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We are concerned in this paper with problems that involve nonlinear potential 
mappings satisfying condition (S) and whose potentials are coercive. We first provide 
mild sufficient conditions for the minimizing sequence in the Weierstrass-Tonelli 
theorem in order to have strongly convergent subsequences. Next, we establish a 
three critical point theorem which is based on the Pucci-Serrin type mountain pass 
lemma and which is an infinite dimensional counterpart of the Courant theorem. 
Ricceri-type three critical point results then follow. Some applications to Dirichlet 
boundary value problems driven by the perturbed Laplacian are given in the final 
part of this paper.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license (http://
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1. Introduction

Let E be a separable reflexive real Banach space and let 〈·, ·〉 denote the duality pairing between E∗ and 
E. In this paper we consider nonlinear potential equations of the following type

A (u) = 0 for u ∈ E, (1)

where A : E → E∗ is coercive bounded (that is, A is bounded on bounded sets) and potential operator 
which satisfies condition (S) and where A : E → R stands for the potential of A.

We examine the solvability of problem (1) by introducing a version of the Weierstrass-Tonelli theorem in 
which we obtain that the minimizer is the limit of a norm convergent minimizing sequence, as is the case 
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in the finite dimensional case. We examine the multiple solvability for problem (1) in the above introduced 
setting by introducing some version of the three critical point theorem working in the coercive case. Con-
cerning the multiplicity of solutions to (1) in the coercive case, there are also some results mostly pertaining 
to the usage of three critical point theorems of Ricceri-type, see for example [17], [18], [19], [20] for the 
theoretical background. We aim to derive a three critical point result for coercive C1 functionals, which can 
be viewed as an infinite-dimensional version of the Courant theorem, see [12] for the classical version in RN . 
This classical result asserts that a functional having two distinct local minima must have another critical 
point which is not a minimizer (i.e., a point which realizes the minimum).

Theorem 1 (Courant). [12] Suppose that a C1 functional J : RN → R is coercive and possesses two distinct 
strict relative minima x1 and x2. Then J possesses a third critical point x3 distinct from x1 and x2, which is 
not a relative minimizer, that is in every neighborhood of x3, there exists a point x such that J (x) < J (x3).

In the infinite dimensional version of Theorem 1 coercivity is replaced by the fact that the Palais-Smale 
condition is satisfied and then the following is known:

Theorem 2. [16, Theorem 2] Let E be a Banach space and let J : E → R be a C1 functional satisfying 
Palais-Smale condition with 0E its strict local minimum. If there exists e �= 0E such that J (e) � J (0E), 
then there is a critical point x̄ of I, with J (x̄) > J (0E), which is not a local minimum.

Our multiplicity result relies on connecting two distinct local minimizers via suitably chosen mountain 
pass approach cited above. Due to the necessity of obtaining the Palais-Smale compactness condition for 
the coercive action functional we investigate further relations between this condition and the coercivity. It 
is well known that a bounded from below C1 functional satisfying the Palais-Smale condition is coercive, 
while the converse holds necessarily in finite dimensional spaces. We wish to obtain the converse in infinite 
dimensional space under some additional assumption on mapping A. Therefore we first investigate when 
the minimizing sequence generated by the Weierstrass-Tonelli Theorem is strongly convergent and provide 
a version of the Weierstrass-Tonelli Theorem which guarantees such a behavior. This is in compliance with 
what is known about the Weierstrass-Tonelli Theorem in the finite dimensional setting. Such convergence 
result is next used in providing conditions which guarantee that a coercive functional satisfies the Palais-
Smale condition and as a consequence we obtain our three critical point type theorem by demonstrating the 
suitable mountain geometry. We comment also on the usage of our results about convergence on minimizing 
sequences in derivation of a Ricceri type multiplicity theorem by providing some version of an already known 
multiplicity theorem from [4]. In our approach we rely on using tools commonly applied in the monotonicity 
theory while investigating potential problems as far as the existence and multiplicity are concerned.

