of

d
dλ

J(λu) =
1
λ

I(λu),

the conclusions of this lemma follow immediately. ◻
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Next, we prove the global existence of solutions to problems (1.1)–(1.3).

Proof of Theorem 2.4. (i) For the local solution u to problems (1.1)–(1.3), it is easy to see from (i) in Lemma 4.1 that u(t) ∈W for all
t ∈ [0, T). Hence, it follows from (3.18) and (3.19) that for all t ∈ [0, T),

J(u(t)) =
q − 2

2q
((1 − ∫

t

0
g(τ) dτ)∥Δu(t)∥2

+ (g ○ Δu)(t))

+
q − p

pq
∥∇u(t)∥p

p +
1
q

I(u(t))

≥
(q − 2)κ

2q
∥Δu(t)∥2,

which together with (2.4), E(0) < d, and (3.20) gives

1
2
∥ut(t)∥2

∗ +
(q − 2)κ

2q
∥Δu(t)∥2

< d.

Consequently, by the continuation principle, we have T =∞.
(ii) We divide the proof of (ii) into two cases.
Case 1. ∥Δu0∥ ≠ 0.
Set u0n ∶= λnu0, where λn ∶= 1 − 1

n , n = 2, 3, . . .. We consider problems (1.1) and (1.3) with the following initial conditions:

u(x, 0) = u0n(x), ut(x, 0) = u1(x). (4.5)

From I(u0) ≥ 0 and the Proof of Lemma 4.3, it is easy to see that λ0 ≥ 1. Thus, we conclude from Lemma 4.3 that J(λu) is strictly increasing
for all λ ∈ [λn, 1]. Hence, J(u0n) < J(u0) and I(u0n) > 0. Moreover,

J(u0n) =
q − 2

2q
∥Δu0n∥

2
+

q − p
pq
∥∇u0n∥

p
p +

1
q

I(u0n) > 0.

We further obtain
En(0) =

1
2
∥u1∥

2
∗ + J(u0n) > 0

and
En(0) <

1
2
∥u1∥

2
∗ + J(u0) = E(0) = d. (4.6)

Hence, we infer from (i) in this theorem that, for each n, problems (1.1), (1.3), and (4.5) admit a unique solution
un ∈ C([0,∞); H2

(Ω) ∩H1
0(Ω)) with unt ∈ C([0,∞); H1

0(Ω)), which satisfies un(t) ∈W,

(unt(t),w)∗ + ∫
t

0
(Δun(τ),Δw) dτ − ∫

t

0
∫

s

0
g(s − τ)(Δun(τ),Δw) dτds

+ ∫

t

0
(∣∇un(τ)∣p−2

∇un(τ),∇w) dτ + (un(t),w)∗

= (u1,w)∗ + (u0n,w)∗ + ∫
t

0
(∣un(τ)∣q−2un(τ),w) dτ

and
En(t) + ∫

t

0
(∥unτ(τ)∥2

∗ −
1
2
(g′ ○ Δun)(τ) +

1
2

g(τ)∥Δun(τ)∥2
) dτ = En(0). (4.7)

Next, we will conclude the existence of solutions by the energy estimates and the compactness arguments. From (i) in Lemma 4.1, it is
readily seen that un(t) ∈W for all t ∈ [0,∞). Hence, from (3.18) and (3.19), we can get

En(t) =
1
2
∥unt(t)∥2

∗ +
q − 2

2q
((1 − ∫

t

0
g(τ) dτ)∥Δun(t)∥2

+ (g ○ Δun)(t))

+
q − p

pq
∥∇un(t)∥p

p +
1
q

I(un(t))

≥
1
2
∥unt(t)∥2

∗ +
(q − 2)κ

2q
∥Δun(t)∥2

+
q − p

pq
∥∇un(t)∥p

p,
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which together with (4.7), (4.6), and (3.20) yields

1
2
∥unt(t)∥2

∗ +
(q − 2)κ

2q
∥Δun(t)∥2

+
q − p

pq
∥∇un(t)∥p

p < d (4.8)

for all t ∈ [0,∞). By virtue of (4.8), we get

∥∣un(t)∣q−2un(t)∥
γ
γ = ∥un(t)∥q

q ≤ C∥Δun(t)∥q
< C (

2q
(q − 2)κ

d)

q
2

for all t ∈ [0,∞), where γ = q
q−1 .

Therefore, there exist a subsequence {un}, u ∈W, and χ such that as n→∞,

un⇀u weakly star in C([0,∞); H2
(Ω) ∩H1

0(Ω)),

unt⇀ut weakly star in C([0,∞); H1
0(Ω)),

and
∣un∣

q−2un⇀χ weakly star in L∞(0,∞; Lγ(Ω)).

In light of Ref. 34 (Lemma 1.3 in Chap. 1), we get χ = ∣u∣q−2u. Therefore, by the analogous arguments in the Proof of Lemma 3.3, u is a global
solution to problems (1.1)–(1.3).

Suppose that u and ū are two solutions to problems (1.1)–(1.3). Set ũ ∶= ū − u. Then, by the arguments similar to Lemma 3.2, we have

(ũtt(t) − Δũtt(t) + Δ2ũ(t) − ∫
t

0
g(t − τ)Δ2ũ(τ) dτ, ũt(t))

=
1
2

d
dt
(∥ũt(t)∥2

∗ + (1 − ∫
t

0
g(τ) dτ)∥Δũ(t)∥2

+ (g ○ Δũ)(t))

−
1
2
(g′ ○ Δũ)(t) +

1
2

g(t)∥Δũ(t)∥2.

