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Abstract
In this paper, we study the initial boundary value problem for the nonlocal parabolic equation
with the Hardy–Littlewood–Sobolev critical exponent on a bounded domain. We are con-
cernedwith the long time behaviors of solutionswhen the initial energy is low, critical or high.
More precisely, by using the modified potential well method, we obtain global existence and
blow-up of solutions when the initial energy is low or critical, and it is proved that the global
solutions are classical. Moreover, we obtain an upper bound of blow-up time for Jμ(u0) < 0
and decay rate of H1

0 and L2-norm of the global solutions.When the initial energy is high, we
derive some sufficient conditions for global existence and blow-up of solutions. In addition,
we are going to consider the asymptotic behavior of global solutions, which is similar to the
Palais-Smale (PS for short) sequence of stationary equation.
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1 Introduction andMain Results

In this paper, we consider a nonlocal parabolic initial-boundary value problem:
⎧
⎪⎨

⎪⎩

ut − �u =
(
|x |−μ ∗ |u|2∗

μ

)
|u|2∗

μ−2u, x ∈ �, t > 0

u(x, t) = 0, x ∈ ∂�, t > 0
u(x, 0) = u0(x), x ∈ �

(P)

where � is a bounded domain in RN (N ≥ 3) and 2∗
μ = 2N−μ

N−2 is the critical exponent in the
sense of the Hardy–Littlewood–Sobolev inequality. Depending on suitable properties of the
initial value u0, we are interested in the long time behaviors of solutions (global existence,
blow-up in finite time) and asymptotic behavior of the global solutions.

The nonlocal parabolic equation of type (P) has important background arising from a
variety of physical, chemical and biological problems. For example, problem (P) can be

applied to nonlocal heat physics, where
(
|x |−μ ∗ |u|2∗

μ

)
|u|2∗

μ−2u represents the nonlocal

source, and it can also be applied to the population model with nonlocal competition, where(
|x |−μ ∗ |u|2∗

μ

)
|u|2∗

μ−2u models the individuals are competing not only with others at their

own point in space but also with individual at other points in the domain (see [10, 18, 31,
35]), and so forth.

The following parabolic initial-boundary value problem:
⎧
⎨

⎩

ut − �u = f (u), x ∈ �, t > 0
u(x, t) = 0, x ∈ ∂�, t > 0
u(x, 0) = u0(x), x ∈ �

(1.1)

has been extensively studied by many author with different methods. For example, critical-
point theory by Ambrosetti-Rabinowitz [1], the potential well method which was constructed
by Payne and Sattinger [32, 33], semigroup theory byWeissler [40, 41] and classical tools by
Hoshino-Yamada [12] in a new functional analytic framework (or the monograph by Henry
[11] for more detailed).

In particular, since Sattinger [33] constructed the so called stable set, the method of
potential well was applied to study the existence of global solutions far and wide (see [7,
13–16, 29, 30, 38, 39] e.g.). Furthermore, Levine [19], Payne and Sattinger [32] considered
blowing-up properties of solutions. When f (u) is local source term, i.e. f (u) = |u|p−1u, it
is well known that there exist choices of initial value u0 such that the homologous solutions
global existence and the global solution tend to zero as t → ∞ and there exist choices of
initial value u0 such that the homologous solutions blow-up.When the exponent is subcritical,
i.e. 1 < p < N+2

N−2 , with the help of energy functional, Nehari functional and potential well
method, there exists two invariant sets W (stable set) and V (unstable set), and the long
time behavior of solutions for (1.1) with low energy initial value (the energy of initial value
is smaller than the depth of potential well) was described. More detailed, if initial data u0
belongs to the stable set W , the associated solution is global, if initial data u0 belongs to
the unstable set V , the associated solution blow-up in a finite time, and blow-up in infinite
time does not occur in this case (see [14, 15]). Dickstein et al. [5] generalized the above
results to the critical energy level initial data. When the initial data has high energy (the
energy of initial value is larger than the depth of potential well), the situation is much more
complicated, since the invariance of W and V are invalid and potential well method can
not be used. In [8], by using the comparison principle and variational methods, Gazzola
and Weth obtained the existence of global solution and blow-up in finite time of solutions
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with high energy initial value. When the exponent is critical, i.e. p = N+2
N−2 , by using the

potential well method, Tan [36], Ikehata and Suzuki [14, 34] considered the problem (1.1),
they established the existence of global solutions and blow-up of solutions in finite time,
which depend on the initial value u0 ∈ H1

0 (�). Moreover, the asymptotic behavior of global
solutions was studied. In particular, we emphasize the blow-up of case of exponent subcritical
is simpler than exponent critical, since the embedding of H1

0 (�) into L p(�) is compact for
p < 2N

N−2 , while is non-compact for p = 2N
N−2 . From the point of view of critical point theory,

the compactness condition is a sufficient and necessary condition for the PS condition to
hold. Moreover, it is also a necessary condition for the nontrivial solutions existence of the
stationary equation of (1.1) under conditions that do not require the geometry of the domain
from the point of view of elliptic problems. In particular, contrary to the subcritical case,
global unbounded solutions may exist for critical case (see [28]).

When f (u) is of a nonlocal source, i.e. f (u) = (|x |−(N−2) ∗ |u|p)|u|p−2u, Liu et al.
considered the global existence and blow-up in finite time of solutions for problem (1.1) with
1 < p < N+2

N−2 by using the potential well method. In [25], they obtained a sharp threshold for
global existence and finite time blow-up of solutions with lower energy initial data. In [26],
they extended the results to case of critical energy initial value and obtained the asymptotic
behavior of solutions. Later, they also consider the case of high energy initial value and found
a criteria for global existence and blow-up in finite time of solutions respectively. Moreover,
the asymptotic profile to both solutions vanishing at infinity and blowing up in finite time
was established.

However, to the best of our knowledge, the nonlocal parabolic equation with critical
exponent has not been studied yet. Therefore, this paper aims to study the global existence
and blow-up of solution on initial value with lower energy, critical energy and high energy
for problem (P). The energy functional of problem (P) is defined by

Jμ(u) = 1

2

∫

�

|∇u|2dx − 1

22∗
μ

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy. (1.2)

By the Hardy–Littlewood–Sobolev inequality, Jμ(u) is well defined in the Sobolev space
H1
0 (�). The equation corresponds to the L2 gradient flowassociated of this energy functional.

Then, along the flow generated by problem (P), we have

d

dt
Jμ(u) = (J ′

μ(u), ut ) = −‖ut‖22. (1.3)

For more details, see Lemma 2.4 below.
For the Hardy–Littlewood–Sobolev critical exponent case, the corresponding functional

Jμ does not satisfy the Palais-Smale (PS for short) condition (or (PS)c condition). From the
critical-point theory point of view, the (PS) condition plays an important role in the proof of
the existence of critical points of Jμ, and that the stationary problem has solutions. However,
by Brezis and Nirenberg [4], for � be a bounded domain in R

N , any (PS)c sequence for

c < 1
N S

N
2 is relatively compact in H1

0 (�), where S is the best constant for the Sobolev
embedding H1

0 (�) ↪→ L2∗
(�). Importantly, the Brezis-Nirenberg type critical problem for

nonlinear Choquard equation was studied by Du, Gao and Yang in [6, 9], SH ,L and the
minimax level was estimated in [9] and they classify the positive solutions of this equation in
[6],where SH ,L is the best embedding constant in the sense of theHardy–Littlewood–Sobolev
inequality. In [2], Alves et al. study the singularly perturbed critical Choquard equation and
establish the existence of ground states with constant coefficients. Moreover, they obtained

123



Journal of Dynamics and Differential Equations

the multiplicity of solution and the concentration behavior was characterized for perturbed
problem.

Let us recall the well-known Hardy–Littlewood–Sobolev inequality, which plays a fun-
damental role throughout this paper.

Lemma 1.1 (Hardy–Littlewood–Sobolev inequality, see [21].) Let t, r > 1 and 0 < μ < N
with 1/t +μ/N + 1/r = 2. For f̄ ∈ Lt (RN ) and h̄ ∈ Lr (RN ), there exists a sharp constant
C(t, N , μ, r) independent of f̄ and h̄, such that

∫

RN

∫

RN

f̄ (x)h̄(y)

|x − y|μ dxdy ≤ C(t, N , α, r)‖ f̄ ‖t‖h̄‖r . (1.4)

If t = r = 2N
2N−μ

, then

C(t, N , μ, r) = C(N , μ) = π
μ
2
�( N2 − μ

2 )

�(N − μ
2 )

{
�( N2 )

�(N )

}−1+ μ
N

.

In this case, the equality in (1.4) holds if and only if f̄ ≡ Ch̄ and

h̄(x) = A
(
γ 2 + |x − a|2)−(2N−μ)/2

for some A ∈ C, 0 �= γ ∈ R and a ∈ R
N .

From the Hardy–Littlewood–Sobolev inequality, for all u ∈ D1,2(RN ), one has

(∫

RN

∫

RN

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

) N−2
2N−μ

≤ C(N , μ)
N−2
2N−μ ‖u‖22∗ ,

where C(N , μ) is defined as in Lemma 1.1 and hence we call 2∗
μ = 2N−μ

N−2 the upper Hardy–
Littlewood–Sobolev critical exponent. Denote best constant by

SH ,L := inf
u∈H1

0 (RN )

∫

RN |∇u|2dx
(
∫

RN

∫

RN
|u(x)|2∗μ |u(y)|2∗μ

|x−y|μ dxdy

) N−2
2N−μ

. (1.5)

Lemma 1.2 [9, Lemma 1.2] The constant SH ,L defined in (1.5) is achieved if and only if

U = C

(
b

b2 + |x − a|2
) N−2

2

,

where C > 0 is a fixed constant, a ∈ R
N and b ∈ (0,∞) are parameters. Furthermore,

SH ,L = S

C(N , μ)
N−2
2N−μ

,

where S is the best Sobolev constant.

As in [42], let U (x) = [N (N−2)] N−2
4

(1+|x |2) N−2
2

be a minimizer for S, then

Ũ = S
(N−μ)(2−N )
4(N−μ+2) C(N , μ)

2−N
2(N−μ+2)

[N (N − 2)] N−2
4

(1 + |x |2) N−2
2

(1.6)
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is the unique positive minimizer for SH ,L that satisfies

−�u =
(
|x |−μ ∗ |u|2∗

μ

)
|u|2∗

μ−2u, in R
N

and
∫

RN
|∇Ũ |2dx =

∫

RN

∫

RN

|Ũ (x)|2∗
μ |Ũ (y)|2∗

μ

|x − y|μ dxdy = S
2N−μ
N−μ+2
H ,L .

Let

mμ := J (Ũ ) = N − μ + 2

2(2N − μ)
S

2N−μ
N−μ+2
H ,L (1.7)

For every open subset � of RN ,

SH ,L(�) := inf
u∈H1

0 (�)

∫

�
|∇u|2dx

(
∫

�

∫

�
|u(x)|2∗μ |u(y)|2∗μ

|x−y|μ dxdy

) N−2
2N−μ

= SH ,L ,

where SH ,L(�) is never achieved except when � = R
N , see [9, Lemma 1.3].

Following [32, 36], we define stable set and unstable set as follows

W = {
u ∈ H1

0 (�) | Jμ(u) < mμ, Iμ(u) > 0
} ∪ {0} ,

and

V = {
u ∈ H1

0 (�) | Jμ(u) < mμ, Iμ(u) < 0
}
.

where Iμ(u) is the Nehari functional for problem (P) defined by

Iμ(u) :=
∫

�

|∇u|2dx −
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy. (1.8)

Remark 1.3 (i) If 0 < Jμ(u) < mμ and Iμ(u) ≥ 0, then,we have Iμ(u) > 0. Indeed, if
Iμ(u) = 0, by the Hardy–Littlewood–Sobolev inequality, we have

∫

�

|∇u|2dx =
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy ≤ S
− 2N−μ

N−2
H ,L

(∫

�

|∇u|2dx
) 2N−μ

N−2

,

which implies that
∫

�
|∇u|2dx ≥ S

2N−μ
N−μ+2
H ,L . Furthermore, by the definition of Jμ(u), we

have Jμ(u) ≥ N−μ+2
2(2N−μ)

S
2N−μ
N−μ+2
H ,L = mμ, a contradiction.

(ii) If Iμ(u) > 0, then Jμ(u) > 0. Indeed, since Iμ(u) > 0, we have
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy <

∫

�

|∇u|2dx .
Furthermore, we can derive

Jμ(u) = 1

2

∫

�

|∇u|2dx − 1

22∗
μ

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

>
2∗
μ − 1

22∗
μ

∫

�

|∇u|2dx ≥ 0.

Thus, Jμ(u) > 0.

123



Journal of Dynamics and Differential Equations

Inspired by [36], we are going to investigate the critical parabolic equation with nonlocal
interaction. By using the modified potential well method, one of the aims is to study the
global existence, blow-up of solutions for problem (P) with lower energy initial value and
decay rate of H1

0 and L2 norm for global solutions. Furthermore, we give an upper bound
for blow-up time for Jμ(u0) < 0. Moreover, we also consider global existence and blow-
up of solutions for problem (P) with critical energy initial value and give some sufficient
conditions for the existence of global and blow-up solutions with high energy initial value.
Finally, we are going to consider the asymptotic behavior of global solutions, we shall prove
that there exists a sequence {tn} such that the asymptotic behavior of u(x, tn) as tn → ∞ is
the PS sequence of stationary equation of problem (P).

