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Abstract
We consider a nonlinear parametric Dirichlet problem driven by the double phase
differential operator. Using variational tools combined with critical groups, we show
that for all small values of the parameter, the problem has at least three nontrivial
bounded solutions which are ordered and we provide the sign information for all
of them. Two solutions are of constant sign and the third one is nodal. Finally, we
determine the asymptotic behavior of the nodal solution as the parameter converges
to zero.
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1 Introduction

Let � ⊆ R
N (N ≥ 3) be a bounded domain with a Lipschitz boundary ∂�. In

this paper we study the following parametric Dirichlet problem (nonlinear eigenvalue
problem)

{−�a
pu − �qu = λ f (z, u) in �,

u|∂� = 0, 1 < q < p < N , λ > 0.

}
(Pλ)
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In this problem, for a ∈ L∞(�) \ {0}, a(z) ≥ 0 for a.a. z ∈ �, �a
p denotes the

weighted p-Laplace differential operator defined by

�a
p = div

(
a(z)|Du|p−2Du

)
.

If a ≡ 1, then we have the standard p-Laplace differential operator. Problem
(Pλ) is driven by the sum of two such operators with different exponents. So, the
differential operator u �→ −�a

pu−�qu driving problem (Pλ) is not homogeneous. In
the reaction, the hypotheses on f (z, x) areminimal and essentially involve restrictions
on f (z, ·) near zero. Our aim is to prove a multiplicity theorem for (Pλ) producing
nodal (sign changing) solutions and finding their asymptotic behavior as λ → 0+.
Recently, Leonardi and Papageorgiou [11] examined a similar problem. They studied
a Robin (p, q)-equation with an indefinite potential term. Their equation is driven by
the (p, q)-Laplace operator

−�pu − �qu.

This operator is associated with the energy functional

∫
�

(|Du|p + |Du|q) dz.
In this functional, the density function is

η̂(t) = t p + tq ,

which exhibits balanced growth, namely we have

t p ≤ η̂(t) ≤ c0
(
1 + t p

)
for all t ≥ 0, for some c0 > 0.

This property leads to a global regularity theory (regularity up to the boundary), which
is included in the work of Lieberman [12].

In problem (Pλ) we do not assume that the weight a(·) is bounded away from zero,
namely we do not require that 0 < ess inf�a. Then the operator of problem (Pλ) is
associated with the so-called double phase integral functional

∫
�

[a(z)|Du|p + |Du|q ]dz.

The density of this functional is

η(z, t) = a(z)t p + tq for all z ∈ �, all t ≥ 0.

Since a(·) may vanish, the integrand η(z, t) exhibits unbalanced growth, namely

tq ≤ η(z, t) ≤ c1
(
1 + t p

)
for a.a. z ∈ �, all t ≥ 0, for some c1 > 0.
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Such operators are used in the description of diffusion-type processes in a space,
where the behavior changes in different subdomains. For example, we can model
composite materials with energy density of q-growth on {a = 0} and of p-growth on
{a > 0}. Such functionals were first studied by Marcellini [15, 16] and by Zhikov
[25, 26], in the context of problems of the calculus of variations and of nonlinear
elasticity theory including the Lavientiev gap phenomenon. Recently, the interest for
such problems was revived and there have been efforts to develop a regularity the-
ory. So far, there have been only local regularity results for minimizers of integral
functionals of this kind. A global (up to the boundary) regularity theory remains elu-
sive. The progress in this direction can be traced in the works of Marcellini [17],
Mingione-Rădulescu [18] and Ragusa-Tachikawa [24]. The absence of such a global
theory removes from consideration many effective tools which are readily available
when dealing with balanced growth problems. This makes the study of double phase
problems more difficult. A typical example of such a useful result is the equivalence
between local Hölder and Sobolev minimizers. This was first observed by Brezis-
Nirenberg [1] for semilinear problems driven by the Laplacian. Their result was later
extended to p-Laplacian equations by Garcia Azorero-Manfredi-Peral Alonso [4] and
to more general anisotropic operators by Papageorgiou-Rădulescu-Zhang [22]. This
equivalence result proved to be very effective in obtaining multiplicity results for dif-
ferent kinds of nonlinear elliptic boundary value problems. Therefore the methods
and techniques employed by Leonardi-Papageorgiou [11] can not be used here and
we need to come up with a new approach.

We mention that recently there have been existence and multiplicity results
for double phase equations. We mention the works of Gasinski-Papageorgiou [6],
Gasinski-Winkert [7], Liu-Dai [13], Liu-Papageorgiou [14], Papageorgiou-Pudelko-
Rădulescu [19], Papageorgiou-Vetro-Vetro [23]. Of the aforementioned works only
Gasinski-Papageorgiou [6] and Liu-Papageorgiou [14] produce nodal solutions but
under stronger conditions on the reaction and using different methods and techniques.

2 Mathematical Background-Hypotheses

As a consequence of the unbalanced growth of the differential operator, we have to
abandon the convenient functional framework of standard Sobolev spaces and use
generalized Orlicz-Sobolev spaces. A comprehensive presentation of the theory of
these spaces can be found in the book of Harjulehto-Hästo [9].

In what follows C0,1(�̄) := {u : �̄ → R is Lipschitz}. Our hypotheses on the
weight function a(·) and the exponents p, q are the following:

H0 : a ∈ C0,1(�̄)\{0}, a(z) ≥ 0 for any z ∈ �̄, 1 < q < p < N , 2 ≤ p,
p

q
< 1 + 1

N
.