Substituting this equality into

(ũtt(t) − Δũtt(t) + Δ2ũ(t) − ∫
t

0
g(t − τ)Δ2ũ(τ) dτ − Δpū(t) + Δpu(t)

+ ũt(t) − Δũt(t), ũt(t)) = (∣ū(t)∣q−2ū(t) − ∣u(t)∣q−2u(t), ũt(t)),

we obtain
d
dt
(

1
2
∥ũt(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δũ(t)∥2

+
1
2
(g ○ Δũ)(t))

+ (∣∇ū(t)∣p−2
∇ū(t) − ∣∇u(t)∣p−2

∇u(t),∇ũt(t))

+ ∥ũt(t)∥2
∗ −

1
2
(g′ ○ Δũ)(t) +

1
2

g(t)∥Δũ(t)∥2

= (∣ū(t)∣q−2ū(t) − ∣u(t)∣q−2u(t), ũt(t)).

By the arguments similar to the proofs of (3.43)–(3.45), we have

d
dt
(

1
2
∥ũt(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δũ(t)∥2

+
1
2
(g ○ Δũ)(t)) ≤ I5 + I6,

I5 ∶= (∣ū(t)∣q−2ū(t) − ∣u(t)∣q−2u(t), ũt(t))

≤ C∥Δũ(t)∥2
+

1
2
∥ũt(t)∥2,

and

I6 ∶= ∣(∣∇ū(t)∣p−2
∇ū(t) − ∣∇u(t)∣p−2

∇u(t),∇ũt(t))∣

≤ C∥Δũ(t)∥2
+

1
2
∥∇ũt(t)∥2.
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Consequently, on account of (3.25), we can obtain

d
dt
(

1
2
∥ũt(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δũ(t)∥2

+
1
2
(g ○ Δũ)(t))

≤ C(
1
2
∥ũt(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δũ(t)∥2

+
1
2
(g ○ Δũ)(t)),

which combined with Gronwall’s inequality, ũ(0) = 0, ũt(0) = 0, (3.18), and (3.19) tells us that

1
2
∥ũt(t)∥2

∗ +
κ
2
∥Δũ(t)∥2

≤ 0

for all t ∈ [0,∞). Accordingly, u ≡ ū for all t ∈ [0,∞).
Case 2. ∥Δu0∥ = 0.
In this case, J(u0) = 0. Thus,

E(0) =
1
2
∥u1∥

2
∗.

Set u1n ∶= λnu1, where λn ∶= 1 − 1
n , n = 2, 3, . . ., and consider problems (1.1) and (1.3) with the following initial conditions:

u(x, 0) = u0(x), ut(x, 0) = u1n(x). (4.9)

Note that
0 < En(0) =

1
2
∥u1n∥

2
∗ < E(0).

We conclude from (i) that, for each n, problems (1.1), (1.3), and (4.9) admit a unique global solution un(t) ∈W. The remainder of the proof
is similar to that of the proof of case 1.

Thus, the Proof of Theorem 2.4 is completed. ◻

V. ASYMPTOTIC BEHAVIOR (PROOF OF THEOREM 2.5)

Proof of Theorem 2.5. First of all, Theorem 2.4 and Proposition 4.2 ensure that problems (1.1)–(1.3) have a unique global solution
u(t) ∈W for all t ∈ [0,∞). We construct a Lyapunov function by performing a suitable modification of the total energy function as follows:

L(t) ∶= E(t) + εΨ(t), t ∈ [0,∞), (5.1)

where Ψ(t) ∶= (u(t), ut(t))∗ and ε > 0 is a constant to be determined later.
We now claim that there exist two constants γi > 0 (i = 1, 2), depending on ε, such that

γ1E(t) ≤ L(t) ≤ γ2E(t) (5.2)

for all t ∈ [0,∞). Indeed, by virtue of the inequalities of Schwarz and Cauchy, we know that

∣Ψ(t)∣ ≤
1
2
∥u(t)∥2

∗ +
1
2
∥ut(t)∥2

∗,

and so

∣Ψ(t)∣ ≤
C

2
3 + C

2
4

2
∥Δu(t)∥2

+
1
2
∥ut(t)∥2

∗. (5.3)

From (3.18) and (3.19), we have

E(t) =
1
2
∥ut(t)∥2

∗ +
q − 2

2q
((1 − ∫

t

0
g(τ) dτ)∥Δu(t)∥2

+ (g ○ Δu)(t))

+
q − p

pq
∥∇u(t)∥p

p +
1
q

I(u(t))

≥
1
2
∥ut(t)∥2

∗ +
(q − 2)κ

2q
∥Δu(t)∥2

+
q − p

pq
∥∇u(t)∥p

p (5.4)

≥
1
2
∥ut(t)∥2

∗ +
(q − 2)κ

2q
∥Δu(t)∥2. (5.5)

From (5.3) and (5.5), we know that there exists a constant Q > 0 such that ∣Ψ(t)∣ ≤ QE(t), which together with (5.1) yields
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(1 − εQ)E(t) ≤ L(t) ≤ (1 + εQ)E(t).