Applications are provided for the Dirichlet boundary value problems driven by the perturbed p−Laplacian 
and its various generalizations. Boundary value problems driven by the p−Laplacian attracted a lot of 
attention from different point of view. Let us mention for example [10] where the Authors determine the 
structure of the set of the solutions to the Dirichlet problem for the p−Laplacian on the line. Bifurcation-
type results describing the set of positive solutions as the parameter varies are considered in [9], while the 
three critical point theorem due to Ricceri, see for example [17], is employed for the Dirichlet problem with 
the p−Laplacian in [1] among many sources which exploit its usage.

2. Auxiliary results

For the monotonicity we follow [7] and for variational tools [14]. Operator A : E → E∗ is called:
i) monotone, if for all u, v ∈ E

〈A (u) −A (v) , u− v〉 ≥ 0
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and strictly monotone, if the above inequality is strict for u �= v;
ii) strongly monotone, if for some constant α > 0 it holds for all u, v ∈ E

〈A (u) −A (v) , u− v〉 ≥ α ‖u− v‖2 ;

iii) strongly continuous, if un ⇀ u0 implies A (un) → A (u0);
iv) potential, if there exists a Gâteaux differentiable functional A : E → R, called the potential of A such 
that A′ = A;
v) satisfying condition (S) if,

un ⇀ u0 in E and 〈A (un) −A (u0) , un − u0〉 → 0 imply un → u0 in E

vi) coercive if,

lim
‖v‖→∞

〈A(v), v〉
‖v‖ = +∞.

Remark 3. There are some related conditions pertaining to condition (S) which make weakly convergent 
sequences strongly convergent upon some additional convergence condition on the operator involved. These 
are as follows:
i) Condition (S)+: un ⇀ u0 and lim supn→+∞ 〈A(un) −A(u0), un − u0〉 ≤ 0 imply that un → u0 in E;
ii) Condition (S)0: un ⇀ u0, A (un) ⇀ b, 〈A (un) , un〉 → 〈b, u0〉 imply that un → u0 in E.
It is known that condition (S)+ implies that condition (S) is satisfied and this in turn implies condition 
(S)0. We decided to apply condition (S) due to the fact that it is satisfied by the perturbed p−Laplacian 
operator which we consider further on and is much more intuitive than the technical condition (S)0, while 
being less demanding than (S)+. We mention that adding a strongly continuous perturbation to operator 
satisfying any of the above mentioned conditions does not violate this condition.

A Gâteaux differentiable functional J : E → R satisfies the Palais-Smale condition, the (PS) condition, 
if any sequence (un) ⊂ E such that

i) |J (un)| ≤ M for all n ∈ N and some M > 0,

ii) lim
n→∞

J ′(un) = 0 in E∗

admits a norm convergent subsequence.

Theorem 4 (Ekeland Variational Principle - differentiable form). [14] Let J : E → R be a Gâteaux differ-
entiable functional which is bounded from below. Then there exists a minimizing sequence (un) consisting of 
almost critical points, i.e. such that

J (un) → inf
u∈E

J (u) and J ′
(un) → 0 (in E∗).

We will require the Lagrange Multiplier Rule in the form of Karush-Kuhn-Tucker providing necessary 
optimality conditions taken after [11]. Let f : E → R be a given functional and let g : E → R be a constraint 
functional. Let

S = {x : g (x) ≤ 0} .
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Theorem 5. [11] Assume that u0 ∈ E is such that

inf
u∈S

f (u) = f (u0) .

Let f and g be Fréchet differentiable at u0. Assume that the Slater constraint qualification holds, i.e. if there 
is some x0 that g (x0) < 0. Then there is a nonnegative real number μ such that

f ′ (u0) + μg′ (u0) = 0 (in E∗).