Firstly, we state our main results about the global existence and blow-up of solutions with
lower energy initial value as follows.

Theorem 1.4 If u0 ∈ H1
0 (�)with Jμ(u0) < mμ, Iμ(u0) > 0, then, problem (P) has a global

weak solution u(x, t) ∈ L∞(0, T ; H1
0 (�)) with ut ∈ L2(0, T ; L2(�)) and u(x, t) ∈ W for

0 ≤ t < ∞.

Theorem 1.5 If u0 ∈ H1
0 (�) with Jμ(u) < mμ, Iμ(u) < 0, then, the weak solution u(x, t)

of problem (P) blow-up in finite time. In particular, there exists a T > 0 such that

lim
t→T−

∫ t

0
‖u‖22ds = +∞. (1.9)

Moreover, for Jμ(u0) < 0, an upper bound for blow-up time T is given by

T <
‖u0‖22

−42∗
μ(2∗

μ − 1)Jμ(u0)
.

Furthermore, we have the decay rate of the H1
0 and L2-norm of the global solutions with

lower energy initial value. Then, we state our main result of this as follows.

Theorem 1.6 Under the assumption in Theorem 1.4, for the global weak solution u(x, t) of
problem (P), there exists α1, α2 > 0 such that

‖∇u(t)‖22 = O(e−α1t ), as t → ∞, (1.10)

and

‖u(t)‖22 = O(e−α2t ), as t → ∞. (1.11)

Under the existence of global solution, we now consider the regularity of the global weak
solutions with lower energy initial value, by applying a nonlocal version of the Brezis-Kato
estimate, we prove that the global solutions are classical for t ≥ t0 > 0. The statement for
more detailed as follows.

Theorem 1.7 Let u(x, t) be a global solution. Then, u ∈ L p(� × [t0,∞)) for every p ∈
[2, N

N−μ
2N
N−2 ). In particular, u is a classical solution for t ≥ t0 > 0.

With the help of modified potential well method as in [24], we further study the global
existence and blow-up in finite time for the case of critical energy initial value, i.e. Jμ(u0) =
mμ. Before state our main results of global existence and finite time blow-up of solutions,
we give a remark.

123



Journal of Dynamics and Differential Equations

Remark 1.8 If Jμ(u) = mμ, Iμ(u) ≥ 0, then Iμ(u) > 0. Indeed, we can know that the
Hardy–Littlewood–Sobolev constant is not attained on a bounded domain, and hence E ={
u ∈ H1

0 (�) u satisfies − �u =
(
|x |−μ ∗ |u|2∗

μ

)
|u|2∗

μ−2u and Jμ(u) = mμ

}
= ∅ (see [9,

Lemma 1.3]). However, the case Jμ(u) = mμ and Iμ(u) = 0 means means u ∈ E , this is
impossible.

Theorem 1.9 Let u0(x) ∈ H1
0 (�), Jμ(u0) = mμ. Then,

(i) If Iμ(u0) > 0, then the problem (P) has a global weak solution u ∈ L∞(0, T ; H1
0 (�))

with ut ∈ L2(0, T ; L2(�)) and u(x, t) ∈ W̄ for 0 ≤ t < ∞. Moreover, there exists
α1, α2 > 0 such that

‖∇u(t)‖22 = O(e−α1t ), as t → ∞,

and

‖u(t)‖22 = O(e−α2t ), as t → ∞.

(i i) If Iμ(u0) < 0, then the solutions of problem (P) blows up in finite time. In particular,
there exists a T > 0 such that

lim
t→T−

∫ t

0
‖u‖22ds = +∞.

In view of above results, for the case Jμ(u0) ≤ mμ, whether or not the solution for
problem (P) exists globally is totally determined by the Nehari functional, and it is natural to
ask what will happen when Jμ(u0) > mμ. However, since the invariance of W and V under
the flow of (1.3) is invalid, potential well method can not be used for this case. To this end,
we now introduce the following sets as in [8], define

N+ = {u ∈ H1
0 (�) | Iμ(u) > 0} and N− = {u ∈ H1

0 (�) | Iμ(u) < 0},
and

Jdμ := {u ∈ H1
0 (�) | Jμ(u) < d}.

Furthermore, for all d > mμ, set

λd = inf{‖u‖22 | u ∈ Nd} and �d = sup{‖u‖22 | u ∈ Nd},
Next, we also introduce the following sets

B = {
u0 ∈ H1

0 (�) | the solution u = u(t) of (P) blows up in finite time
}
,

G = {
u0 ∈ H1

0 (�) | the solution u = u(t) of (P) exist for all t > 0
}
,

G0 = {
u0 ∈ G | u(t) → 0 in H1

0 (�) as t → ∞}
.

Then, we can characterize the sets B, G and G0, that is, to determine the global existence
and blow-up of the solution of (P) whose initial value u0 in H1

0 (�). Our main results for
Jμ(u0) > mμ are to show as follows.

Theorem 1.10 Assume that Jμ(u0) > mμ, then the following statements hold

(i) If u0 ∈ N+ and ‖u0‖2 ≤ λJ (u0), then u0 ∈ G0;
(ii) If u0 ∈ N− and ‖u0‖2 ≥ �J (u0), then u0 ∈ B.
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Theorem 1.11 For 0 < μ < min {4, N }. If u0 ∈ H1
0 (�) satisfies

‖u0‖22
∗
μ

2 ≥ 22∗
μ

2∗
μ − 1

(r�)μ|�|2∗
μ−2 Jμ(u0), (1.12)

where r� := diam(�) = supx,y∈� |x − y| < ∞. Then, u0 ∈ N− ∩ B.
Theorem 1.12 For any M > 0, there exists uM ∈ N− such that J (uM ) ≥ M and uM ∈ B.

Finially, we consider the asymptotic behavior of the global solutions, which is similar to
the Palais-Smale (PS for short) sequence of stationary equation.

Theorem 1.13 Let u(x, t; u0) be a global solution of the problem (P) and uniformly bounded
in H1

0 (�) with respect to t . Then, for any subsequence tn → ∞, there exists a stationary
solution w such that u(x, tn; u0) → w in H1

0 (�).

Theorem 1.14 Let u(x, t; u0) be a global solution of the problem (P). Then, its ω-limit
contains a stationary solution w.

The rest of this paper is organized as follows. In Sect. 2, we give some notations and
definitions, introduce potential well sets and prove local existence theorem of the problem
(P) in subsection of Sect. 2. Next, we will give global existence and blow up of the problem
(P) with lower energy initial value, critical energy initial value and high energy initial value
in Sects. 3, 4, 5 respectively. In Sect. 6, we prove Theorems 1.13 and 1.14.

2 Preliminaries

In this section, let us first give some definitions of the weak solution, maximal existence
time and finite time blow-up. And then we introduce some functions and notations. Final, we
give local existence result of solutions for problem (P). Throughout this paper, we denote
‖ · ‖Lq (�) by ‖ · ‖q for 1 ≤ q ≤ ∞ and C is a constant that can change from one line to
another.

2.1 Definitions

Definition 2.1 (Weak solution). We say that a function u = u(x, t) is a weak solution of
problem (P) in QT := � × (0, T ) if and only if

u ∈ L∞(0, T ; H1
0 (�)), ut ∈ L2(QT ) = L2(0, T ; L2(�)),

and satisfies problem (P) in the distribution sense, that is

(ut , φ) + (∇u,∇φ) =
((

|x |−μ ∗ |u|2∗
μ

)
|u|2∗

μ−2u, φ
)

, ∀φ ∈ H1
0 (�), t ∈ (0, T ), (2.1)

where u(x, 0) = u0(x) ∈ H1
0 (�) and (·, ·) denote the L2(�)-inner product.

Definition 2.2 (Maximal existence time). Let u(x, t) be a weak solution of problem (P). We
define the maximum existence time Tmax of u(x, t) as follows:

(i) if u(x, t) exists for all 0 ≤ t < ∞, then Tmax = ∞;
(ii) if there exists t∗ ∈ (0,∞) such that u(x, t) exists for all 0 ≤ t < t∗, but does not exist

at t = t∗, then Tmax = t∗.
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Definition 2.3 (Finite time blow-up). Let u(x, t) be a weak solution of problem (P). We say
u(x, t) blow-up in finite time if the maximal existence time Tmax is finite and

lim
t→T−

max

‖u(·, t)‖L2(�) = +∞.

Multiplying (P) by u and ut respectively and then integrating over �, we can get

d

dt

(
1

2

∫

�

u2dx

)

+
∫

�

|∇u|2dx =
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy (2.2)

and
∫

�

|ut |2dx = − d

dt

(
1

2

∫

�

|∇u|2dx
)

+ d

dt

(
1

22∗
μ

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

)

. (2.3)

Then, by (2.3), we have the following Lemma.

Lemma 2.4 (Energy identity). For 0 < T ≤ ∞ and let u(x, t) be a weak solution of problem
(P) on [0, T ) with initial value u0 ∈ H1

0 (�). Then, Jμ(u(t)) is non-increasing with respect
to t . More precisely,

∫ t

s
‖uτ‖22dτ + Jμ(u(t)) = Jμ(u(s)), (2.4)

for any 0 ≤ s ≤ t < T .

2.2 Introduction of PotentialWell

In this subsection, we shall introduce a class of potential wells for problem (P). Firstly, let
us give some properties of Jμ(u) and Iμ(u).

Lemma 2.5 Let u ∈ H1
0 (�)\{0}. Then,

(i) lims→0 Jμ(su) = 0 and lims→+∞ Jμ(su) = −∞;
(ii) there exists a unique s̄ = s(u) > 0 such that

d

ds
Jμ(su)|s=s̄ = 0; (2.5)

(iii) Jμ(su) is increasing on 0 ≤ s ≤ s̄, decreasing on s̄ ≤ s ≤ +∞ and takes the maximum
at s = s̄.

(iv) Iμ(su) > 0 for 0 < s < s̄, Iμ(su) < 0 for s̄ < s < +∞ and Iμ(s̄u) = 0.

Proof (i) By the definition of Jμ(u) in (1.2), we can get

Jμ(su) = 1

2

∫

�

|∇(su)|2dx − 1

22∗
μ

∫

�

∫

�

|su(x)|2∗
μ |su(y)|2∗

μ

|x − y|μ dxdy

= s2

2

∫

�

|∇u|2dx − s22
∗
μ

22∗
μ

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy, (2.6)

which implies that

lim
s→0

Jμ(su) = 0 and lim
s→+∞ Jμ(su) = −∞.

Consequently, the proof of (i) is complete.
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(i i) By (2.6), one can derive that

d

ds
Jμ(su) = s

(∫

�

|∇u|2dx − s22
∗
μ−2

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

)

. (2.7)

Therefore, there exist a unique

s̄ :=
⎛

⎝

∫

�
|∇u|2dx

∫

�

∫

�
|u(x)|2∗μ |u(y)|2∗μ

|x−y|μ dxdy

⎞

⎠

1/(22∗
μ−2)

such that (2.5) is true.
(i i i) By (2.7), we get d

ds Jμ(su) ≥ 0 on 0 ≤ s ≤ s̄ and d
ds Jμ(su) ≤ 0 on s̄ ≤ s ≤ +∞.

Hence, Jμ(su) is increasing on 0 ≤ s ≤ s̄, decreasing on s̄ ≤ s ≤ +∞ and takes the
maximum at s = s̄.

(iv) By the definition of Iμ(u) in (1.8) and (2.7), we have

Iμ(su) = s2
∫

�

|∇u|2dx − s22
∗
μ

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy = s
d

ds
Jμ(su).

Then, by (i i), the proof is complete. ��
Now, for 0 < δ < 2∗

μ, we define

Iμ,δ(u) := δ‖∇u‖22 −
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy, (2.8)

and

mμ(δ) := inf
u∈Nμ,δ

Jμ(u), (2.9)

where

Nμ,δ := {u ∈ H1
0 (�)\{0} | Iμ,δ(u) = 0}.

Then, as in [24], we define modified potential wells by

Wδ = {
u ∈ H1

0 (�) | Jμ(u) < mμ(δ), Iμ,δ(u) > 0
} ∪ {0} ,

and

Vδ = {
u ∈ H1

0 (�) | Jμ(u) < mμ(δ), Iμ,δ(u) < 0
}
.

Let

r(δ) :=
(

δS
2N−μ
N−2
H ,L

) N−2
N−μ+2

,

Then, we have the following results.

Lemma 2.6 Let u ∈ H1
0 (�)\{0}.

(i) If 0 < ‖∇u‖22 < r(δ), then Iμ,δ(u) > 0. In particular, if 0 < ‖∇u‖22 < r(1), then
Iμ(u) > 0.

(ii) If Iμ,δ(u) < 0, then ‖∇u‖22 > r(δ). In particular, if Iμ(u) < 0, then ‖∇u‖22 > r(1).
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(iii) If Iμ,δ(u) = 0, then ‖∇u‖22 ≥ r(δ) or ‖∇u‖22 = 0. In particular, if Iμ(u) = 0, then
‖∇u‖22 ≥ r(1) or ‖∇u‖22 = 0.