Thus, in order to guarantee γi > 0 (i = 1, 2) in (5.2), we need to find a proper ε later such that

1 − εQ > 0. (5.6)

Hence, assertion (5.2) holds.
By the arguments similar to Lemma 3.2, we have

(utt(t) − Δutt(t) + Δ2u(t) − ∫
t

0
g(t − τ)Δ2u(τ) dτ, ut(t))

=
1
2

d
dt
(∥ut(t)∥2

∗ + (1 − ∫
t

0
g(τ) dτ)∥Δu(t)∥2

+ (g ○ Δu)(t))

−
1
2
(g′ ○ Δu)(t) +

1
2

g(t)∥Δu(t)∥2.

Inserting this equality into

(utt(t) − Δutt(t) + Δ2u(t) − ∫
t

0
g(t − τ)Δ2u(τ) dτ − Δpu(t)

+ ut(t) − Δut(t), ut(t)) = (∣u(t)∣q−2u(t), ut(t)),

we obtain
d
dt
(

1
2
∥ut(t)∥2

∗ +
1
2
(1 − ∫

t

0
g(τ) dτ)∥Δu(t)∥2

+
1
2
(g ○ Δu)(t) +

1
p
∥∇u(t)∥p

p

−
1
q
∥u(t)∥q

q) + ∥ut(t)∥2
∗ −

1
2
(g′ ○ Δu)(t) +

1
2

g(t)∥Δu(t)∥2
= 0,

i.e.,

E′(t) =
1
2
(g′ ○ Δu)(t) −

1
2

g(t)∥Δu(t)∥2
− ∥ut(t)∥2

∗.

Hence, from
Ψ′(t) = ⟨utt(t), u(t)⟩∗ + ∥ut(t)∥2

∗

and Remark 2.2, we further obtain

L′(t) =
1
2
(g′ ○ Δu)(t) −

1
2

g(t)∥Δu(t)∥2
− ∥ut(t)∥2

∗ + ε∥ut(t)∥2
∗

− ε∥Δu(t)∥2
+ ε∫

t

0
g(t − τ)(Δu(τ),Δu(t)) dτ − ε∥∇u(t)∥p

p

− ε(u(t), ut(t))∗ + ε∥u(t)∥q
q.

(5.7)

For the sixth term on the right-hand side of (5.7), it follows from the inequalities of Schwarz and Cauchy and (3.18) that there exists a constant
ϵ1 > 0 to be determined later such that

∫

t

0
g(t − τ)(Δu(τ),Δu(t)) dτ

= ∫

t

0
g(t − τ)∥Δu(t)∥2 dτ + ∫

t

0
g(t − τ)(Δu(τ) − Δu(t),Δu(t)) dτ

≤ ∥Δu(t)∥2
∫

t

0
g(τ) dτ

+ ∫

t

0
g(t − τ)((2ϵ1)

1
2 ∥Δu(t)∥)(

1
(2ϵ1)

1
2
∥Δu(τ) − Δu(t)∥) dτ

≤ ∥Δu(t)∥2
∫

t

0
g(τ) dτ + ϵ1∥Δu(t)∥2

∫

t

0
g(τ) dτ +

1
4ϵ1
(g ○ Δu)(t)

≤ (1 − κ)∥Δu(t)∥2
+ ϵ1(1 − κ)∥Δu(t)∥2

+
1

4ϵ1
(g ○ Δu)(t).
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For the eighth term on the right-hand side of (5.7), it follows from the inequalities of Schwarz and Cauchy that there exists a constant ϵ2 > 0
to be determined later such that

−(u(t), ut(t))∗ ≤ ∥u(t)∥∗∥ut(t)∥∗

≤ ((2ϵ2)
1
2 ∥u(t)∥∗)(

1
(2ϵ2)

1
2
∥ut(t)∥∗)

≤ ϵ2∥u(t)∥2
∗ +

1
4ϵ2
∥ut(t)∥2

∗

≤ ϵ2(C
2
3 + C

2
4)∥Δu(t)∥2

+
1

4ϵ2
∥ut(t)∥2

∗.

Hence, on account of g′(t) ≤ −ρg(t), we deduce from (5.7) that

L′(t) ≤ −(1 − ε −
ε

4ϵ2
)∥ut(t)∥2

∗ − ε(κ − ϵ1(1 − κ) − ϵ2(C
2
3 + C

2
4))∥Δu(t)∥2

− (
ρ
2
−

ε
4ϵ1
)(g ○ Δu)(t) − ε∥∇u(t)∥p

p + ε∥u(t)∥
q
q,

and so

L′(t) ≤ −εηE(t) −
10

∑
i=7

Ii + I11, (5.8)

where
I7 ∶= (1 − ε −

ε
4ϵ2
−
εη
2
)∥ut(t)∥2

∗,

I8 ∶= ε(κ − ϵ1(1 − κ) − ϵ2(C
2
3 + C

2
4) −

η
2
)∥Δu(t)∥2,

I9 ∶= (
ρ
2
−

ε
4ϵ1
−
εη
2
)(g ○ Δu)(t),

I10 ∶= ε(1 −
η
p
)∥∇u(t)∥p

p,

I11 ∶= ε∥u(t)∥q
q,

and η > 0 is a constant to be determined later.
Next, we claim that

L′(t) ≤ −εηE(t) (5.9)

for sufficiently small η and ε. To confirm this, we need to show that I11 can be controlled by I8 or I10 on the right-hand side of (5.8), i.e.,

− I8 − I10 + I11 ≤ 0. (5.10)

To achieve this, we shall well deal with the energy identity (2.4), and thus, E(0) will appear in the energy estimates. Taking into account the
restriction E(0) < d and the definition of d, we shall prove (5.10) by discussing the following three cases.