The following theorem about the continuity of the Niemytskij operator is rewritten after [7]:

Theorem 6 (Generalized Krasnosel’skii Theorem). Let p1, p2 ≥ 1 and N ≥ 1 be a fixed natural number. 
Assume that f : [0, 1] × RN → RN is a Carathéodory function. If for any sequence (un)∞n=1 ⊂ Lp1 (0, 1)
convergent to u ∈ Lp1 (0, 1) there exists a function h ∈ Lp2 (0, 1) such that

|f (t, un)| ≤ h (t) , for n ∈ N and a.e. t ∈ [0, 1] ,

then the Niemytskij operator induced by f

Nf : Lp1 (0, 1) � u (·) 
−→ f (·, u (·)) ∈ Lp2 (0, 1) ,

is well defined and continuous.

3. On the Weierstrass-Tonelli Theorem

In this section we undertake the question about the type of convergence of the minimizing sequence in 
the Weierstrass-Tonelli Theorem. It is well known that if one minimizes a lower semicontinuous functional 
J on a closed bounded set S in a finite dimensional space or else if the set is unbounded but J is coercive, 
then the minimizer is approximated by a convergent minimizing sequence (consisting of points from S). In 
case we work in an infinite dimensional reflexive Banach space we must require the set S to be sequentially 
weakly compact and the functional J to be sequentially weakly lower semicontinuous (for the latter to hold 
it suffice to assume continuity and convexity). Then a minimizer is obtained as a limit a weakly convergent 
minimizing sequence. When a functional is defined on the whole space, we must again assume that J
is additionally coercive. However, in the Weierstrass-Tonelli Theorem applied in the infinite dimensional 
setting the minimizing sequence is strongly convergent as well under the additional condition (S) on the 
derivative. There is a result by the second author, see [8], answering the question about a convergence of 
minimizing sequences for a coercive functional with some monotonicity imposed on the derivative. In the 
proof of this result the Minty Lemma, see Lemma 3.6 in [7], is used. Here we not only drop the assumption 
about the monotonicity, do not impose a special structure on the action functional but also we simplify the 
proof methodology.

Theorem 7. Assume that A : E → E∗ satisfies condition (S) and it is potential with a sequentially weakly 
l.s.c. and coercive potential A. Let h ∈ E∗ be fixed. Then there is a solution u0 to

A (u) = h (2)

which minimizes action functional J : E → R defined by

J (u) = A (u) − 〈h, u〉
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over E and moreover there is a sequence (un) ⊂ E, un → u0 such that

J (un) → inf
u∈E

J (u) and J ′
(un) → 0 (in E∗). (3)

If in addition A is strictly monotone, then the solution is unique. Moreover, functional J satisfies the (PS) 
condition.

Proof. From the assumptions it follows that functional J is Gâteaux differentiable, coercive and sequentially 
weakly l.s.c. Hence it is bounded from below. Moreover, it has at least one minimizer u0 which is a critical 
point, i.e. a solution to (2). By Theorem 4 there is a minimizing sequence (un) ⊂ E, un ⇀ u0 (the weak 
convergence follows by coercivity) and which is such that (3) holds. We see from J ′ (un) → 0 by writing 
the derivative explicitly that

〈A (un) −A (u0) , un − u0〉 → 0. (4)

Since A satisfies condition (S), we obtain that un → u0.
Let us take a Palais-Smale sequence, i.e. such a sequence (un) ⊂ E that J (un) is bounded and J ′ (un) →

0. Due to the assumptions we can assume that un ⇀ u0, possibly up to a subsequence which we chose and 
do not renumber. Hence (4) holds. Since J ′ = A − h satisfies condition (S) and since un ⇀ u0, we see that 
un → u0, so the remaining assertion follows. �

We mention also here that checking condition (S) is technically similar to checking the strong convergence 
of bounded (PS) sequences which is also why we decided to apply this condition in our reasoning. From the 
proof of the above result we immediately obtain:

Proposition 8. Assume that a Gâteaux differentiable functional J : E → R has a derivative J ′ : E → E∗

which satisfies condition (S). Then any bounded (PS) sequence for functional J admits a strongly convergent 
subsequence.