(iv) If Iμ,δ(u) = 0 and ‖∇u‖22 �= 0, then Jμ(u) > 0 for 0 < δ < 2∗
μ, Jμ(u) = 0 for δ = 2∗

μ,
Jμ(u) < 0 for δ > 2∗

μ.

Proof (i) By (2.8) and the Hardy–Littlewood–Sobolev inequality, we have

Iμ,δ(u) = δ‖∇u‖22 −
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

≥ ‖∇u‖22
(

δ − S
− 2N−μ

N−2
H ,L (‖∇u‖22)

N−μ+2
N−2

)

.

Hence, we have Iμ,δ(u) > 0, since 0 < ‖∇u‖22 < r(δ).
(i i) Since Iμ,δ(u) < 0, using (2.8) and the Hardy–Littlewood–Sobolev inequality again, we

can get

δ‖∇u‖22 <

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy ≤ S
− 2N−μ

N−2
H ,L (‖∇u‖22)

2N−μ
N−2 .

Hence, ‖∇u‖22 > r(δ).
(i i i) Obviously, if ‖∇u‖22 = 0, then Iμ,δ(u) = 0. So, we assume that Iμ,δ(u) = 0 and

‖∇u‖22 �= 0. By (2.8) and the Hardy–Littlewood–Sobolev inequality, one has

δ‖∇u‖22 =
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy ≤ S
− 2N−μ

N−2
H ,L (‖∇u‖22)

2N−μ
N−2

which implies that ‖∇u‖22 ≥ r(δ).
(iv) Since Iμ,δ(u) = 0 and ‖∇u‖22 �= 0, by (i i i) above,we have ‖∇u‖22 ≥ r(δ). Furthermore,

it follows from (1.2) that

Jμ(u) = 1

2

∫

�

|∇u|2dx − 1

22∗
μ

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

=
(
1

2
− δ

22∗
μ

)∫

�

|∇u|2dx ≥
(
1

2
− δ

22∗
μ

)

r(δ).

Consequently, the proof is complete. ��
Lemma 2.7 mμ(δ) defined in (2.9) satisfies

(i) mμ(δ) ≥ a(δ)r(δ) for 0 < δ < 2∗
μ, where a(δ) := 1

2 − δ
22∗

μ
;

(ii) limδ→0 mμ(δ) = 0, mμ(2∗
μ) = 0 and mμ(δ) < 0 for δ > 2∗

μ;
(iii) mμ(δ) is increasing on 0 < δ ≤ 1, decreasing in 1 < δ < 2∗

μ and takes the maximum
mμ(δ) = mμ(1) at δ = 1.

Proof (i) For any u ∈ Nμ,δ , we have Iμ,δ(u) = 0 and ‖∇u‖22 �= 0. It follows from Lemma
2.6 (i i i) that ‖∇u‖22 ≥ r(δ). Furthermore, we can deduce that

Jμ(u) = 1

2

∫

�

|∇u|2dx − 1

22∗
μ

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

=
(
1

2
− δ

22∗
μ

)∫

�

|∇u|2dx ≥
(
1

2
− δ

22∗
μ

)

r(δ).
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Therefore, mμ(δ) ≥ a(δ)r(δ), where a(δ) := 1
2 − δ

22∗
μ
.

(i i) Fix u ∈ H1
0 (�) and ‖∇u‖22 �= 0 and let s̃u ∈ Nμ,δ , i.e.

0 = Iμ,δ(s̃u) = δ‖∇(s̃u)‖22 −
∫

�

∫

�

|s̃u(x)|2∗
μ |s̃u(y)|2∗

μ

|x − y|μ dxdy.

Then, we can derive

s̃ := s(δ) =
⎛

⎝
δ‖∇u‖22

∫

�

∫

�
|u(x)|2∗μ |u(y)|2∗μ

|x−y|μ dxdy

⎞

⎠

1/(22∗
μ−2)

, (2.10)

and

lim
δ→0

s̃ = 0. (2.11)

Furthermore, by Lemma 2.5(i) and (2.11), we can get

lim
δ→0

Jμ(s̃u) = lim
s̃→0

Jμ(s̃u) = 0.

Hence,

lim
δ→0

mμ(δ) = 0.

Next, by Lemma 2.6 (iv), we can get mμ(2∗
μ) = 0 and mμ(δ) < 0 for δ > 2∗

μ.

(i i i) It is enough to prove that for any 0 < δ′ < δ′′ < 1 or 1 < δ′′ < δ′ < 2∗
μ and for

any u ∈ Nμ,δ′′ , there exist a v ∈ Nμ,δ′ and a constant c(δ′, δ′′) such that Jμ(v) <

Jμ(u)− c(δ′, δ′′). Indeed, for u ∈ Nμ,δ′′ , we define s(δ) as (2.10), then Iμ,δ(s(δ)u) = 0
and s(δ′′) = 1. Let h(s) = Jμ(su), we can get

d

ds
h(s) = s‖∇u‖22 − s22

∗
μ−1

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

= 1

s

(
(1 − δ)‖∇(su)‖22 + Iμ,δ(su)

)
.

Take v = s(δ′)u, then v ∈ Nμ,δ′ .
For 0 < δ′ < δ′′ < 1, we have

Jμ(u) − Jμ(v) = h(1) − h(s(δ′))
> (1 − δ′′)s(δ′)r(δ′′)(1 − s(δ′)) ≡ c(δ′, δ′′).

For 1 < δ′′ < δ′ < 2∗
μ, we have

Jμ(u) − Jμ(v) = h(1) − h(s(δ′))
> (δ′′ − 1)s(δ′′)r(δ′′)(s(δ′) − 1) ≡ c(δ′, δ′′)

Therefore, the proof of (i i i) is complete. ��
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2.3 Local Existence

In this subsection, we shall give local existence result in H1
0 (�) for problem (P) by applying

the method of [12, 14]. Denote A = −� with the Dirichlet null condition in L2(�), and
define the fractional powers Aα of A and the semigroup

{
et A
}

t≥0 generated by A as in [37].
Before state our main result, we introduce a lemma as follows.

Lemma 2.8 [12, Lemma 2.1]

(i) For each θ ≥ 0, there exist a positive constant C1(θ) such that

‖Aθe−t Au‖2 ≤ C1(θ)t−θe−λt‖u‖2
for all u ∈ L2(�) and t > 0.

(ii) For each 0 ≤ θ ≤ 1, there exist a positive constant C2(θ) such that

‖(e−t A − I )u‖2 ≤ C2(θ)tθ‖Aθu‖2
for all u ∈ D(Aθ ) and t > 0.

(iii) For each θ > 0 and u ∈ L2(�),

tθ‖Aθe−t Au‖2 → 0 as t → 0.

Proposition 2.9 Suppose that 0 < μ < min {N , 4}. For each u0 ∈ H1
0 (�), there exists a

T > 0 such that problem (P) has a unique solution u(t) ∈ C([0, T ]; H1
0 (�)) satisfying:

(i) u(t) ∈ C((0, T ]; D(Aα)) ∩ C((0, T ]; D(Aβ));

(ii) u(t) = e−t Au0 + ∫ t
0 e

−(t−s)A
[(

|x |−μ ∗ |u(s)|2∗
μ

)
|u(s)|2∗

μ−2u(s)
]
ds;

(iii) limt→0 tα− 1
2 ‖Aαu(t)‖2 = 0 and limt→0 tβ− 1

2 ‖Aβu(t)‖2 = 0.

Proof Note that

‖ f (u) − f (v)‖22 =
∫

�

∣
∣
∣

(
|x |−μ ∗ |u|2∗

μ

)
|u|2∗

μ−2u −
(
|x |−μ ∗ |v|2∗

μ

)
|v|2∗

μ−2v

∣
∣
∣
2
dx

≤
∫

�

∣
∣
∣

(
|x |−μ ∗ |u|2∗

μ

) (
|u|2∗

μ−2u − |v|2∗
μ−2v

)

+
(
|x |−μ ∗

(
|u|2∗

μ − |v|2∗
μ

))
|v|2∗

μ−2v

∣
∣
∣
2
dx

≤ 2(I1 + I2), (2.12)

where f (u) =
(
|x |−μ ∗ |u|2∗

μ

)
|u|2∗

μ−2u,

I1 :=
∫

�

∣
∣
∣

(
|x |−μ ∗ |u|2∗

μ

) (
|u|2∗

μ−2u − |v|2∗
μ−2v

)∣
∣
∣
2
dx,

and

I2 :=
∫

�

∣
∣
∣

(
|x |−μ ∗

(
|u|2∗

μ − |v|2∗
μ

))
|v|2∗

μ−2v

∣
∣
∣
2
dx .
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By the Hölder inequality, the Hardy–Littlewood–Sobolev inequality and the mean value
theorem, we have

I1 =
∫

�

∣
∣
∣

(
|x |−μ ∗ |u|2∗

μ

) (
|u|2∗

μ−2u − |v|2∗
μ−2v

)∣
∣
∣
2
dx

≤ C
∥
∥
∥|x |−μ ∗ |u|2∗

μ

∥
∥
∥
2

2q

(∫

�

∣
∣
∣|ξ |2∗

μ−2(u − v)

∣
∣
∣
2q ′

dx

)1/q ′

≤ C‖u‖22
∗
μ

2∗
μr

(∫

�

|ξ |2(2
∗
μ−2)q ′ 2∗μ−1

2∗μ−2 dx

) 2∗μ−2

(2∗μ−1)q′ (∫

�

|u − v|2q ′(2∗
μ−1)dx

) 1
(2∗μ−1)q′

≤ C‖u‖22
∗
μ

2∗
μr

(
‖u‖2(2∗

μ−1)q ′ + ‖v‖2(2∗
μ−1)q ′

)2(2∗
μ−2) ‖u − v‖22(2∗

μ−1)q ′ , (2.13)

where ξ(x) is a function between |u(x)| and |v(x)|, C are different constants from one line
to another, q, q ′ ∈ [1,+∞] are conjugate and r ∈ (1,+∞) satisfies

1

r
= 1

2q
+ N − μ

N
. (2.14)

Similarly, by the Hölder inequality, the Hardy–Littlewood–Sobolev inequality and the mean
value theorem, we also have

I2 =
∫

�

∣
∣
∣

(
|x |−μ ∗

(
|u|2∗

μ − |v|2∗
μ

))
|v|2∗

μ−2v

∣
∣
∣
2
dx

≤
(∫

�

∣
∣
∣|x |−μ ∗

(
|u|2∗

μ − |v|2∗
μ

)∣
∣
∣
2q

dx

)1/q (∫

�

∣
∣
∣|v|2∗

μ−2v

∣
∣
∣
2q′

dx

)1/q ′

≤ C

(∫

�

∣
∣
∣|ξ |2∗

μ−2ξ(u − v)

∣
∣
∣
r
dx

)2/r

‖v‖2(2
∗
μ−1)

2(2∗
μ−1)q ′

≤ C‖v‖2(2
∗
μ−1)

2(2∗
μ−1)q ′

(
‖u‖2∗

μr + ‖v‖2∗
μr

)2(2∗
μ−1) ‖u − v‖22∗

μr
, (2.15)

where q, q ′ and r were defined as above and C are different constants from one line to
another. Hence, it follows from (2.12)–(2.13) and (2.15) that

‖ f (u) − f (v)‖2 ≤ C‖u‖2
∗
μ

2∗
μr

(
‖u‖2(2∗

μ−1)q ′ + ‖v‖2(2∗
μ−1)q ′

)2∗
μ−2 ‖u − v‖2(2∗

μ−1)q ′

+C‖v‖2
∗
μ−1

2(2∗
μ−1)q ′

(
‖u‖2∗

μr + ‖v‖2∗
μr

)2∗
μ−1 ‖u − v‖2∗

μr . (2.16)

Let

α := 1

2
+ N − 2

2θ
and β := 2θ−1(2N − μ) − (N − 2)(2N − μ)

2θ (N − μ + 2)
,

where θ > 0 large enough such that α > 1
2 and close to 1

2 . Clearly, α, β ∈ ( 12 , 1) provided
that N > 2 and 0 < μ < min {N , 4}. And taking

q = 2θ−2N

2θ−2μ − (2N − μ)
, q ′ = 2θ−2N

2θ−2(N − μ) + (2N − μ)
, r = 2N

2N − μ

2θ−2

2θ−2 − 1
.