Case 1. d = d1.
From (5.4), (2.4), and (3.20), it follows that

(q − 2)κ
2q

∥Δu(t)∥2
+

q − p
pq
∥∇u(t)∥p

p ≤ E(0), (5.11)

which implies

∥Δu(t)∥ ≤ (
2q

(q − 2)κ
E(0))

1
2

.

Hence,
∥u(t)∥q

q ≤ C
q
1C

q
2∥Δu(t)∥q

= C
q
1C

q
2∥Δu(t)∥q−2

∥Δu(t)∥2
≤ δ1∥Δu(t)∥2,
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where

δ1 ∶= C
q
1C

q
2(

2q
(q − 2)κ

E(0))

q−2
2

.

Note that

0 < δ1 < C
q
1C

q
2(

2q
(q − 2)κ

d1)

q−2
2

.

Substituting the expression of d1, i.e., (2.1) into the right-hand side of the above inequality, we get

C
q
1C

q
2(

2q
(q − 2)κ

d1)

q−2
2

= κ,

which means κ > δ1. Thus, we can choose sufficiently small ϵi (i = 1, 2) and η such that

κ − ϵ1(1 − κ) − ϵ2(C
2
3 + C

2
4) −

η
2
− δ1 > 0

and
1 −

η
p
> 0.

These two formulas imply −I8 + I11 ≤ 0 and −I10 ≤ 0; hence, (5.10) is proved.
Case 2. d = d2.
It is easy to see from (5.11) that

∥∇u(t)∥p ≤ C1∥Δu(t)∥ ≤ (
2qC2

1

(q − 2)κ
E(0))

1
2

.

Hence,
∥u(t)∥q

q ≤ C
q
2∥∇u(t)∥q

p = C
q
2∥∇u(t)∥q−p

p ∥∇u(t)∥p
p ≤ δ2∥∇u(t)∥p

p,

where

δ2 ∶= C
q
2(

2qC2
1

(q − 2)κ
E(0))

q−p
2

.

Observing

0 < δ2 < C
q
2(

2qC2
1

(q − 2)κ
d2)

q−p
2

,

we discover that the substitution of the expression of d2, namely, (2.2), into the right-hand side of this inequality gives

C
q
2(

2qC2
1

(q − 2)κ
d2)

q−p
2

= 1.

Thus, δ2 < 1, and we can choose sufficiently small ϵi (i = 1, 2) and η such that

κ − ϵ1(1 − κ) − ϵ2(C
2
3 + C

2
4) −

η
2
> 0 (5.12)

and
1 −

η
p
− δ2 > 0.

We further get −I8 ≤ 0 and −I10 + I11 ≤ 0. Thus, (5.10) is derived here.
Case 3. d = d3.
Using (5.11) again, we have

∥∇u(t)∥p ≤ (
pq

q − p
E(0))

1
p

.
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Hence,

∥u(t)∥q
q ≤ C

q
2∥∇u(t)∥q

p = C
q
2∥∇u(t)∥q−p

p ∥∇u(t)∥p
p ≤ δ3∥∇u(t)∥p

p,

where

δ3 ∶= C
q
2(

pq
q − p

E(0))

q−p
p

.

Taking into account the expression of d3, namely, (2.3), and

0 < δ3 < C
q
2(

pq
q − p

d3)

q−p
p

,

we get δ3 < 1. Thus, we readily choose sufficiently small ϵi (i = 1, 2) and η such that we have (5.12) and

1 −
η
p
− δ3 > 0.

They again show that −I8 ≤ 0 and −I10 + I11 ≤ 0. Hence, (5.10) is demonstrated again.
Having proved (5.10), we now turn to deal with I7 and I9. For fixed ϵi (i = 1, 2) and η in the above three cases, in order to make sure the

nonnegativity of I7, we need

1 − ε −
ε

4ϵ2
−
εη
2
> 0,

i.e.,

ε <
4ϵ2

4ϵ2 + 1 + 2ηϵ2
.

In addition, to ensure I9 ≥ 0, we require
ρ
2
−

ε
4ϵ1
−
εη
2
> 0,

i.e.,

ε <
2ρϵ1

1 + 2ηϵ1
.

Hence, by recalling (5.6), we choose

ε < min{
1
Q

,
4ϵ2

4ϵ2 + 1 + 2ηϵ2
,

2ρϵ1

1 + 2ηϵ1
}.

Thus, assertion (5.9) is verified.
By virtue of assertions (5.9) and (5.2), we obtain

L′(t) ≤ −
εη
γ2

L(t).

Solving this differential inequality, we get

L(t) ≤ Ce−
εη
γ2

t , t ∈ [0,∞).