Now we are in position to formulate the result about the existence of minimizers for coercive functionals 
following directly from the above:

Corollary 9. Assume that functional J : E → R is bounded from below, coercive, Gâteaux differentiable and 
that its derivative J ′ : E → E∗ satisfies condition (S). Then there is some u0 ∈ E such that

J (u0) = inf
u∈E

J (u) .

Proof. From Theorem 7 it follows that functional J satisfies the (PS) condition. Since it is bounded from 
below and satisfies the (PS) condition, it necessarily has at least one minimizer. The result now readily 
follows. �

Remark 10. We may replace condition (S) with conditions (S+) or (S)0 with retaining the same conclusion 
in the above, see also Remark 3 and remarks in [6].

Now we give some direct applications of our version of the Weierstrass-Tonelli Theorem that are related 
the known results. We provide a version of Theorem 2.1 from [15]. We recall that a functional whose 
derivative is monotone and coercive is necessarily bounded from below. In the result that follows we show that 
for a potential problem which can be tackled by the Banach fixed point theorem the sequence obtained by 
the method of successive approximations which converges to the unique solution stands also for a minimizing
sequence.
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Proposition 11. Let E be a Hilbert space with a scalar product (·, ·). Let N : E → E be a contraction with the 
unique fixed point u∗ ∈ E (guaranteed by the Banach contraction theorem). If there exists a C1 functional 
J such that

J ′
(u) = u−N(u) for all u ∈ E,

then u∗ minimizes the functional E, i.e.

J (u∗) = inf
u∈E

J (u) .

Moreover, a sequence (un) ⊂ E, defined by un+1 = N (un) for any u0 ∈ E is such that un → u∗ and

J (un) → inf
u∈E

J (u) and J ′
(un) → 0. (5)

Proof. Since N is a contraction we see by a direct calculation that J ′ is strongly monotone. We see that J
as a potential of a strongly monotone mapping is coercive and sequentially weakly l.s.c. It also holds that 
J is strictly convex. Moreover, since J ′ is strongly monotone, it satisfies condition (S). Then by Theorem 7
there is minimizer, which is unique by the strict convexity and therefore equal to u∗. Assertion (5) follows 
by the continuity of N . �

4. On a three critical point theorem for a coercive functional

In this section we are going to derive the infinite dimensional multiplicity result corresponding to finite 
dimensional mountain pass theorem due to Courant. For r > 0 we put

Br := {x : ‖x‖ ≤ r} , Sr = {x : ‖x‖ = r} .

Theorem 12. Assume that I ∈ C1(E) has a strongly continuous derivative I ′ : E → E∗ and that operator 
A : E → E∗ is continuous, bounded, monotone, coercive and satisfies condition (S) and it is potential with 
the potential A. Denote J := A+I. Let x̃ ∈ E and r > 0 be fixed. Assume that the following conditions are 
satisfied:

(A.1) lim inf
‖x‖→∞

I(x)
A(x) ≥ 0;

(A.2) inf
x∈E

J (x) < inf
x∈Br

J (x);

(A.3) ‖x̃‖ < r and J (x̃) < inf
x∈Sr

J (x).

Then functional J has at least three distinct critical points in E, i.e. equation

A (u) + I ′
(u) = 0

has at least three distinct solutions two of which are necessarily nontrivial.