Obviously, q, q ′ ∈ [1,+∞] are conjugate and r ∈ (1,+∞) satisfies (2.14).
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Since 2∗
μr = 2N

N−4α and 2(2∗
μ − 1)q ′ = 2N

N−4β , it follows from the Sobolev imbedding
theorem (see [11]) that

‖u‖2∗
μr ≤ C‖Aαu‖2, for all u ∈ D(Aα) (2.17)

and

‖u‖2(2∗
μ−1)q ′ ≤ C‖Aβu‖2, for all u ∈ D(Aβ). (2.18)

Hence, by (2.16)–(2.18), we can derive that

‖ f (u) − f (v)‖2 ≤ Ĉ‖Aαu‖2
∗
μ

2

(‖Aβu‖2 + ‖Aβv‖2
)2∗

μ−2 ‖Aβ(u − v)‖2
+C̄‖Aβv‖2

∗
μ−1

2

(‖Aαu‖2 + ‖Aαv‖2
)2∗

μ−1 ‖Aα(u − v)‖2. (2.19)

Next, we apply the contraction mapping argument in the set

YT ,K := {
u ∈ BC((0, T ]; D(Aα) ∩ D(Aβ)) ,

max

{

sup
t∈(0,T ]

tα− 1
2 ‖Aαu(t)‖2, sup

t∈(0,T ]
tβ− 1

2 ‖Aβu(t)‖2
}

≤ K

}

endowed with the norm

‖|u‖|YT ,K := max

{

sup
t∈(0,T ]

tα− 1
2 ‖Aαu(t)‖2, sup

t∈(0,T ]
tβ− 1

2 ‖Aβu(t)‖2
}

,

(YT ,K , ‖|u‖|YT ,K ) is a Banach space.
Given u ∈ YT ,K , we set

�[u](t) := e−t Au0 +
∫ t

0
e−(t−s)A f (u(s))ds. (2.20)

We shall show that �[u] is a strict contraction map on YT ,K . By (2.20), we have

‖Aγ �[u](t)‖2 ≤ ‖Aγ e−t Au0‖2 +
∫ t

0
‖Aγ e−(t−s)A f (u(s))‖2ds. (2.21)

By Lemma 2.8 and (2.19) with v = 0, we can estimate as follows
∫ t

0
‖Aγ e−(t−s)A f (u(s))‖2ds ≤ C1(γ )

∫ t

0
(t − s)−γ e−λ(t−s)‖ f (u(s))‖2ds

≤ C1

∫ t

0
(t − s)−γ ‖Aαu(s)‖2

∗
μ

2 ‖Aβu(s)‖2
∗
μ−1

2 ds

≤ C1

∫ t

0
(t − s)−γ s−(2∗

μ−1)(β− 1
2 )−2∗

μ(α− 1
2 )‖|u(s)‖|22

∗
μ−1

YT ,K
ds

≤ C2t
1−γ−(2∗

μ−1)(β− 1
2 )−2∗

μ(α− 1
2 )K 22∗

μ−1, (2.22)

where γ ∈ (0, 1) and Ci > 0(i = 1, 2) are some constants.
By (2.21)–(2.22) with γ = α and γ = β respectively, we can derive that

‖Aα�[u](t)‖2 ≤ ‖Aαe−t Au0‖2 + C2t
1−α−(2∗

μ−1)(β− 1
2 )−2∗

μ(α− 1
2 )K 22∗

μ−1 (2.23)

and

‖Aβ�[u](t)‖2 ≤ ‖Aβe−t Au0‖2 + C2t
1−β−(2∗

μ−1)(β− 1
2 )−2∗

μ(α− 1
2 )K 22∗

μ−1. (2.24)
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Hence, by (2.23) and (2.24), one has

‖|�[u]‖|YT ,K ≤ max

{

sup
t∈(0,T ]

tα− 1
2 [‖Aαe−t Au0‖2+C2t

1−α−(2∗
μ−1)(β− 1

2 )−2∗
μ(α− 1

2 )K 22∗
μ−1],

sup
t∈(0,T ]

tβ− 1
2 [‖Aβe−t Au0‖2 + C2t

1−β−(2∗
μ−1)(β− 1

2 )−2∗
μ(α− 1

2 )K 22∗
μ−1]

}

≤ max

{

sup
t∈(0,T ]

[tα− 1
2 ‖Aαe−t Au0‖2, sup

t∈(0,T ]
[tβ− 1

2 ‖Aβe−t Au0‖2
}

+ C3t
1
2−(2∗

μ−1)(β− 1
2 )−2∗

μ(α− 1
2 )K 22∗

μ−1. (2.25)

Note that

1

2
− (2∗

μ − 1)

(

β − 1

2

)

− 2∗
μ

(

α − 1

2

)

= 0,

then, we can derive that ‖|�[u]‖|YT ,K ≤ K provided that

C2K
22∗

μ−1 < K (2.26)

and

max

{

sup
t∈(0,T ]

tα− 1
2 ‖Aαe−t Au0‖2, sup

t∈(0,T ]
tβ− 1

2 ‖Aβe−t Au0‖2
}

≤ K − C2K
22∗

μ−1, (2.27)

which implies that � maps YT ,K into itself.
Next, we show that the mapping � : YT ,K → YT ,K is a strictly contraction. For any

u, v ∈ YT ,K , it follows from (2.19) and Lemma 2.8 that

‖Aγ �[u](t) − Aγ �[v](t)‖2
≤
∫ t

0
‖Aγ e−(t−s)A( f (u(s)) − f (v(s)))‖2ds

≤ C1(γ )

∫ t

0
(t − s)−γ e−λ(t−s)‖( f (u(s)) − f (v(s)))‖2ds

≤ C2

∫ t

0
(t − s)−γ

[
C‖Aαu‖2

∗
μ

2

(‖Aβu‖2 + ‖Aβv‖2
)2∗

μ−2 ‖Aβ(u − v)‖2

+C‖Aβv‖2
∗
μ−1

2

(‖Aαu‖2 + ‖Aαv‖2
)2∗

μ−1 ‖Aα(u − v)‖2
]
ds

≤ C3

∫ t

0
(t − s)−γ s−(2∗

μ−1)(β− 1
2 )−2∗

μ(α− 1
2 )‖|u‖|2

∗
μ

YK ,T

(‖|u‖|YK ,T + ‖|v‖|YK ,T )2
∗
μ−2‖|u − v‖|YK ,T ds

+ C3

∫ t

0
(t − s)−γ s−(2∗

μ−1)(β− 1
2 )−2∗

μ(α− 1
2 )‖|u‖|2

∗
μ−1
YK ,T

(‖|u‖|YK ,T + ‖|v‖|YK ,T )2
∗
μ−1‖|u − v‖|YK ,T ds

≤ C4t
1−γ−(2∗

μ−1)(β− 1
2 )−2∗

μ(α− 1
2 )(2K )2(2

∗
μ−1)‖|u − v‖|YK ,T .
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Furthermore, we have

‖|�[u](t) − �[v](t)‖|YK ,T

≤ max
{
tα− 1

2C4t
1−α−(2∗

μ−1)(β− 1
2 )−2∗

μ(α− 1
2 )(2K )2(2

∗
μ−1)‖|u − v‖|YK ,T

tβ− 1
2C4t

1−β−(2∗
μ−1)(β− 1

2 )−2∗
μ(α− 1

2 )(2K )2(2
∗
μ−1)‖|u − v‖|YK ,T

}

≤ C5t
1
2−(2∗

μ−1)(β− 1
2 )−2∗

μ(α− 1
2 )(2K )2(2

∗
μ−1)‖|u − v‖|YK ,T .

Note that

1

2
− (2∗

μ − 1)

(

β − 1

2

)

− 2∗
μ

(

α − 1

2

)

= 0,

so, we obtain that

‖|�[u](t) − �[v](t)‖|YK ,T ≤ C5(2K )2(2
∗
μ−2)‖|u − v‖|YK ,T ≤ 1

2
‖|u − v‖|YK ,T , (2.28)

provided that

C5(2K )2(2
∗
μ−2) ≤ 1

2
, (2.29)

which implies that � : YK ,T → YK ,T is a strictly contraction mapping.
Now, we prove that there exists K , T > 0 such that (2.26)–(2.27) and (2.29) hold. Indeed,

by taking K > 0 small enough, we can derive that (2.26) and (2.29) hold. By Lemma 2.5(i i i),
since α, β ∈ ( 12 , 1), one has

tα− 1
2 ‖Aαe−t Au‖2 = tα− 1

2 ‖Aα− 1
2 e−t A A

1
2 u‖2 → 0

and

tβ− 1
2 ‖Aβe−t Au‖2 = tβ− 1

2 ‖Aβ− 1
2 e−t A A

1
2 u‖2 → 0

for u ∈ D(A
1
2 ) as t → 0. Hence, we can get there exists T > 0 small such that (2.27) holds.

Therefore, by applyingBanach’s fixed point theorem,we can show that there exist a unique
fixed point u in YK ,T and u is a mild solution of (2.20). The remainder of proof is similar to
[12, 14], so we omit it here. ��

At the end of this section, we introduce a lemma (see [20]), which plays an important role
in the proof of blow-up.

Lemma 2.10 Suppose that 0 < T ≤ ∞ and a non-negative function f (t) ∈ C2[0, T )

satisfying

f ′′ f (t) − (1 + α)( f ′(t))2 ≥ 0

for some α > 0. If f (0) > 0 and f ′(0) > 0, then

T ≤ f (0)

α f ′(0)
< +∞,

and f (t) → +∞ as t → T .
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3 Lower Energy Initial Value

In this section, we establish the global existence and finite time blow-up of solution with
lower energy initial value. Moreover, we derive the regularity and decay estimate of global
solutions and an upper bound of blow-up time for Jμ(u0) < 0.

3.1 Global Existence and Blow-up of Solution

In this subsection, we give the global existence and finite time blow-up of solutions.

Proof of Theorem 1.4 From Proposition 2.9, we can derive the local existence result for prob-
lem (P) in a more general case of initial value u0 ∈ H1

0 (�) and u ∈ C([0, T ]; H1
0 (�)).

Now, we need to prove that u(t) satisfies Jμ(u(t)) < mμ and Iμ(u(t)) > 0 for any t > 0.
On the contrary, from continuity about time, there exist t0 such that u(x, t0) ∈ ∂W , that is
Jμ(u(t0)) = mμ or Iμ(u(t0)) = 0,

∫

�
|∇u(t0)|2dx �= 0. From (2.4), we easily know that

Jμ(u(t0)) �= mμ. If Iμ(u(t0)) = 0,
∫

�
|∇u(t0)|2dx �= 0, by Remark 1.3, we know that

Jμ(u(t0)) ≥ mμ, a contradiction. Therefore, u(t) satisfies Iμ(u(t)) > 0 for any t > 0.
Furthermore, we have

Iμ(u) =
∫

�

|∇u|2dx −
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy > 0. (3.1)

Furthermore, by (2.4) and (3.1), we have
∫ t

0
‖us‖22ds + N − μ + 2

2(2N − μ)
‖∇u‖22 < mμ = N − μ + 2

2(2N − μ)
S

2N−μ
N−μ+2
H ,L .

Therefore, for any T > 0,

‖∇u‖22 < S
2N−μ
N−μ+2
H ,L

and

‖u′(s)‖L2(0,T ;L2(�)) <
N − μ + 2

2(2N − μ)
S

2N−μ
N−μ+2
H ,L ,

hold, which implies that u(x, t) is a global solution of problem (P).
Next, we employ the classical concavity method to prove finite time blow-up for problem

(P) with Jμ(u0) < mμ. The idea was inspired by Levine and Payne [22, 23] and Levine
[19], by constructing an auxiliary function. Here, we need the following lemma.

Lemma 3.1 Let u(x, t) is the solution for problem (P) with u0 ∈ V satisfies Jμ(u0) > 0.
Then, there exist ρ > 0 such that

∫

�

∫

�

|u(x, t)|2∗
μ |u(y, t)|2∗

μ

|x − y|μ dxdy ≥ (1 + ρ)

∫

�

|∇u(x, t)|2dx, (3.2)

for t ∈ [0,∞).

Proof Since u0 ∈ V , we have u(x, t) ∈ V for all t > 0. Indeed, on the contrary, from
continuity about time, there exist t0 such that u(x, t0) ∈ ∂V , that is Jμ(u(t0)) = mμ or
Iμ(u(t0)) = 0,

∫

�
|∇u(t0)|2dx �= 0. From (2.4), we easily know that Jμ(u(t0)) �= mμ.

If Iμ(u(t0)) = 0,
∫

�
|∇u(t0)|2dx �= 0, by Remark 1.3, we know that Jμ(u(t0)) ≥ mμ,
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a contradiction. Furthermore, we have Iμ(u) < 0. Therefore, by (1.7) and the Hardy–
Littlewood–Sobolev inequality, we have

22∗
μ

2∗
μ − 1

mμ = S
2N−μ
N−μ+2
H ,L ≤

⎛

⎜
⎜
⎜
⎜
⎝

∫

�
|∇u|2dx

(
∫

�

∫

�
|u(x)|2∗μ |u(y)|2∗μ

|x−y|μ dxdy

) N−2
2N−μ

⎞

⎟
⎟
⎟
⎟
⎠

2N−μ
N−μ+2

≤
∫

�

|∇u|2dx . (3.3)

Let

ρ0 := 1 − Jμ(u0)

mμ

,

we have ρ0 > 0 since Jμ(u0) < mμ. Furthermore, by (1.2), (1.3) and (1.8), we have

Iμ(u) = −(2∗
μ − 1)

∫

�

|∇u|2dx + 22∗
μ Jμ(u)

≤ −(2∗
μ − 1)

∫

�

|∇u|2dx + 22∗
μ Jμ(u0)

= −(2∗
μ − 1)

∫

�

|∇u|2dx + 22∗
μ(1 − ρ0)mμ. (3.4)

Next, we claim that

(2∗
μ − 1)

∫

�

|∇u|2dx − 22∗
μ(1 − ρ0)mμ ≥ ρ

∫

�

|∇u|2dx . (3.5)

where ρ := (2∗
μ−1)ρ0
2 . Indeed, since, ρ := (2∗

μ−1)ρ0
2 , we have

(2∗
μ − 1)

∫

�

|∇u|2dx − 22∗
μ(1 − ρ0)mμ − ρ

∫

�

|∇u|2dx .