Again, by assertion (5.2), we see that

E(t) ≤
C
γ1

e−
εη
γ2

t , t ∈ [0,∞),

which combined with (5.5) gives (2.6), where α = C
γ1

and β = εη
γ2

. ◻
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VI. FINITE TIME BLOW-UP (PROOFS OF THEOREMS 2.6–2.8)
This section is devoted to the proofs of the finite time blow-up of solutions to problems (1.1)–(1.3) with negative initial energy, null

initial energy, and positive initial energy strictly below the depth of the potential well and arbitrary positive initial energy. For the convenience
of readers, we first give the following lemma, which plays a key role in the Proofs of Theorems 2.6–2.8.

Lemma 6.1 (Refs. 28 and 35). If a function ϕ(t) > 0 is twice differentiable, which satisfies ϕ′(0) > 0 and for all t > 0,

ϕ(t)ϕ′′(t) − (1 + λ)(ϕ′(t))2
≥ 0 (6.1)

with some constant λ > 0, then there exists a time 0 < T0 ≤
ϕ(0)
λϕ′(0) such that lim

t→T0
ϕ(t) =∞.

Now, we prove the finite time blow-up of solutions to problems (1.1)–(1.3) with non-positive initial energy, i.e., Theorem 2.6.

Proof of Theorem 2.6. Let u be the solution to problems (1.1)–(1.3). Next, we prove T <∞. Arguing by contradiction, we suppose that
T =∞. Then, we consider an auxiliary function ϕ : [0, T1]→ R+ defined by

ϕ(t) ∶= ∥u(t)∥2
∗ + ∫

t

0
∥u(τ)∥2

∗ dτ + (T1 − t)∥u0∥
2
∗ + σ(t + T2)

2,

where 0 < T1 <∞ due to T =∞ and σ and T2 are two constants to be determined later.
Case (i). E(0) < 0.
We perform the proof along three steps.
Step 1. We first claim that

ϕ(t)ϕ′′(t) −
q + 2

4
(ϕ′(t))2

≥ ϕ(t)φ(t) (6.2)

for a.e. t ∈ [0, T1], where

φ(t) ∶= ϕ′′(t) − (q + 2)(∥ut(t)∥2
∗ + ∫

t

0
∥uτ(τ)∥2

∗ dτ + σ). (6.3)

To see this, we first deal with the term (ϕ′(t))2. Since

ϕ′(t) = 2(u(t), ut(t))∗ + ∥u(t)∥2
∗ − ∥u0∥

2
∗ + 2σ(t + T2)

= 2(u(t), ut(t))∗ + 2∫
t

0
(u(τ), uτ(τ))∗ dτ + 2σ(t + T2),

we get

(ϕ′(t))2
= 4((u(t), ut(t))2

∗ + (∫

t

0
(u(τ), uτ(τ))∗ dτ)

2

+ 2(u(t), ut(t))∗∫
t

0
(u(τ), uτ(τ))∗ dτ + 2σ(t + T2)(u(t), ut(t))∗

+ 2σ(t + T2)∫

t

0
(u(τ), uτ(τ))∗ dτ + σ2

(t + T2)
2
).

By the inequalities of Schwarz and Cauchy, we see that

(u(t), ut(t))2
∗ ≤ ∥u(t)∥

2
∗∥ut(t)∥2

∗,

(∫

t

0
(u(τ), uτ(τ))∗ dτ)

2
≤ ∫

t

0
∥u(τ)∥2

∗ dτ∫
t

0
∥uτ(τ)∥2

∗ dτ,

2(u(t), ut(t))∗∫
t

0
(u(τ), uτ(τ))∗ dτ

≤ 2∥u(t)∥∗∥ut(t)∥∗(∫
t

0
∥u(τ)∥2

∗ dτ)
1
2
(∫

t

0
∥uτ(τ)∥2

∗ dτ)
1
2

≤ ∥u(t)∥2
∗∫

t

0
∥uτ(τ)∥2

∗ dτ + ∥ut(t)∥2
∗∫

t

0
∥u(τ)∥2

∗ dτ,
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2σ(t + T2)(u(t), ut(t))∗ ≤ 2(σ
1
2 ∥u(t)∥∗)(σ

1
2 (t + T2)∥ut(t)∥∗)

≤ σ∥u(t)∥2
∗ + σ(t + T2)

2
∥ut(t)∥2

∗,

and

2σ(t + T2)∫

t

0
(u(τ), uτ(τ))∗ dτ ≤ ∫

t

0
2(σ

1
2 ∥u(τ)∥∗)(σ

1
2 (t + T2)∥uτ(τ)∥∗) dτ

≤ σ∫
t

0
∥u(τ)∥2

∗ dτ + σ(t + T2)
2
∫

t

0
∥uτ(τ)∥2

∗ dτ.

Consequently,

(ϕ′(t))2
≤ 4(∥u(t)∥2

∗ + ∫

t

0
∥u(τ)∥2

∗ dτ + σ(t + T2)
2
)(∥ut(t)∥2

∗ + ∫

t

0
∥uτ(τ)∥2

∗ dτ + σ)

≤ 4ϕ(t)(∥ut(t)∥2
∗ + ∫

t

0
∥uτ(τ)∥2

∗ dτ + σ). (6.4)

Thus, assertion (6.2) follows from (6.4).
Step 2. We show that φ(t) ≥ 0. Indeed, a direct calculation yields

ϕ′′(t) = 2⟨utt(t), u(t)⟩∗ + 2∥ut(t)∥2
∗ + 2(u(t), ut(t))∗ + 2σ.