Proof. By the coercivity and the boundedness of operator A it follows that its potential is also coercive, 
see Lemma 5.5 from [7]. From (A.1) it holds for all x ∈ E with sufficiently large norms that

I(x) > −1A(x).
2
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Indeed, according to [13] lim inf
‖x‖→∞

I(x)
A(x) ≥ 0 means that for any α < 0 there is some R > 0 such that for all 

‖x‖ > R we have I(x)
A(x) > α. This implies, for all x ∈ E with ‖x‖ > R, that

J (x) = A (x) +I (x) > 1
2A(x)

and therefore functional J is coercive as well. Since I ′ is strongly continuous, we see that its I potential is 
sequentially weakly continuous. Since A is monotone, it follows that A is sequentially weakly l.s.c. and so 
is functional J . Now from Theorem 7 we see that J satisfies the (PS) condition. Since J is sequentially 
weakly l.s.c. and coercive it has a global minimizer (and a critical point) which due to (A.2) lies outside Br. 
Moreover, in Br functional J has a local minimizer which by (A.2) lies inside a ball and therefore it is a 
critical point as well. By the application of Theorem 2 we get the existence of a third critical point which 
is distinct from these two mentioned. �

Remark 13. We can replace (A.1) with the assumption that functional I is bounded from below. As it can 
be expected from Theorem 7 we see that Theorem 12 has also a more general formulation which does not 
involve monotonicity. Hence the special structure of J need not be assumed. However, due to the fact that 
we minimize a functional over a closed ball, we have to assume the sequential weak lower semicontinuity of 
the functional.

In order to conclude this section we will work on exploiting the monotonicity theory in derivation of the 
Ricceri type of a three critical point theorem for coercive functionals following [4]. In the proof the following 
technical lemma will be utilized and which obtained as a special case of results from [17, Proposition 2.2]
and [2, Theorem 1]:

Lemma 14. Let D ⊆ R+ be an interval. Assume that Φ ∈ C1(E) is such that its derivative Φ : E → E∗ is 
strictly monotone, coercive and satisfies condition (S). Assume that I ∈ C1(E) is such that I ′ : E → E∗ is 
strongly continuous. Moreover, assume that there exist x1, x2 ∈ E and σ ∈ R such that 

(B.1) Φ(x1) < σ < Φ(x2);

(B.2) inf
Φ(x)≤σ

I(x) > (Φ (x2) − σ) I(x1) + (σ − Φ(x1)) I(x2)
Φ(x2) − Φ(x1)

;

(B.3) lim
‖x‖→∞

[Φ(x) + λI(x)] = +∞ for all λ ∈ D.

Then there exists a nonempty open set C ⊆ D such that for all λ ∈ C the functional Φ + λI has at least 
three critical points in E.

Lemma 15. Assume that I ∈ C1(E) is sequentially weakly l.s.c. and that A : E → E∗ is continuous, strictly 
monotone, coercive, satisfies condition (S) and is potential with the potential A such that A (0) = 0. Let 
x̃ ∈ E and r > 0 be fixed. Assume that (A.1) holds and also the following conditions are satisfied:

(C.1) inf
x∈E

I(x) < inf
A(x)≤r

I(x);

(C.2) A(x̃) < r and I(x̃) < inf
A(x)=r

I(x).

Then there exists a nonempty open set C ⊆ (0, +∞) such that for all λ ∈ C the functional A + λI has at 
least three critical points in E, two of which are necessarily non-trivial.

Proof. By (A.1) we see that condition (B.3) is satisfied.
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Since mapping A is strictly monotone, we see that its potential is necessarily convex. Then set the 
Lebesgue level set B = {x ∈ E : A(x) ≤ r} is convex and due to the continuity of A it is also closed. This 
means that B is weakly closed. Since A is the potential of a coercive mapping it follows that B is bounded 
which means that B is sequentially weakly compact. Now, since functional J is sequentially weakly l.s.c. it 
attains its infimum on B at some x1 ∈ B. We claim that

A(x1) < r and I(x1) = inf
x∈B

I(x). (6)

Since A (0) = 0 < r we observe that the Slater constraint qualification is satisfied. Therefore it follows by 
the Karush-Kuhn-Tucker Theorem (Theorem 5) that there is a Lagrange multiplier ζ ≥ 0 for which it holds

I ′
(x1) + ζA (x1) = 0 and ζ (A (x1) − r) = 0.