= (2∗
μ − 1 − ρ)

∫

�

|∇u|2dx − 22∗
μ(1 − ρ0)mμ

≥ [2∗
μ − 1 − ρ − (2∗

μ − 1)(1 − ρ0)]
∫

�

|∇u|2dx ≥ 0

Therefore, the claim is hold.
Next, by (3.4) and (3.5), we have

−Iμ(u) ≥ ρ

∫

�

|∇u|2dx,

which implies that (3.2) is true. Consequently, the proof is complete. ��
Proof of Theorem 1.5 (Part of finite time blow-up). We shall complete the proof by

considering two separate cases.

(i) For the case Jμ(u0) ≤ 0. Suppose that there existence a global weak solution u(t), i.e.
Tmax = +∞, and we define a auxiliary function

f (t) =
∫ t

0

∫

�

u(s)2dxds. (3.6)
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By (2.2), we can derive

f ′(t) =
∫

�

|u(t)|2dx

=
∫

�

u20dx + 2
∫ t

0

(

−
∫

�

|∇u|2dx +
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

)

ds, (3.7)

and

f ′′(t) = −2

(∫

�

|∇u|2dx −
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

)

= −2Iμ(u). (3.8)

Furthermore, it follows from (2.4) and (3.8) that

f ′′(t) = −2
∫

�

|∇u|2dx + 2
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

= 2
(
2∗
μ − 1

)
∫

�

|∇u|2dx − 42∗
μ Jμ(u0) + 42∗

μ

∫ t

0

∫

�

|us |2dxds. (3.9)

Since Jμ(u0) ≤ 0, we can know that

2
(
2∗
μ − 1

)
∫

�

|∇u|2dx − 42∗
μ Jμ(u0) > 0. (3.10)

Furthermore, if Tmax = +∞, by (3.9) and (3.10), we can derive that

lim
t→∞ f ′(t) = ∞ and lim

t→∞ f (t) = ∞.

We also have

f ′′(t) ≥ 42∗
μ

∫ t

0

∫

�

|us |2dxds. (3.11)

By (3.6) and (3.11), making use of the Schwartz inequality, we have

f (t) f ′′(t) ≥ 42∗
μ

(∫ t

0

∫

�

u(s)2dxds

)(∫ t

0

∫

�

|us(s)|2dxds
)

≥ 42∗
μ

(∫ t

0

∫

�

uusdxds

)2

= 42∗
μ

∫ t

0

∫

�

(

−
∫

�

|∇u|2dx +
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

)

dxdt

= 42∗
μ

(
f ′(t) − f ′(0)

)2
. (3.12)

So by (3.12), as t → ∞, there exist α > 0 such that

f (t) f ′′(t) ≥ (1 + α)
(
f ′(t)

)2
. (3.13)

Then, by Lemma 2.10, there exists a T > 0 such that limt→T− f (t) = +∞, which
contradicts Tmax = +∞.

(i i) For the case 0 < Jμ(u0) < mμ. Similar to case (i), suppose that there existence a global
weak solution u(t), i.e. Tmax=∞ and let

f (t) =
∫ t

0

∫

�

|u(s)|2dxds.
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By Lemma 3.1, there exist ρ > 0 such that

∫

�

∫

�

|u(x, t)|2∗
μ |u(y, t)|2∗

μ

|x − y|μ dxdy ≥ (1 + ρ)

∫

�

|∇u(x, t)|2dx . (3.14)

for t ∈ [0,∞). Hence, by (3.8) and (3.14), we have

f ′′(t) = −2

(∫

�

|∇u|2dx −
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

)

≥ 2ρ
∫

�

|∇u|2dx . (3.15)

If Tmax = ∞, by (3.15), we can derive that

lim
t→∞ f ′(t) = ∞ and lim

t→∞ f (t) = ∞. (3.16)

Next, similar to (3.9), we also have

f ′′(t) ≥ 2
(
2∗
μ − 1

)
∫

�

|∇u|2dx − 42∗
μ Jμ(u0) + 42∗

μ

∫ t

0

∫

�

|us |2dxds. (3.17)

By Lemma 3.1, we have
∫

�
|∇u|2dx <

∫

�

∫

�
|u(x)|2∗μ |u(y)|2∗μ

|x−y|μ dxdy and since Jμ(u0) <

mμ, then, we can derive

2
(
2∗
μ − 1

)
∫

�

|∇u|2dx − 42∗
μ Jμ(u0)

≥ 2
(
2∗
μ − 1

)
∫

�

|∇u|2dx − 2
(
2∗
μ − 1

)
S

2N−μ
N−μ+2
H ,L

> 2
(
2∗
μ − 1

)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫

�

|∇u|2dx −

⎛

⎜
⎜
⎜
⎜
⎝

∫

�
|∇u|2dx

(
∫

�

∫

�
|u(x)|2∗μ |u(y)|2∗μ

|x−y|μ dxdy

) N−2
2N−μ

⎞

⎟
⎟
⎟
⎟
⎠

2N−μ
N−μ+2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≥ 0.

(3.18)

Hence, by (3.17) and (3.18), one has

f ′′(t) ≥ 22∗
μ

∫ t

t0

∫

�

|us |2dxds.

Similar to (3.12), using the Schwartz inequality, we have

f (t) f ′′(t) ≥ 2∗
μ

(
f ′(t) − f ′(0)

)2
. (3.19)

Therefore, we can derive a contraction as Jμ(u0) ≤ 0. We complete the proof.

Remark 3.2 In Theorem 1.5, we can prove a more general result that if there exists t0 such
that u(t0) satisfies Jμ(u(t0)) ≤ 0 or 0 < Jμ(u(t0)) ≤ mμ and Iμ(u(t0)) > 0, then, the weak
solution u(x, t) of problem (P) blow-up in finite time. In fact, we only need to substitute
initial time t = t0 for t = 0 in above proof.

123



Journal of Dynamics and Differential Equations

Next, we give a different proof of Theorem 1.5, by using a modified potential well. Firstly,
we give the following lemmas.

Lemma 3.3 Assume that u ∈ H1
0 (�) satisfying 0 < Jμ(u) < mμ. Then, the sign of Iμ,δ(u)

does not change for δ1 < δ < δ2, where δ1 < 1 < δ2 be the two roots of mμ(δ) = Jμ(u).

Proof Obviously, Jμ(u) > 0 implies that ‖∇u‖22 �= 0. On the contrary, if the sign of Iμ,δ(u)

is changeable for δ1 < δ < δ2, then there exist a δ̄ ∈ (δ1, δ2) such that Iμ,δ̄(u) = 0.

Therefore, we can get Jμ(u) ≥ mμ(δ̄). On the other hand, by Lemma 2.7(i i i), we have
Jμ(u) = mμ(δ1) = mμ(δ2) < mμ(δ̄), a contradiction. ��

Proposition 3.4 Assume that u ∈ H1
0 (�) and 0 < σ < mμ. Let δ1 and δ2 with δ1 < δ2 be

the two roots of mμ(δ) = σ . Then

(i) If Iμ(u0) > 0, then, all weak solutions u(x, t) of the problem (P) with 0 < Jμ(u0) ≤ σ

belongs to Wδ for δ1 < δ < δ2, 0 ≤ t < T ;
(ii) If Iμ(u0) < 0, then, all weak solutions u(x, t) of the problem (P) with 0 < Jμ(u0) ≤ σ

belongs to Vδ for δ1 < δ < δ2, 0 ≤ t < T .

Proof (i) Let u(x, t) be any weak solution of problem (P) with Iμ(u0) > 0 and 0 <

Jμ(u0) ≤ σ < mμ. It follows from Lemma 2.7(i i i) that δ1 < 1 < δ2. Furthermore, by
Lemma 3.3 and Iμ(u0) > 0, we can get Iμ,δ(u0) > 0 for δ1 < δ < δ2. Hence, u0 ∈ Wδ

for all δ1 < δ < δ2. Next, we prove u(t) ∈ Wδ for all δ1 < δ < δ2 and 0 < t < T .
Otherwise, there exist a t∗∗ ∈ (0, T ) and a δ∗ ∈ (δ1, δ2) such that u(t∗∗) ∈ ∂Wδ∗ .
Thus, either Iμ,δ∗(u(t∗∗)) = 0, ‖∇u(t∗∗)‖2 �= 0 or Jμ(u(t∗∗)) = mμ(δ∗). From (2.4), it
follows that
∫ t

0

∫

�

|us |2dxds + Jμ(u(t)) = Jμ(u0) < mμ(δ), δ1 < δ < δ2, 0 < t < T , (3.20)

which implies that Jμ(u(t∗∗)) �= mμ(δ∗). If Iμ,δ∗(u(t∗∗)) = 0, ‖∇u(t∗∗)‖2 �= 0, then
by the definition of mμ(δ), we have Jμ(u(t∗∗)) ≥ mμ(δ∗), which contradicts (3.20).

(i i) Let u(x, t) be any weak solution of the problem (P) with Iμ(u0) < 0 and 0 < Jμ(u0) ≤
σ < mμ. Similar to the argument of the proof of (i), by Lemma 2.7(i i i), Lemma 3.3
and Iμ(u0) < 0, we can get Iμ,δ(u0) < 0 for δ1 < δ < δ2. Hence, u0 ∈ Vδ for all
δ1 < δ < δ2. Next, we prove u(t) ∈ Vδ for all δ1 < δ < δ2 and 0 < t < T . Otherwise,
there exist a t∗∗ ∈ (0, T ) and a δ∗ ∈ (δ1, δ2) such that u(t∗∗) ∈ ∂Vδ∗ . Thus, either
Iμ,δ∗(u(t∗∗)) = 0 or Jμ(u(t∗∗)) = mμ(δ∗). By (3.20), we can get Jμ(u(t∗∗)) �= mμ(δ∗),
hence Iμ,δ∗(u(t∗∗)) = 0. We assume that t∗∗ is the first time such that Iμ,δ∗(u(t)) = 0,
then Iμ,δ∗(u(t)) < 0 for 0 ≤ t < t∗∗. By Lemma 2.6 (i i), we have ‖∇u‖22 > r(δ∗) for
0 ≤ t < t∗∗. Hence, ‖∇u(t∗∗)‖22 > r(δ∗), which implies that u(t∗∗) ∈ Nδ∗ provided that
Iμ,δ∗(ut∗∗) = 0. By the definition of mμ(δ∗), we can also obtain Jμ(u(t∗∗)) ≥ mμ(δ∗),
a contradiction to (3.20). Consequently, the proof is complete. ��

Proof of Theorem 1.5 Suppose that there existence a global weak solution u(t), i.e. Tmax =
+∞, we define a auxiliary function

f (t) =
∫ t

0

∫

�

|u(s)|2dxds. (3.21)
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By (2.2) and (3.21), we have

f ′(t) =
∫

�

|u(t)|2dx

=
∫

�

u20dx + 2
∫ t

0

(

−
∫

�

|∇u|2dx +
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

)

ds, (3.22)

and

f ′′(t) = −2

(∫

�

|∇u|2dx −
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

)

= −2Iμ(u). (3.23)

By (2.4) and (3.23), we have

f ′′(t) ≥ 2
(
2∗
μ − 1

)
∫

�

|∇u|2dx − 42∗
μ Jμ(u0) + 42∗

μ

∫ t

0

∫

�

|us |2dxds

≥ 2
(
2∗
μ − 1

)
λ1 f

′(t) − 42∗
μ Jμ(u0) + 42∗

μ

∫ t

0

∫

�

|us |2dxds, (3.24)

where λ1 is the first eigenvalue of problem �ϕ + λϕ = 0, ϕ|∂� = 0.
Note that

(∫ t

0

∫

�

usudxds

)2

=
(
1

2

∫ t

0

d

ds

∫

�

|u|2dxds
)2

= 1

4

((∫

�

|u|2dx
)2

− 2
∫

�

|u|2dx
∫

�

|u0|2dx +
(∫

�

|u0|2dx
)2
)

= 1

4

((
f ′(t)

)2 − 2 f ′(t)‖u0‖22 + ‖u0‖42
)

then, we can get

(
f ′(t)

)2 = 4

(∫ t

0

∫

�

usudxds

)2

+ 2 f ′(t)‖u0‖22 − ‖u0‖42. (3.25)

Furthermore, by (3.24)–(3.25), and making use of the Schwartz inequality, we have

f ′′(t) f (t) − 2∗
μ

(
f ′(t)

)2

≥ 42∗
μ

(∫ t

0

∫

�

|us |2dxds
∫ t

0

∫

�

u(s)2dxds −
(∫ t

0

∫

�

usudxds

)2
)

+2
(
2∗
μ − 1

)
λ1 f

′(t) f (t) − 22∗
μ f ′(t)‖u0‖22 − 42∗

μ Jμ(u0) f (t)

≥ 2
(
2∗
μ − 1

)
λ1 f

′(t) f (t) − 22∗
μ f ′(t)‖u0‖22 − 42∗

μ Jμ(u0) f (t). (3.26)

In the following we shall complete the proof by considering two separate cases.