Owing to Remark 2.2, we discover

ϕ′′(t) = 2∥ut(t)∥2
∗ − 2∥Δu(t)∥2

+ 2∫
t

0
g(t − τ)(Δu(τ),Δu(t)) dτ

− 2∥∇u(t)∥p
p + 2∥u(t)∥q

q + 2σ
(6.5)

for a.e. t ∈ [0, T1]. Applying the inequalities of Schwarz and Cauchy, the third term on the right-hand side of (6.5) becomes

2∫
t

0
g(t − τ)(Δu(τ),Δu(t)) dτ

= 2∫
t

0
g(t − τ)∥Δu(t)∥2 dτ + 2∫

t

0
g(t − τ)(Δu(τ) − Δu(t),Δu(t)) dτ

≥ 2∫
t

0
g(τ) dτ∥Δu(t)∥2

− 2∫
t

0
g(t − τ)((2ϵ)

1
2 ∥Δu(τ) − Δu(t)∥)(

1
(2ϵ)

1
2
∥Δu(t)∥) dτ

≥ 2∫
t

0
g(τ) dτ∥Δu(t)∥2

− 2ϵ(g ○ Δu)(t) −
1
2ϵ∫

t

0
g(τ) dτ∥Δu(t)∥2

for some constant ϵ > 0 to be determined later. Substituting this inequality into (6.5), we get

ϕ′′(t) ≥ 2∥ut(t)∥2
∗ − 2∥Δu(t)∥2

− 2∥∇u(t)∥p
p + 2∫

t

0
g(τ) dτ∥Δu(t)∥2

− 2ϵ(g ○ Δu)(t) −
1
2ϵ∫

t

0
g(τ) dτ∥Δu(t)∥2

+ 2∥u(t)∥q
q + 2σ

= 2∥ut(t)∥2
∗ − 2I(u(t)) + (2 − 2ϵ)(g ○ Δu)(t)

−
1
2ϵ∫

t

0
g(τ) dτ∥Δu(t)∥2

+ 2σ. (6.6)

Combining (6.3) with (6.6), for t ∈ [0, T1], we obtain

φ(t) ≥ 2∥ut(t)∥2
∗ − 2I(u(t)) + (2 − 2ϵ)(g ○ Δu)(t) −

1
2ϵ∫

t

0
g(τ) dτ∥Δu(t)∥2

+ 2σ − (q + 2)(∥ut(t)∥2
∗ + ∫

t

0
∥uτ(τ)∥2

∗ dτ + σ).
(6.7)
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Next, we move on to deal with I(u(t)). Recalling (2.4) and (3.20), we have

E(0) ≥ ∫
t

0
∥uτ(τ)∥2

∗ dτ +
1
2
∥ut(t)∥2

∗ +
1
q

I(u(t))

+
q − 2

2q
((1 − ∫

t

0
g(τ) dτ)∥Δu(t)∥2

+ (g ○ Δu)(t)) +
q − p

pq
∥∇u(t)∥p

p,

which leads to

−2I(u(t)) ≥ −2qE(0) + 2q∫
t

0
∥uτ(τ)∥2

∗ dτ + q∥ut(t)∥2
∗

+ (q − 2)((1 − ∫
t

0
g(τ) dτ)∥Δu(t)∥2

+ (g ○ Δu)(t)) +
2(q − p)

p
∥∇u(t)∥p

p

for t ∈ [0, T1]. Substituting the above inequality into (6.7), we arrive at

φ(t) ≥ (q − 2)∫
t

0
∥uτ(τ)∥2

∗ dτ + (q − 2 − (q − 2 +
1
2ϵ
)∫

t

0
g(τ) dτ)∥Δu(t)∥2

− 2qE(0) − qσ + (q − 2ϵ)(g ○ Δu)(t) +
2(q − p)

p
∥∇u(t)∥p

p

≥ (q − 2 − (q − 2 +
1
2ϵ
)∫

t

0
g(τ) dτ)∥Δu(t)∥2

− 2qE(0) − qσ

+ (q − 2ϵ)(g ○ Δu)(t) +
2(q − p)

p
∥∇u(t)∥p

p.
(6.8)

By choosing ϵ = q
2 and 0 < σ ≤ −2E(0), we see from (2.7) that

q − 2 − (q − 2 +
1
2ϵ
)∫

t

0
g(τ) dτ ≥ 0. (6.9)

We also see from (A2) and (A3) that
2(q − p)

p
> 0. (6.10)

To sum up, we obtain φ(t) ≥ 0.
Step 3. We claim that there exists a finite time T0 such that

lim
t→T0

ϕ(t) =∞. (6.11)

Indeed, a combination of steps 1 and 2 shows that (6.1) holds for a.e. t ∈ [0, T1], where λ = q−2
4 . In order to ensure ϕ′(0) = 2(u0, u1)∗ + 2σT2

> 0, due to the assumption T =∞, we can choose

T2 > max{−
(u0, u1)∗

σ
, 0}.