By (C.2) it follows that A (x1) < r and therefore we must take ζ = 0 which implies (6).

By (C.1) there exists x2 ∈ E such that

A(x2) > r and I(x2) < I(x1). (7)

Set σ = r and noting that A(x1) < σ < A(x2) we see that (B.1) is satisfied. Moreover by (6) and (7) we 
have

inf
A(x)≤r

I(x) = I(x1) = I(x1) (A(x2) −A(x1)))
A(x2) −A(x1)

=

I(x1)A(x2) − σI(x1) + σI(x1) − I(x1)A(x1)
A(x2) −A(x1)

=

(A(x2) − σ) I(x1) + (σ −A(x1)) I(x1)
A(x2) −A(x1)

>

(A(x2) − σ) I(x1) + (σ −A(x1)) I(x2)
A(x2) −A(x1)

,

so (B.2) is satisfied too. The assertion now follows by Lemma 14. �

Remark 16. While in the proof of Lemma 15 we use some ideas from [4], we include new arguments, like 
the usage of the Karush-Kuhn-Tucker Theorem and we also exploit the usage of the monotonicity theory. 
Condition (C1) can be replaced with the following

(C.4). A(x) + λI(x) → +∞ as ‖x‖ → ∞

with the assertion retained. The assertion is also retained if we assume I to be bounded from below, see also 
[5] for some research in this direction. Comparing Lemma 15 with Theorem 12 we see that their applicability 
coincides when operator A is strongly monotone, i.e. for the case of the (negative) Laplacian. In contrast 
when the (negative) p−Laplacian is considered finding a minimizer on a ball is much more convenient than 
examining the behavior of the Euler action functional.
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5. Applications

5.1. Applications of the Weierstrass-Tonelli Theorem

We note that the application of our version of the Weierstrass-Tonelli Theorem is similar to checking the 
classical version but it requires verifying that the condition (S) or any related is satisfied instead of checking 
the sequential weak lower semicontinuity of the action functional. Nevertheless both approaches use similar 
arguments. Towards the uniqueness we need to determine that the derivative defines the strictly coercive 
operator.

We will need some preparation prior to introduction of the problem under consideration. Let p ≥ 2 and 
set E := W 1,p

0 (0, 1). Then E is a separable, uniformly convex (and thus reflexive) space, see [3]. Recall that 
for any u ∈ E it holds

‖u‖C := max
t∈[0,1]

|u (t)| ≤ ‖u‖ := ‖u̇‖Lp =

⎛⎝ 1∫
0

|u̇ (t)|p dt

⎞⎠1/p

.

Let f : [0, 1] ×R → R be an L1−Carathéodory function and define F : [0, 1] ×R → R by

F (t, u) =
u∫

0

f (t, s) ds for a.e. t ∈ [0, 1] and all u ∈ R. (8)

We assume that

(ϕ1) ϕ : [0, 1] ×R+ → R is a Carathéodory function for which there is a constant M > 0 such that

|ϕ (t, x)| ≤ M for a.e. t ∈ [0, 1] and all x ∈ R+;

(ϕ2) there exists a constant γ > 0 such that

ϕ (t, x)x− ϕ (t, y) y ≥ γ (x− y)

for all x ≥ y ≥ 0 and a.e. t ∈ [0, 1];
(F.1) f (t, 0) = 0 for a.e. t ∈ [0, 1], g ∈ Lp

′
(0, 1), g �= 0;

(F.2) for a.e. t ∈ [0, 1] function x 
→ f (t, x) is nondecreasing.