(i) If Jμ(u0) ≤ 0, then

f ′′(t) f (t) − 2∗
μ

(
f ′(t)

)2 ≥ 2
(
2∗
μ − 1

)
λ1 f

′(t) f (t) − 22∗
μ f ′(t)‖u0‖22, (3.27)

for all t > 0. Now, we claim that Iμ(u) < 0 for all t > 0. Otherwise, there exist t0 > 0
such that Iμ(u(t0)) = 0 and Iμ(u(t)) < 0 for 0 ≤ t < t0. Then, by Remark 1.3, we
have Jμ(u(t0)) ≥ mμ, which contradicts (2.4). Hence, by (3.23), we can get f ′′(t) > 0
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for t ≥ 0. And since f ′(0) = ∫

�
|u0|2dx ≥ 0, then there exists a t0 ≥ 0 such that

f ′(t0) > 0. For t ≥ t0, we derive that

f (t) ≥ f ′(t0)(t − t0) > f ′(0)(t − t0).

Therefore, for t large enough, we can get
(
2∗
μ − 1

)
λ1 f (t) > 2∗

μ‖u0‖22.
Furthermore, by (3.27), we have

f ′′(t) f (t) − 2∗
μ

(
f ′(t)

)2
> 0.

(i i) If 0 < Jμ(u0) < mμ, then it follows from Proposition 3.4 that u(t) ∈ Vδ for 1 < δ < δ2
and t ≥ 0, where δ2 is the large root of mμ(δ) = Jμ(u0). Hence, Iμ,δ(u) < 0 for
1 < δ < δ2 and t ≥ 0. Furthermore, by Lemma 2.6 (i i), we have ‖∇u‖22 > r(δ) for
1 < δ < δ2 and t ≥ 0. Hence, Iμ,δ2(u) ≤ 0 and ‖∇u‖22 ≥ r(δ2) for t ≥ 0.
By (3.23), we can get

f ′′(t) = −2Iμ(u) = 2(δ2 − 1)‖∇u‖22 − 2Iμ,δ2(u)

≥ 2(δ2 − 1)r(δ2), t ≥ 0.

Furthermore, we have

f ′(t) ≥ (δ2 − 1)r(δ2)t + f ′(0) ≥ (δ2 − 1)r(δ2)t, t ≥ 0,

and

f (t) ≥ 1

2
(δ2 − 1)r(δ2)t

2, t ≥ 0.

Therefore, for t large enough, we deduce that

(2∗
μ − 1)λ1 f (t) > 22∗

μ‖u0‖22 and (2∗
μ − 1)λ1 f

′(t) > 42∗
μ J (u0).

Then, from (3.26) it follows that

f ′′(t) f (t) − 2∗
μ

(
f ′(t)

)2 ≥ 2
(
2∗
μ − 1

)
λ1 f

′(t) f (t) − 22∗
μ f ′(t)‖u0‖22

−42∗
μ Jμ(u0) f (t)

= (
(2∗

μ − 1)λ1 f (t) − 22∗
μ‖u0‖22

)
f ′(t)

+ ((2∗
μ − 1)λ1 f (t) − 42∗

μ J (u0)
)
f (t)

> 0.

Then, by Lemma 2.10, there exists a T > 0 such that limt→T− f (t) = +∞, which
contradicts Tmax = +∞.

Proof of Theorem 1.5 (Upper bound estimate of blow-up time). Next, we prove an
upper bound for blow-up of Jμ(u0) < 0. Define g(t) = ∫

�
|u|2dx , by (2.2), we have

g′(t) = 2
∫

�

uutdx = −2
∫

�

|∇u|2dx + 2
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

≥ −22∗
μ

∫

�

|∇u|2dx + 2
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

= h(t), (3.28)
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where

h(t) := −22∗
μ

∫

�

|∇u|2dx + 2
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy = −42∗
μ Jμ(u).

By (2.3) and standard computation, we have

h′(t) = −42∗
μ

∫

�

∇u∇utdx + 42∗
μ

∫

�

∫

�

|u(y)|2∗
μ

|x − y|μ |u(x)|2∗
μ−2u(x)utdxdy

= 42∗
μ

∫

�

|ut |2dx > 0, (3.29)

which implies that h(t) ≥ h(0) = −42∗
μ Jμ(u0) > 0 for all t ≥ 0 provided that Jμ(u0) < 0.

Next, by (3.28) and Schwarz’s inequality, we obtain

g(t)h′(t) = 42∗
μ

∫

�

|ut |2dx
∫

�

|u|2dx

≥ 42∗
μ

(∫

�

uut

)2

= 2∗
μ(g′(t))2 ≥ 2∗

μg
′(t)h(t). (3.30)

Integrating (3.30) from 0 to t and by (3.28), we have

g′(t)
(g(t))2

∗
μ

≥ h(0)

(g(0))2
∗
μ

= −42∗
μ Jμ(u0)

‖u0‖22
∗
μ

2

.

Integrating from 0 to t again, we can derive

1

(g(t))2
∗
μ−1 ≤ 1

(g(0))2
∗
μ−1 − (2∗

μ − 1)
−42∗

μ Jμ(u0)

‖u0‖22
∗
μ

2

t .

Then, let t tends to T , one has

T <
‖u0‖22

−42∗
μ(2∗

μ − 1)Jμ(u0)
.

Consequently, the proof is complete.
Next, by (1.9) and the Poincaré inequality λ1‖u‖22 ≤ ‖∇u‖22, we further have the following

corollary.

Corollary 3.5 Under the conditions of Theorem 1.5, we also have

lim
t→T− ‖∇u(t)‖2 = +∞.

3.2 Decay Estimate of Global Solutions

In this section, we prove decay rate of the H1
0 and L2 norm of the global solutions for problem

(P). Firstly, we give the following lemma.

Lemma 3.6 Let u(x, t) is the solution for problem (P) with u0 ∈ H1
0 (�) satisfies Jμ(u0) <

mμ and Iμ(u0) > 0. Then
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy ≤ (1 − κ)

∫

�

|∇u|2dx, (3.31)

for t ∈ [0,∞), where κ ∈ (0, 1).
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Proof Since u0 ∈ H1
0 (�) satisfies Jμ(u0) < mμ and Iμ(u0) > 0, as in the proof of Theorem

1.4, we have Iμ(u(t)) > 0 for all t > 0. Furthermore, we can get

Jμ(u) = 1

2

∫

�

|∇u|2dx − 1

22∗
μ

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

≥ N − μ + 2

2(2N − μ)

∫

�

|∇u|2dx . (3.32)

By (2.4), (3.32) and the Hardy–Littlewood–Sobolev inequality

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy < S
− 2N−μ

N−2
H ,L

(∫

�

|∇u|2dx
) 2N−μ

N−2

,

we can derive
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy ≤ S
− 2N−μ

N−2
H ,L

(
2(2N − μ)

N − μ + 2
Jμ(u)

) N−μ+2
N−2

∫

�

|∇u|2dx

≤ S
− 2N−μ

N−2
H ,L

(
2(2N − μ)

N − μ + 2
Jμ(u0)

) N−μ+2
N−2

∫

�

|∇u|2dx

Let κ := 1 − S
− 2N−μ

N−2
H ,L

(
2(2N−μ)
N−μ+2 Jμ(u0)

) N−μ+2
N−2

, then we complete the proof of (3.31).

Next, since

Jμ(u0) < mμ = N − μ + 2

2(2N − μ)
S

2N−μ
N−μ+2
H ,L ,

we can derive that κ ∈ (0, 1). Consequently, the proof is complete. ��
Proof of Theorem 1.6 Under the condition in Theorem 1.4, let u be a global solution. By
Lemma 3.6, we have

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy ≤ (1 − κ)

∫

�

|∇u|2dx, (3.33)

and so, we ca derive

Iμ(u) ≥ κ

∫

�

|∇u|2dx > 0. (3.34)

Furthermore, by (1.2), (1.8) and (3.34), we have

Jμ(u(t)) = 1

2

∫

�

|∇u(t)|2dx − 1

22∗
μ

∫

�

∫

�

|u(x, t)|2∗
μ |u(y, t)|2∗

μ

|x − y|μ dxdy

= 2∗
μ − 1

22∗
μ

∫

�

|∇u(t)|2dx + 1

22∗
μ

Iμ(u(t))

≥ 2∗
μ − 1

22∗
μ

∫

�

|∇u(t)|2dx . (3.35)

By (3.34) and (3.35), we can also derive

Jμ(u(t)) ≤
(
2∗
μ − 1

22∗
μκ

+ 1

22∗
μ

)

Iμ(u(t)). (3.36)
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Let T > 0 be an arbitrary number but fixed, by (2.2) and Poincare’s inequality, we have
∫ T

t
Iμ(u(s))ds = −1

2

∫

�

|u(T )|2dx + 1

2

∫

�

|u(t)|2dx

≤ 1

2

∫

�

|u(t)|2dx ≤ 1

2λ1

∫

�

|∇u(t)|2dx, (3.37)

where λ1 is the first eigenvalue of −� with homogeneous Dirichlet boundary condition.
It follows from (3.35) and (3.37) that

∫ T

t
Iμ(u(s))ds ≤ 2∗

μ

λ1(2∗
μ − 1)

Jμ(u(t)), for 0 ≤ t ≤ T . (3.38)

Therefore, by (3.36) and (3.38), we can derive

∫ T

t
Jμ(u(s))ds ≤

(
2∗
μ − 1

22∗
μκ

+ 1

22∗
μ

)
2∗
μ

λ1(2∗
μ − 1)

Jμ(u(t)), for 0 ≤ t ≤ T .

Since the arbitrariness of T > 0, we can have
∫ ∞

t
Jμ(u(s))ds ≤ C̄ Jμ(u(t)),

where C̄ :=
(
2∗
μ−1
22∗

μκ
+ 1

22∗
μ

)
2∗
μ

λ1(2∗
μ−1) .

Next,taking T0 > 0 large enough such that C̄ ≤ T0, then we have
∫ ∞

t
Jμ(u(s))ds ≤ T0 Jμ(u(t)) for t ≥ 0. (3.39)

Let

F(t) ≡
∫ ∞

t
Jμ(u(s))ds.

Then, F ′(t) = −Jμ(u(t)). By (3.35), we have Jμ(u(t)) > 0 for t ≥ 0. Integrating (3.39)
from T0 to t , we have

F(t) ≤ F(T0)e
1− t

T0 ,

for all t > T0. That is
∫ ∞

t
Jμ(u(s))ds ≤

∫ ∞

T0
Jμ(u(s))dse

1− t
T0 , t > T0. (3.40)

Next, by (1.3) and (3.39), for t > T0, we have
∫ ∞

T0
Jμ(u(s))ds ≤ T0 Jμ(u(T0)) ≤ T0 Jμ(u0). (3.41)

Therefore, by (3.40) and (3.41), we can derive
∫ ∞

t
Jμ(u(s))ds ≤ T0 Jμ(u0)e

1− t
T0 , (3.42)

for all t > T0.
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On the other hand, using (1.3) again, we obtain
∫ ∞

t
Jμ(u(s))ds ≥

∫ T0+t

t
Jμ(u(s))ds ≥ T0 Jμ(u(T0 + t)). (3.43)

It follows from (3.42) and (3.43) that

Jμ(u(T0 + t)) ≤ Jμ(u0)e
1− t

T0 for all t > T0.

Furthermore, by (3.35), we can get
∫

�

|∇u(T0 + t)|2dx ≤ 22∗
μ

2∗
μ − 1

Jμ(u(T0 + t)) ≤ 22∗
μ

2∗
μ − 1

Jμ(u0)e
1− t

T0 ,

which implies the decay of global solution ‖∇u(t)‖22 ≤ Ce
− t

T0 for some C > 0 and t > T0
large enough. So, we complete the proof of (1.10).

Next, multiplying (2.1) by any d(t) ∈ [0,∞), we can get

(ut , d(t)v) + (∇u,∇(d(t)v)) =
((

|x |−μ ∗ |u|2∗
μ

)
|u|2∗

μ−2u, d(t)v
)

, ∀v ∈ H1
0 (�),

∀d(t) ∈ C[0,∞),

and

(ut , w) + (∇u,∇w) =
((

|x |−μ ∗ |u|2∗
μ

)
|u|2∗

μ−2u, w
)

, ∀w ∈ L∞(0,∞; H1
0 (�)).

(3.44)

Letting w = u, by (3.44), one has

1

2

d

dt

∫

�

u2dx +
∫

�

|∇u|2dx =
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy. (3.45)

It follows from Lemma 3.6 and (3.45) that

d

dt

∫

�

u2dx < −2κ
∫

�

|∇u|2dx ≤ −2κ

λ1

∫

�

|u|2dx, (3.46)

where λ1 is the first eigenvalue of −� with homogeneous Dirichlet boundary condition.
Integrating (3.46) on (0, t), we obtain

‖u(t)‖22 ≤ ‖u0‖22e− 2κt
λ1 .

So, we complete the proof of (1.11).

3.3 Regularity of Global Solutions

In this section, we shall prove the regularity of global solutions with lower energy initial
value by applying a nonlocal version of the Brezis-Kato estimate (see [3, 27]).