Consequently, by Lemma 6.1, there exists

0 < T0 ≤
2(∥u0∥

2
∗ + T1∥u0∥

2
∗ + σT2

2)

(q − 2)((u0, u1)∗ + σT2)

such that assertion (6.11) holds, which contradicts T =∞. This completes the Proof of Theorem 2.6 for case (i).
Case (ii). E(0) = 0 and (u0, u1)∗ > 0.
Similar to case (i), arguing by contradiction, we also suppose that T =∞. For this case, (6.2) and (6.8) still hold. Taking ϵ = q

2 and σ = 0,
we conclude from (6.9) and (6.10) that φ(t) ≥ 0. Hence, we verify (6.1) again. By Lemma 6.1 and ϕ′(0) = 2(u0, u1)∗ > 0, there exists a finite
time T0 such that (6.11) holds again, where

0 < T0 ≤
2(∥u0∥

2
∗ + T1∥u0∥

2
∗)

(q − 2)(u0, u1)∗
.

Thus, the Proof of Theorem 2.6 for case (ii) is finished by the contradiction between (6.11) and T =∞. ◻
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Next, we prove the finite time blow-up of solutions to problems (1.1)–(1.3) with positive initial energy strictly below the depth of the
potential well, i.e., Theorem 2.7.

Proof of Theorem 2.7. We adopt the contradictory argument, a similar structure to the Proof of Theorem 2.6 for case (i), to finish the
proof of this theorem. Considering that many estimates and analyses in the Proof of Theorem 2.6 are not related to the initial condition, by
quickly checking steps 1 and 2 there, we find that (6.2) and (6.8) are still available in this proof here. In addition, next, similar to step 2 in the
Proof of Theorem 2.6, we shall prove φ(t) > 0.

In (6.8), choosing σ = 2(θd̃ − E(0)), we deduce that

φ(t) ≥ I12 + I13,

where

I12 ∶= (q − 2 − (q − 2 +
1
2ϵ
)∫

t

0
g(τ) dτ − θ(q − 2)(1 − ∫

t

0
g(τ) dτ))∥Δu(t)∥2

+ (q − 2ϵ − θ(q − 2))(g ○ Δu)(t)

+ (
2(q − p)

p
− θ(q − 2))∥∇u(t)∥p

p

and

I13 ∶= θ(q − 2)((1 − ∫
t

0
g(τ) dτ)∥Δu(t)∥2

+ (g ○ Δu)(t) + ∥∇u(t)∥p
p) − 2qθd̃.

For I12, taking ϵ = q−θ(q−2)
2 , we deduce from g(t) ≥ 0 in (A1) that

q − 2 − (q − 2 +
1
2ϵ
)∫

t

0
g(τ) dτ − θ(q − 2)(1 − ∫

t

0
g(τ) dτ)

≥ (q − 2)(1 − θ) −
(q − 2)(1 − θ)(q − θ(q − 2)) + 1

q − θ(q − 2) ∫

∞

0
g(τ) dτ,

which together with (2.8) yields

q − 2 − (q − 2 +
1
2ϵ
)∫

t

0
g(τ) dτ − θ(q − 2)(1 − ∫

t

0
g(τ) dτ) ≥ 0.

Recalling the condition 0 < θ < 2(q−p)
p(q−2) , we see that

2(q − p)
p

− θ(q − 2) > 0.

Hence, I12 > 0.
For I13, we note that if

(1 − ∫
t

0
g(τ) dτ)∥Δu(t)∥2

+ (g ○ Δu)(t) + ∥∇u(t)∥p
p >

2q
q − 2

d̃, (6.12)

then I13 > 0 holds for all t ∈ [0, T1]. Therefore, it remains to prove (6.12). In fact, from I(u0) < 0, 0 < E(0) < θd̃, and Proposition 4.2, and (ii)
in Lemma 4.1, we have u(t) ∈ V for all t ∈ [0, T1]. This implies I(u(t)) < 0, which combined with the Sobolev inequality gives

(1 − ∫
t

0
g(τ) dτ)∥Δu(t)∥2

+ (g ○ Δu)(t) + ∥∇u(t)∥p
p < C

q
2∥∇u(t)∥q

p.

Recalling (3.18) and (3.19), the above inequality becomes

κ
C

2
1
∥∇u(t)∥2

p + ∥∇u(t)∥p
p < C

q
2∥∇u(t)∥q

p,

which makes (4.2) hold again. On account of the definition of d̃, we shall proceed to prove (6.12) by considering the following two cases.
Case 1. d̃ = d4.
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In view of (4.2), i.e., ∥∇u∥p > κ
1

q−2 C
− 2

q−2
1 C

−
q

q−2
2 , we obtain

κ∥Δu(t)∥2
+ ∥∇u(t)∥p

p ≥
κ
C

2
1
∥∇u(t)∥2

p + ∥∇u(t)∥p
p (6.13)

> κ
q

q−2 C
−

2q
q−2

1 C
−

2q
q−2

2 + κ
p

q−2 C
−

2p
q−2

1 C
−

pq
q−2

2

≥
2q

q − 2
d4,

which together with (3.18) and (3.19) gives (6.12).
Case 2. d̃ = d5.