Now we can consider the existence and the uniqueness for the following Dirichlet problem⎧⎪⎨⎪⎩
− d

dt

(
ϕ
(
t,
∣∣ d
dtu

∣∣p−1) ∣∣ d
dtu

∣∣p−2 d
dtu

)
+ f (t, u (t)) = g (t) , a.e. on (0, 1) ,

u (0) = u (1) = 0.
(9)

The solutions are understood in the weak sense. We say that a function u ∈ E is a weak solution of (9) if 
for all v ∈ E it holds

1∫
ϕ
(
t, |u̇ (t)|p−1

)
|u̇ (t)|p−2

u̇ (t) v̇ (t) dt +
1∫
f (t, u (t)) v (t) dt =

1∫
g (t) v (t) dt.
0 0 0
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We see that with assumption (F.1) any weak solution is non-zero which we prove by a direct calculation 
assuming to the contrary.

Let us define I : E → R by

I (u) =
1∫

0

F (u (t)) dt +
1∫

0

g (t)u (t) dt.

By direct arguments we see that the Euler Lagrange functional to (9) reads

J := A + I ∈ C1 (E) .

In order to apply Corollary 9 we define operators A, A1 : E → E∗ by

〈A (u) , v〉 =
1∫

0

ϕ
(
|u̇ (t)|p−1

)
|u̇ (t)|p−2

u̇ (t) v̇ (t) dt for u, v ∈ E,

〈A1 (u) , v〉 =
1∫

0

f(t, u(t))v (t) dt.

From [7], Theorem 3.3, we get the following:

Lemma 17. Assume that conditions (ϕ1) , (ϕ2) are satisfied. Then operator A is continuous, bounded, strictly 
monotone, coercive and satisfies condition (S). Moreover, it is potential with the potential A : E → R defined 
by

A (u) =
1∫

0

|u̇(t)|∫
0

ϕ
(
sp−1) sp−1dsdt for u ∈ E. (10)

Additionally, operator A is invertible with a continuous inverse.

Proposition 18. Assume that conditions (ϕ1) , (ϕ2) and (F.1)-(F.2) are satisfied. Then problem (9) has 
exactly one nontrivial solution.

Proof. Under conditions (F.1), (F.2) we see that operator A1 is strongly continuous, bounded and monotone. 
Moreover, it is potential with the potential I. Monotonicity of A follows from (F.2). As for the strong 
continuity we see that since a weakly convergent sequence (un) ⊂ W 1,p

0 (0, 1) is bounded by some d > 0, 
then since f is an L1−Carathéodory function there is some function fd ∈ L1 (0, 1) such that

|f (t, x)| ≤ fd (t) for a.e. t ∈ [0, 1] and x ∈ [−d, d] .

It suffices to apply the Krasnosel’skii Theorem and the compact embedding of W 1,p
0 (0, 1) into Lp (0, 1) to 

get the strong continuity. Since strongly continuous perturbations do not violate the condition (S) we see 
that operator A + A1 satisfies condition (S). By adding a monotone operator to a coercive operator we 
obtain the coercive operator and this is why we see that operator A + A1 is coercive since by Lemma 17
operator A is coercive. Moreover, operator A +A1 is bounded and continuous. Then we reach the conclusion 
by Corollary 9. �
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5.2. Applications of the three critical point theorem to Dirichlet problems

We retain the assumptions about the nonlinear differential operator from the previous section, i.e. (ϕ1) ,
(ϕ2), we let f : [0, 1] ×R → R and define F : [0, 1] ×R → R by (8). We assume that

(F.3) f, F : [0, 1] ×R → R are L1−Carathéodory functions;
(F.4) there is a constant c1 > 0 such that

lim
|x|→∞

F (t, x)
|x|p−1 = −c1

uniformly for a.e. t ∈ [0, 1];
(F.5) limx→0

f(t,x)
|x|p−1 = 0 uniformly for a.e. t ∈ [0, 1].

For a numerical parameter λ > 0 we now consider the following Dirichlet problem

− d
dt

(
ϕ
(∣∣ d

dtu
∣∣p−1) ∣∣ d

dtu
∣∣p−2 d

dtu
)

+ λf (t, u) = 0, a.e. on (0, 1) ,

u (0) = u (1) = 0.
(11)

The solutions are again understood in the weak sense which is as follows:

1∫
0

ϕ
(
t, |u̇ (t)|p−1

)
|u̇ (t)|p−2

u̇ (t) v̇ (t) dt +
1∫

0

f (t, u (t)) v (t) dt = 0 for all v ∈ E.