Proposition 3.7 If H , K ∈ L
2N
N−μ (�) + L

2N
N−μ+2 (�) and u ∈ L∞(0,∞; H1

0 (�)) with ut ∈
L2(0,∞; L2(�)) be a global solution of

ut − �u = (|x |−μ ∗ Hu
)
K . (3.47)

Then, u ∈ L p(� × [t0,∞)) for every p ∈ [2, N
N−μ

2N
N−2 ).
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Proof For M > 0, we define the function uM by

uM (x) =
⎧
⎨

⎩

−M, u(x) ≤ −M,

u(x), −M < u(x) < M,

−M, u(x) ≥ M .

And for any fixed t0 > 0 and T > 0, choosing η ∈ C∞(0, T ) with 0 ≤ η ≤ 1 in (0, T ),
η = 1 in [t0, T ], η = 0 in [0, t0

2 ] and |ηt | < 1
t0
.

Taking ϕ(x, t) = |uM |p−2uMη as a test function to (3.47), we can obtain

∫ T

0

∫

�

[utϕ + ∇u∇ϕ − (|x |−μ ∗ Hu
)
Kϕ]dxdt = 0. (3.48)

By manipulation, we have

∫ T

0

∫

�

utϕdxdt =
∫ T

0

∫

�

ut |uM |p−2uMηdxdt = 1

p

∫ T

0

∫

�

(|uM |p)tηdxdt

= 1

p

∫ T

0

∫

�

(|uM |pη)t dxdt − 1

p

∫ T

0

∫

�

|uM |pηt dxdt, (3.49)

and

∫ T

0

∫

�

∇u∇ϕdxdt =
∫ T

0

∫

�

∇u∇(|uM |p−2uMη)dxdt

= 4(p − 1)

p2

∫ T

0

∫

�

|∇|uM | p
2 |2ηdxdt . (3.50)

If p < 2N
N−μ

, by [27, Lemma 3.2] with θ = 2
p , one can get

∫ T

0

∫

�

(|x |−μ ∗ Hu
)
Kϕdxdt

=
∫ T

0

∫

�

(|x |−μ ∗ Hu
)
K |uM |p−2uMηdxdt

≤
∫ T

0
η

∫

�

(|x |−μ ∗ HuM )K |uM |p−2uMdxdt

+
∫ T

0
η

∫

AM

(|x |−μ ∗ HuM )K |uM |p−2uMdxdt

≤ 2(p − 1)

p2

∫ T

0
η

∫

�

|∇|uM | p
2 |2 + C

∫ T

0

∫

�

||uM | p
2 |2ηdxdt

+ sup
t

∫

AM

(|x |−μ ∗ HuM )K |uM |p−2uMdxdt (3.51)

for some C > 0, where AM := {x ∈ � |u(x)| > M}.
By the Hardy–Littlewood–Sobolev inequality, one has

lim
M→∞ sup

t

∫

AM

(|x |−μ ∗ HuM )K |uM |p−2uMdxdt = 0. (3.52)
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From (3.48)–(3.52), we have

1

p
sup
t

∫

�

|uM |pηdxdt + 2(p − 1)

p2

∫ T

0

∫

�

|∇|uM | p
2 |2ηdxdt

≤ 1

p

∫ T

0

∫

�

|uM |pηt dxdt + C
∫ T

0

∫

�

|uM |pηdxdt (3.53)

Next, by the Sobolev inequality, we have

(∫ T

0

∫

�

|u| pN
N−2 η

N
N−2 dxdt

) N−2
N

≤ 1

S

∫ T

0

∫

�

|∇|u| p
2 |2ηdxdt ≤ C

∫ T

0

∫

�

|u|pηdxdt (3.54)

By iterating over p a finite number of times, we cover the range p ∈ [2, N
N−μ

2N
N−2 ). ��

Proof of Theorem 1.7 Let H = K = |u|2∗
μ−2u. By Proposition 3.7, u(x, t) ∈ L p(� ×

[t0,∞)) for every p ∈ [2, N
N−μ

2N
N−2 ). Then |u|2∗

μ ∈ Lq(� × [t0,∞)) for every q ∈
[ 2(N−2)
2N−μ

, N
N−μ

2N
2N−μ

). Since 2(N−2)
2N−μ

< N
N−μ

< N
N−μ

2N
2N−μ

, we have |x |−μ ∗ |u|2∗
μ ∈

L∞(� × [t0,∞)). By the classical bootstrap method, we have u(x, t) ∈ W 2,1
r (� × [t0,∞))

for every r > 1. Applying the Schauder estimate in [17], we can derive u(x, t) ∈
C (2,α)(1,α)(� × [t0,∞)). Therefore, u(x, t) is a classical solution for all t ≥ t0 > 0.

4 Critical Energy Initial Value

In this section, we consider the global existence and blow-up of solution with critical energy
initial value, i.e. Jμ(u0) = mμ and the decay estimate of global solutions.

Proof of Theorem 1.9(i) Since Jμ(u0) = mμ, we can see that ‖u0‖22 �= 0. Choose a sequence
{βk} such that 0 < βk < 1, k = 1, 2, · · · and βk → 1 as k → ∞, and let u0,k(x) = βku0(x).
Consider the initial and boundary value problem as follows:

⎧
⎪⎨

⎪⎩

ut − �u =
(
|x |−μ ∗ |u|2∗

μ

)
|u|2∗

μ−2u, x ∈ �, t > 0

u(x, t) = 0, x ∈ ∂�, t > 0
u(x, 0) = u0,k(x), x ∈ �

(4.1)

Since Iμ(u0) > 0 by Lemma 2.5, there exist a s̄ := s(u0) > 1 such that Iμ(s̄u0) = 0.
Thus, since βk < 1 < s̄, we can deduce that Iμ(u0,k) = Iμ(βku0) > 0 and Jμ(u0,k) =
Jμ(βku0) < Jμ(u0) = mμ. It follows from Theorem 1.4 that for each k, Eq. (4.1) admits a
global weak solution uk(t) ∈ L∞(0, T ; H1

0 (�)) with (uk)t ∈ L2(�T ) = L2(0, T ; L2(�))

and uk(t) ∈ W for 0 ≤ t < ∞ satisfying

((uk)t , v) + (∇uk,∇v) =
((

|x |−μ ∗ |uk |2∗
μ

)
|uk |2∗

μ−2uk, v
)

, ∀v ∈ H1
0 (�), t > 0,

(4.2)

and
∫ t

0

∫

�

|(uk)s |2dxds + J (uk) = J (u0,k) < mμ. (4.3)
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From (4.3) and

J (uk) = 2∗
μ − 1

22∗
μ

∫

�

|∇uk |2dx + 1

22∗
μ

I (uk),

we can get
∫ t

0

∫

�

|(uk)s |2dxds + 2∗
μ − 1

22∗
μ

∫

�

|∇uk |2dx ≤ J (u0,k) < mμ. (4.4)

This implies that
∫

�

|∇uk |2dx < S
2N−μ
N−μ+2
H ,L , , 0 ≤ t < ∞, (4.5)

∫ t

0
‖(uk)τ‖22dτ <

N − μ + 2

2(2N − μ)
S

2N−μ
N−μ+2
H ,L , , 0 ≤ t < ∞, (4.6)

and by the Hardy–Littlewood–Sobolev inequality, we have
∫

�

((
|x |−μ ∗ |uk |2∗

μ

)
|uk |2∗

μ−2uk
) 2N

N+2
dx

≤
(∫

�

(
|x |−μ ∗ |uk |2∗

μ

) 2N
N+2

N+2
μ

dx

) μ
N+2

(∫

�

(|uk |2∗
μ−2u)

2N
N+2

N+2
N−μ+2 dx

) N−μ+2
N+2

≤
(∫

�

|uk |2∗
μ

2N
2N−μ dx

) μ
N+2

(∫

�

|uk | 2N
N−2 dx

) N−μ+2
N+2 ≤ C

(∫

�

|∇uk |2dx
) 2∗

2

. (4.7)

Therefore, there exist a u and a subsequence {uν} such that

uν → u in L∞(0,∞; H1
0 (�)) weak star and a.e. in Q = � × [0,∞),

uν
t → ut in L2(0,∞; L2(�)) weakly star

(
|x |−μ ∗ |uν |2∗

μ

)
|uν |2∗

μ−2uν →
(
|x |−μ ∗ |u|2∗

μ

)
|u|2∗

μ−2u in L∞(0,∞; L 2N
N+2 (�)) weak star.

In (4.2), we fixed s and letting k = ν = ∞, we can get

(ut , φs) + (∇ut ,∇φs) =
((

|x |−μ ∗ |u|2∗
μ

)
|u|2∗

μ−2u, φs

)
, ∀s = 1, 2, · · · ,

and

(ut , v) + (∇ut ,∇v) =
((

|x |−μ ∗ |u|2∗
μ

)
|u|2∗

μ−2u, v
)

, ∀v ∈ H1
0 (�), ∀t .

Moreover, (4.2) gives u(x, 0) = u0(x) in H1
0 (�). The reminder proof is similar to the case

of Jμ(u0) < mμ, here we omit it. Consequently, the proof is complete.

Proof of Theorem 1.9(i i) Letu(t)be anyweak solution of the problem (P)with Jμ(u0) = mμ

and Iμ(u0) < 0, we shall prove Tmax < ∞, where Tmax be the existence time of u(t). On the
contrary, we suppose Tmax = ∞, and we define a auxiliary function

g(t) =
∫ t

0

∫

�

u(s)2dxds.

123



Journal of Dynamics and Differential Equations

By (2.2) and standard manipulation, we have

g′(t) =
∫

�

|u(t)|2dx

=
∫

�

u20dx + 2
∫ t

0

(

−
∫

�

|∇u|2dx +
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

)

ds, (4.8)

and

g′′(t) = −2
∫

�

|∇u|2dx + 2
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy = −2Iμ(u). (4.9)

By (2.4) and (4.9), we have

g′′(t) ≥ 2
(
2∗
μ − 1

)
∫

�

|∇u|2dx − 42∗
μ Jμ(u0) + 42∗

μ

∫ t

0

∫

�

|us |2dxds

≥ 2
(
2∗
μ − 1

)
λ1g

′(t) − 42∗
μmμ + 42∗

μ

∫ t

0

∫

�

|us |2dxds. (4.10)

Note that
(∫ t

0

∫

�

usudxds

)2

=
(
1

2

∫ t

0

d

ds

∫

�

|u|2dxds
)2

= 1

4

((∫

�

|u|2dx
)2

− 2
∫

�

|u|2dx
∫

�

|u0|2dx +
(∫

�

|u0|2dx
)2
)

= 1

4

((
g′(t)

)2 − 2g′(t)‖u0‖22 + ‖u0‖42
)

,

then, we can get

(
g′(t)

)2 = 4

(∫ t

0

∫

�

usudxds

)2

+ 2g′(t)‖u0‖22 − ‖u0‖42. (4.11)

Furthermore, by (4.10)–(4.11) and the Schwartz inequality, we have

g′′(t)g(t) − 2∗
μ

(
g′(t)

)2

≥ 42∗
μ

(∫ t

0

∫

�

|ut |2dxds
∫ t

0

∫

�

u(s)2dxds −
(∫ t

0

∫

�

usudxds

)2
)

+2
(
2∗
μ − 1

)
λ1g

′(t)g(t) − 22∗
μg

′(t)‖u0‖22 − 42∗
μmμg(t)

≥ 2
(
2∗
μ − 1

)
λ1g

′(t)g(t) − 22∗
μg

′(t)‖u0‖22 − 42∗
μmμg(t)

= (
(2∗

μ − 1)λ1g(t) − 22∗
μ‖u0‖22

)
g′(t) + (

(2∗
μ − 1)λ1g

′(t) − 42∗
μmμ

)
g(t). (4.12)

Since Jμ(u0) = mμ and Iμ(u0) < 0, and by the continuity of Jμ and Iμ with respect
to t , there exists a sufficiently small t1 > 0 such that Jμ(u(t)) > 0 and Iμ(u(t)) < 0 for
0 ≤ t ≤ t1. Then, (ut , u) = −Iμ(u) > 0, and ‖ut‖22 > 0 for 0 ≤ t ≤ t1. Hence

Jμ(u(t1)) ≤ mμ −
∫ t1

0
‖uτ‖22dτ = m̃μ < mμ.

Thus, we choose t = t1 as the initial time and by Proposition 3.4, we have u(t) ∈ Vδ

for δ1 < δ < δ2 and t1 ≤ t < ∞, where δ1 and δ2 are two roots of mμ(δ) = m̃μ. Hence,
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Iμ,δ(u) < 0 and ‖∇u‖22 > r(δ) for δ1 < δ < δ2 and t1 ≤ t < ∞. Hence, Iμ,δ2(u) < 0 and
‖∇u‖22 > r(δ2) for t1 ≤ t < ∞.

By (4.9), we can get

g′′(t) = −2‖∇u‖22 + 2
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

= 2(δ2 − 1)‖∇u‖22 − 2Iμ,δ2(u)

≥ 2(δ2 − 1)r(δ2), t1 ≤ t < ∞.