In such a case, from (6.13) and ∥∇u∥p > C
−

q
q−p

2 indicated by (4.2), we derive

κ∥Δu(t)∥2
+ ∥∇u(t)∥p

p > κC
−2
1 C

−
2q

q−p
2 + C

−
pq

q−p
2

≥
2q

q − 2
d5,

which together with (3.18) and (3.19) still gives (6.12).
Therefore, φ(t) > 0.
The remainder of the Proof of Theorem 2.7 can be finished by a repetition of step 3 in the Proof of Theorem 2.6 for case (i). ◻

To prove Theorem 2.8, we need Lemma 6.2 to construct an increasing auxiliary function. Its proof is similar to that in Ref. 36, Lemma 2.1.

Lemma 6.2. Let (A1)–(A3) and (2.9) be fulfilled. If a function M(t) is twice continuously differentiable and also satisfies M(0) > 0,
M′(0) > 0, and

M′′(t) +M′(t) > ∫
t

0
g(t − τ)(Δu(τ),Δu(t)) dτ

for all t ∈ [0, T), then M(t) is strictly increasing on [0, T), where u is the solution to problems (1.1)–(1.3).

Set M(t) ∶= ∥u(t)∥2
∗, where u is the solution to problems (1.1)–(1.3). Then, making use of Lemma 6.2, we can derive the monotonicity of

M(t) stated in Lemma 6.3.

Lemma 6.3. Let (A1)–(A3) and (2.9) be fulfilled. Assume that u0 ∈ H2
(Ω) ∩H1

0(Ω), u1 ∈ H1
0(Ω), and (u0, u1)∗ > 0. Then, M(t) is strictly

increasing on [0, T), provided ψ(u(t)) < 0, where ψ(u(t)) is the functional defined by (2.12).

Proof. Since
M′(t) = 2(u(t), ut(t))∗

and

M′′(t) = 2∥ut(t)∥2
∗ + 2⟨utt(t), u(t)⟩∗

= 2∥ut(t)∥2
∗ − 2ψ(u(t)) + 2∫

t

0
g(t − τ)(Δu(τ),Δu(t)) dτ − 2(u(t), ut(t))∗,

we get

M′′(t) +M′(t) = 2∥ut(t)∥2
∗ − 2ψ(u(t)) + 2∫

t

0
g(t − τ)(Δu(τ),Δu(t)) dτ.

By M′(0) = 2(u0, u1)∗ > 0 and Lemma 6.2, we have M′(t) > 0 on [0, T). ◻

For the functional ψ(u(t)) defined by (2.12), we have the following conclusion.

Lemma 6.4. Let (A1)–(A3), (2.9), and (2.10) be fulfilled. Assume that u0 ∈ H2
(Ω) ∩H1

0(Ω), u1 ∈ H1
0(Ω), E(0) > 0, (u0, u1)∗ > 0,

ψ(u0) < 0, and there holds (2.11). Then, ψ(u(t)) < 0 for all t ∈ [0, T).

Proof. Arguing by contradiction, from ψ(u0) < 0 and the continuity of u(t) in t, we suppose that there exists the first time 0 < t0 < T
such that ψ(u(t0)) = 0. Then, by Lemma 6.3 and (2.11), we get

M(t0) >M(0) = ∥u0∥
2
∗ ≥

2q(C2
3 + C

2
4)

min{κq − 2,𝜚}E(0). (6.14)
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On the other hand, by using (3.18) and (3.19) again, we have

E(t0) ≥
κ
2
∥Δu(t0)∥

2
+

1
p
∥∇u(t0)∥

p
p −

1
q
∥u(t0)∥

q
q

=
κq − 2

2q
∥Δu(t0)∥

2
+

q − p
pq
∥∇u(t0)∥

p
p +

1
q
ψ(u(t0)),

which together with ψ(u(t0)) = 0, (2.4), and (3.20) allows us to derive

κq − 2
2q
∥Δu(t0)∥

2
≤ E(0).

Hence,

M(t0) = ∥u(t0)∥
2
∗ ≤ (C

2
3 + C

2
4)∥Δu(t0)∥

2
≤

2q(C2
3 + C

2
4)

κq − 2
E(0),

which contradicts (6.14). Thus, the Proof of Lemma 6.4 is completed. ◻

In the end, we prove the finite time blow-up of solutions to problems (1.1)–(1.3) with arbitrary positive initial energy, i.e., Theorem 2.8.

Proof of Theorem 2.8. Again, by the arguments, by contradiction similar to the Proof of Theorem 2.6 for case (i), we see that (6.2) and
(6.8) hold here. Taking ϵ = q

2 and σ = 0 in (6.8), we have

φ(t) ≥ (q − 2 − (q − 2 +
1
q
)(1 − κ))∥Δu(t)∥2

− 2qE(0),

which together with (2.11) gives

φ(t) ≥ 𝜚∥Δu(t)∥2
−

min{κq − 2,𝜚}
C

2
3 + C

2
4

∥u0∥
2
∗.

According to Lemmas 6.4 and 6.3, we obtain

𝜚∥Δu(t)∥2
≥

𝜚
C

2
3 + C

2
4
∥u(t)∥2

∗ >
𝜚

C
2
3 + C

2
4
∥u0∥

2
∗.

Hence, φ(t) > 0. The remainder of the proof is same as that of the Proof of Theorem 2.6 for case (ii). ◻
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