Let us define a C1 functional I : E → R by

I (u) =
1∫

0

F (t, u (t)) dt.

For any fixed λ > 0, critical points to

Jλ = A + λI,

where A is defined by (10), correspond to solutions to (11), as well as solutions to (11) are critical points 
to Jλ. Now we can proceed with the application of Theorem 12 to problem (11).

Proposition 19. Assume that conditions (ϕ1) , (ϕ2) and (F.3), (F.5) hold. Then there is a constant λ̄ such 
that for λ > λ̄ problem (11) has at least two nontrivial solutions.

Proof. Under conditions (F.3), (F.4) for any fixed λ > 0 functional Jλ is sequentially weakly l.s.c. and 
coercive. Indeed, from condition (F.4) by using the Hölder and the Poincaré inequality we obtain for some 
constant c2 > 0 (which depends on p, on the Poincaré constant and also on c1)

1∫
0

F (t, u (t)) dt ≤ −c2 ‖u‖p−1 for u ∈ E. (12)

From the coercivity of A and from (12) it obviously follows that Jλ is coercive for every positive λ.
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We see that functional I is sequentially weakly continuous on E. Indeed, let us take (un) ⊂ E such that 
un ⇀ u0. Then un → u0 in L2 (0, 1) and by the Lebesgue Dominated Convergence Theorem we see that

lim
n→∞

1∫
0

F (t, un (t)) dt =
1∫

0

F (t, u0 (t)) dt.

Since A is a continuous potential of a monotone mapping, it is sequentially weakly l.s.c. Hence Jλ is 
sequentially weakly l.s.c. as well. From (12) it directly follows that there is a function ū ∈ E such that

1∫
0

F (t, ū (t)) dt < 0. (13)

By (ϕ1) , (ϕ2) we reach at the following estimation for all u ∈ E

M

p
‖u‖p ≥ A (u) ≥ γ

p
‖u‖p . (14)

We take a function ū that I (ū) < 0. Since A (ū) > 0 we define

λ̄ := −A (ū)
I (ū) >0.

Then for λ > λ̄ it holds that Jλ (ū) < 0. Assume now that some λ > λ̄ is fixed. Following the known 
technique applied in checking the mountain geometry we see from (F.4) that for any ε > 0 there is δ > 0
such that for |x| ≤ δ it holds

|F (t, x)| ≤ ε
|x|p

p
for a.e. t ∈ [0, 1] .

Using the above we have that for ε ∈
(
0, γ

λ

)
there is a constant δ ≤ ε such that for ‖u‖ ≤ δ it holds from 

(14)

Jλ (u) ≥ 1
p

(γ − ελ) ‖u‖p .

This means that (A.2) is satisfied since Jλ (u) ≥ 0 for ‖u‖ ≤ δ and since

inf
E

Jλ ≤ Jλ (ū) < 0.

Condition (A.3) is fulfilled since

Jλ (0) = 0 <
1
p

(γ − ελ) δp.

Now the assertion follows from Theorem 12. �

Remark 20. When f : R → R is continuous, i.e. if we drop the dependence on t, we see that for the above 
results to hold we need not assume (F.3). The continuity of F suffices in this case.



J. Diblík et al. / J. Math. Anal. Appl. 528 (2023) 127473 13
Example 21. Let p ≥ 2. We put f : R → R by

f (x) =
{

− |x|p−1
x, |x| ≤ 1,

− |x|p−3
x, |x| ≥ 1

and hence

F (x) =
{

− (p + 1) |x|p+1
, |x| ≤ 1,

− (p + 1) − (p− 1) |x|p−1 + (p− 1) , |x| ≥ 1.

We see that assumptions (F.4), (F.5) hold in this case.
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