Furthermore, we have

g′(t) ≥ 2(δ2 − 1)r(δ2)(t − t1) + g′(t1) ≥ 2(δ2 − 1)r(δ2)(t − t1), t1 ≤ t < ∞,

and

g(t) ≥ (δ2 − 1)r(δ2)(t − t1)
2 + g(t1) > (δ2 − 1)r(δ2)(t − t1)

2, t1 ≤ t < ∞.

Therefore, for t large enough, we can get that

(2∗
μ − 1)λ1g(t) > 22∗

μ‖u0‖22 and (2∗
μ − 1)λ1g

′(t) > 42∗
μmμ.

Then, from (4.12) it follows that

g′′(t)g(t) − 2∗
μ

(
g′(t)

)2
> 0.

Then, byLemma2.10, there exists a T > 0 such that limt→T− f (t) = +∞, which contradicts
Tmax = +∞.

5 High Energy Initial Value

In this section, we investigate the conditions to ensure the existence of global or finite time
blow-up of solutions to problem (P) with high energy initial value, i.e. Jμ(u0) > mμ. As
mentioned in Introduction, we define

N+ = {u ∈ H1
0 (�) | Iμ(u) > 0} and N− = {u ∈ H1

0 (�) | Iμ(u) < 0},
and the level set of Jμ as follows:

Jdμ := {u ∈ H1
0 (�) | Jμ(u) < d}.

Obviously, we have

Nd := N ∩ Jd =
{

u ∈ N | ‖∇u‖22 <
2(2N − μ)d

N − μ + 2

}

�= ∅, for d > mμ.

Furthermore, for all d > mμ, we set

λd = inf{‖u‖22 | u ∈ Nd} and �d = sup{‖u‖22 | u ∈ Nd}.
It is clear that λd is nonincreasing and �d is nondecreasing in d .

If Tmax = ∞, we denote by

ω(u0) :=
⋂

t≥0

{u(s) : s ≥ t}
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the ω-limit set of u0 ∈ H1
0 (�). Finally, we introduce the following sets

B = {
u0 ∈ H1

0 (�) | the solution u = u(t) of (P) blows up in finite time
}
,

G = {
u0 ∈ H1

0 (�) | the solution u = u(t) of (P) exist for all t > 0
}
,

G0 = {
u0 ∈ G | u(t) → 0 in H1

0 (�) as t → ∞}
.

Clearly, H1
0 (�) = G∪B. Now, we give two lemmas, which play important roles in the proof

of the main results.

Lemma 5.1 We have

(i) 0 is away from both N and N−, i.e. dist(0,N ) > 0 and dist(0,N−) > 0;
(ii) For any d > 0, the set J d ∩ N+ is bounded in H1

0 (�).

Proof (i) For any u ∈ N , we have

mμ ≤ Jμ(u) = 1

2

∫

�

|∇u|2dx − 1

22∗
μ

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

= N − μ + 2

2(2N − μ)

∫

�

|∇u|2dx,
which implies that there exists a constants c > 0 such that dist(0,N ) = infu∈N
‖∇u‖2 > 0. For any u ∈ N− , that is Iμ(u) < 0, we have ‖∇u‖2 �= 0. Then, it
follows the Hardy–Littlewood–Sobolev inequality that

‖∇u‖22 <

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy ≤ S
− 2N−μ

N−2
H ,L

(‖∇u‖22
) 2N−μ

N−2 ,

which implies that ‖∇u‖22 > S
2N−μ
N−μ+2
H ,L . Therefore, dist(0,N−) = infu∈N− ‖∇u‖2 > 0.

(i i) For any u ∈ Jd ∩ N+, that is Jμ(u) < d and Iμ(u) > 0. Then, it follows from this and
the Hardy–Littlewood–Sobolev inequality that

d > Jμ(u) = 1

2

∫

�

|∇u|2dx − 1

22∗
μ

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy

= N − μ + 2

2(2N − μ)

∫

�

|∇u|2dx + 1

22∗
μ

Iμ(u)

>
N − μ + 2

2(2N − μ)

∫

�

|∇u|2dx,
which implies that

‖∇u‖22 <
2(2N − μ)d

N − μ + 2
.

Consequently, the proof is complete. ��
Lemma 5.2 Let u0 ∈ H1

0 (�). Then,

d

dt
‖u‖22 = −2Iμ(u), for all t ∈ (0, Tmax). (5.1)

Proof Multiplying (P) by u(t) and integrating by parts immediately, we can complete the
proof. ��

Now, the proof of Theorem 1.10-1.12 are to show as follows.
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Proof of Theorem 1.10 (i) Assume that u0 ∈ N+ with ‖u0‖2 ≤ λJ (u0). We claim that u(t) ∈
N+ for all t ∈ [0, Tmax). On the contrary, there is a t0 > 0 such that u(t) ∈ N+ for
0 ≤ t < t0 and u(t0) ∈ N , then (1.3) and (5.1) imply that

‖u(t0)‖2 ≤ ‖u0‖2 ≤ λJ (u0), Jμ(u(t0)) ≤ Jμ(u0).

This cintradicts the definition of λJ (u0) and proves the claim. By Lemma 5.1 (i i), we
have that the orbit {u(t)} remains bounded in H1

0 (�) for [0, Tmax), so that Tmax = +∞.
Now, for any w ∈ ω(u0), by (1.3) and (5.1), we have

‖w‖2 < λJμ(u0) and Jμ(w) ≤ Jμ(u0).

By the definition of λJμ(u0), we can get that ω(u0)∩N = ∅, hence ω(u0) = {0}. In other
words, u0 ∈ G0.

(i i) u0 ∈ N− and ‖u0‖2 ≤ �J (u0). A similar argument as (i), one can get that u(t) ∈ N−
for all t ∈ [0, Tmax).
Next, by contradiction, if Tmax = ∞, then for every w ∈ ω(u0), it follows from (1.3) and

(5.1) that

‖w‖2 > �Jμ(u0) and Jμ(w) ≤ Jμ(u0).

By the definition of�Jμ(u0), we derive thatω(u0)∩N = ∅. However, since dist(0,N−) > 0
in Lemma 5.1 (i), we also have 0 /∈ ω(u0). This givesω(u0) = ∅, contrary to the assumption
that u(t) is a global solution. Hence, Tmax < ∞ and the proof is complete.

Proof of Theorem 1.11 For

Jμ(u) = 1

2

∫

�

|∇u|2dx − 1

22∗
μ

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy.

Since r� = supx,y∈� |x − y|, for any u ∈ H1
0 (�), there hold

∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy ≥ (r�)−μ‖u‖22
∗
μ

2∗
μ

. (5.2)

By (1.12) and (5.2) and using the Hölder inequality, for μ < 4, we get
∫

�

∫

�

|u0|2∗
μ |u0|2∗

μ

|x − y|μ dxdy ≥ (r�)−μ‖u0‖22
∗
μ

2∗
μ

> (r�)−μ|�|−2∗
μ+2‖u0‖22

∗
μ

2

≥ 22∗
μ

2∗
μ − 1

Jμ(u0)

Then, we readily infer that
∫

�

∫

�
|u0|2∗μ |u0|2∗μ|x−y|μ dxdy > ‖∇u0‖22, which implies that u0 ∈ N−.

Next, we shall show u0 ∈ B. Since u0 ∈ N−, by Theorem 1.10, we only need to prove
that ‖u0‖2 ≥ �J (u0). For any u ∈ NJ (u0) i.e. u ∈ N and Jμ(u) < Jμ(u0), by the Hölder
inequality, we have

(r�)−μ|�|−2∗
μ+2‖u‖22

∗
μ

2 < (r�)−μ‖u‖22
∗
μ

2∗
μ

≤
∫

�

∫

�

|u(x)|2∗
μ |u(y)|2∗

μ

|x − y|μ dxdy ≤ 22∗
μ

2∗
μ − 1

J (u0).

Therefore, taking the supremum over NJ (u0), we immediately get

�
22∗

μ

J (u0)
≤ 22∗

μ

2∗
μ − 1

(r�)μ|�|2∗
μ−2 Jμ(u0) ≤ ‖u0‖22

∗
μ

2 .
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Therefore, ‖u0‖2 ≥ �J (u0) and we complete the proof by Theorem 1.10.

Proof of Theorem 1.12 Let M > 0 and �1,�2 be two arbitrary disjoint open subdomain of
�. Furthermore, let v ∈ H1

0 (�1) ⊂ H1
0 (�) be an arbitrary nonzero function. Then, we can

choose α large enough such that ‖αv‖22
∗
μ

2 ≥ 22∗
μ

2∗
μ−1 (r�)μ|�|2∗

μ−2M and J (αv) ≤ 0. Fix such

α > 0 and pick a function w ∈ H1
0 (�) with J (w) = M − J (αv). Then, uM := w + αv

satisfies J (uM ) = J (w) + J (αv) = M and

‖uM‖22
∗
μ

2 ≥ ‖αv‖22
∗
μ

2 ≥ 22∗
μ

2∗
μ − 1

(r�)μ|�|2∗
μ−2 J (uM ),

By Theorem 1.11, it is seen that uM ∈ N− ∩ B. This complete the proof.

6 The Proof of Theorem 1.13 and Theorem 1.14

Proof of Theorem 1.13 Let us denote un := u(x, tn). Since {un} is uniformly bounded in
H1
0 (�), then there exists a subsequence (here we still denote by {un} ) and a function w ∈

H1
0 (�) such that

un⇀w in H1
0 (�)

un → w in L2(�)

un → w a.e. in �.

Let Un := u(tn + s) for s ∈ (0, 1). Clearly, Un is uniformly bounded in H1
0 (�), we show

Un → w in L2(�).

Indeed, for s ∈ (0, 1), by (2.4), we have
∫ ∞

0
‖uτ‖22dτ + Jμ(u(t)) = Jμ(u0) < ∞,

which means ut ∈ L2(�). So
∫

�

|Un − un |2dx = t
∫ s+tn

tn

∫

�

|uτ |2dxdτ → 0,

for 0 ≤ s ≤ 1 as tn → ∞, which implies that ‖u(s + tn) − u(tn)‖2 → 0 as tn → ∞ for
0 ≤ s ≤ 1. Therefore, we have

Un → w in L2(�).

and

Un → w a.e. in �.

Since {Un} is uniformly bounded in H1
0 (�), by (4.7), we also have

(
|x |−μ ∗ |Un |2∗

μ

)

|Un |2∗
μ−2Un is bounded in L

2N
N+2 , and

(
|x |−μ ∗ |Un |2∗

μ

)
|Un |2∗

μ−2Un⇀
(
|x |−μ ∗ |w|2∗

μ

)
|w|2∗

μ−2w in L
2N
N+2 (�) weak star.

(6.1)
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In order to show that w is an equilibrium, we pass to the limit (as tn → ∞) in the identity
(2.1) with a suitably chosen test function. Let

φ(x, t) =
{

ρ(t − tn)�(x), t > tn, x ∈ �̄,

0, 0 ≤ t ≤ tn, x ∈ �̄,

where

� ∈ H1
0 (�), ρ ∈ C2

0 (0, 1), ρ ≥ 0,
∫ 1

0
ρ(s)ds = 1.

Take φ as test function in (2.1), we have
∫ tn+1

tn

∫

�

[
uρ′(t − tn)� − ρ(t − tn)∇u∇� +

(
|x |−μ ∗ |u|2∗

μ

)
|u|2∗

μ−2uρ(t − tn)�
]
dxdt = 0.

Furthermore, by transforming about t , we get
∫ 1

0

∫

�

[
Unρ

′� − ρ∇Un∇� +
(
|x |−μ ∗ |Un |2∗

μ

)
|Un |2∗

μ−2Unρ�
]
dxdt = 0. (6.2)

From the choice of ρ, we can derive
∫

�

[
∇Un∇� +

(
|x |−μ ∗ |Un |2∗

μ

)
|Un |2∗

μ−2Un�
]
dx = o(1), as n → ∞.

Consequently, the assertion follows then from (6.1).

Proof of Theorem 1.14 Let u = u(t, x) be a global solution of problem (P). Then, we have
∫ ∞

0

∫

�

u2t dxdt ≤ C < ∞. (6.3)

And hence, there exists a sequence {tn} satisfying tn → ∞ as n → ∞ such that
∫

�

|ut (tn, x)|2dx → 0, as n → ∞. (6.4)

Indeed, on the contrary, if there exist c > 0 such that
∫

�
|ut (tn, x)|2dx > c as n → ∞, then,

we can derive a contradiction with (6.3).
Next, let un := u(tn, x). By Theorem 1.4 and Remark 1.3, we have Jμ(u(t)) > 0 for

t > 0. Then, by (2.4), we have

0 < Jμ(u(t)) ≤ Jμ(u0).

Therefore, we have for the sequence {tn} hold
0 < Jμ(u(tn)) ≤ Jμ(u0). (6.5)

Then, (6.4) and (6.5) implies that un := u(tn, x) is a PS sequence related to the stationary
equation of problem (P). similar to the argument of [9], it is easy to prove that there exists a
constant C such that

∫

�

|∇un |2dx ≤ C,

and then there exists a subsequence (denote still by {un} ) and a function w such that

un⇀w, in H1
0 (�),

un → w, in Lq(�)(2 ≤ q < 2∗).
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Furthermore, un → w �= 0 in H1
0 (�), which means thatw is a nontrivial stationary solution.
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