Remark 2.1 The assumption that a ∈ C0,1(�̄) guarantees that the Poincaré inequality
holds in the corresponding generalized Orlicz-Sobolev space (see Harjulehto-Hästo
[9, pp.100,138]). The last condition p

q < 1+ 1
N is common in Dirichlet double phase
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problems and says that the two exponents p and q can not be far apart. It implies that
p < q∗ = Nq

N−q , which in turn leads to some useful compact embeddings of some
relevant spaces.

Let L0(�) be the space of all measurable functions u : � → R. As usual, we
identity two such functions which differ only on a Lebesque-null subset of �. Also
η(z, t) denotes the double phase density defined by

η(z, t) = a(z)t p + tq for all z ∈ �, all t ≥ 0.

Then the generalized Orlicz-Lebesgue space Lη(�) is defined by

Lη(�) =
{
u ∈ L0(�) : ρη(u) =

∫
�

η(z, |u|) dz < ∞
}

.

The function ρη(·) is known as the “modular function” corresponding to η. On Lη(�)

we introduce the so-called “Luxemburg norm” ‖ · ‖η defined by

‖u‖η = inf
{
λ > 0 : ρη

(u
λ

)
≤ 1
}
for all u ∈ Lη(�).

Equippedwith this norm, the space Lη(�) becomes a Banach space which is separable
and reflexive (in fact uniformly convex).Using Lη(�),we candefine the corresponding
generalized Orlicz-Sobolev space W 1,η(�) by

W 1,η(�) = {u ∈ Lη(�) : |Du| ∈ Lη(�)}.

Here by Du we denote the weak gradient of u. The norm ‖ · ‖1,η of this space is given

‖u‖1,η = ‖u‖η + ‖Du‖η for all u ∈ W 1,η(�).

Note that ‖Du‖η = ‖|Du|‖η. Also, we define

W 1,η
0 (�) = C∞

c (�)
‖·‖1,η

.

Both spaces W 1,η(�), W 1,η
0 (�) are separable, reflexive (in fact uniformly convex)

Banach spaces. On account of hypotheses H0(in particular since a ∈ C0,1(�̄)), the
Poincaré inequality holds on W 1,η

0 (�), namely we can find ĉ = ĉ(�) > 0 such that

‖u‖η ≤ ĉ‖Du‖η for all u ∈ W 1,η
0 (�).

Therefore on W 1,η
0 (�) we consider the equivalent norm ‖ · ‖ defined by

‖u‖ = ‖Du‖η for all u ∈ W 1,η
0 (�).
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There is a close relation between the norm ‖ · ‖ and the modular function ρη(·)
defined on W 1,η

0 (�).

Proposition 2.2 The following results hold:

(a) ‖u‖ = λ ⇔ ρη

( Du
λ

) = 1.
(b) ‖u‖ < 1(resp. = 1,> 1) ⇔ ρη(Du) < 1(resp. = 1,> 1).
(c) ‖u‖ < 1 ⇒ ‖u‖p ≤ ρη(Du) ≤ ‖u‖q .
(d) ‖u‖ > 1 ⇒ ‖u‖q ≤ ρη(Du) ≤ ‖u‖p.
(e) ‖u‖ → 0(resp. → +∞) ⇔ ρη(Du) → 0(resp. → +∞).

Also the following embeddings are helpful and generalize to the present setting the
Sobolev embedding theorem.

Proposition 2.3 The following results hold:

(a) Lη(�) ↪→ Lr (�) and W 1,η
0 (�) ↪→ W 1,r

0 (�) continuously for all 1 ≤ r ≤ q.

(b) W 1,q
0 (�) ↪→ Lr (�) continuously if 1 ≤ r ≤ q∗ and compactly if 1 ≤ r < q∗.

(c) L p(�) ↪→ Lη(�) continuously.

Let V : W 1,η
0 (�) → W 1,η

0 (�)∗ be the nonlinear operator defined by

〈V (u), h〉 =
∫

�

(a(z)|Du|p−2Du + |Du|q−2Du, Dh)RN dz for all u, h ∈ W 1,η
0 (�).

This operator has the following properties(see Liu-Dai [13, Proposition 3.1]).

Proposition 2.4 The operator V : W 1,η
0 (�) → W 1,η

0 (�)∗ is bounded(that is, maps
bounded sets to bounded sets), continuous, strictly monotone (thus maximal monotone
too) and of type (S)+, that is, “if un

w−→ u in W 1,η
0 (�) and lim supn→∞〈V (un), un −

u〉 ≤ 0, then un → u in W 1,η
0 (�)."

We introduce also the following modular function

ρa(Du) =
∫

�

a(z)|Du|p dz for all u ∈ W 1,η
0 (�).

This function is continuous, convex, thus weakly lower semicontinuous. If u ∈ L0(�),
then we set

u±(z) = max{±u(z), 0} for all z ∈ �.

We have u = u+ − u−, |u| = u+ + u−. Also, if u ∈ W 1,η
0 (�), then u± ∈ W 1,η

0 (�).
If u ∈ L0(�), we write 0 ≺ u, if for all K ⊆ � compact, we have 0 < cK ≤ u(z) for
a.a. z ∈ K . Clearly such a function satisfies 0 < u(z) for a.a. z ∈ �. If u, v ∈ L0(�)

and u(z) ≤ v(z) for a.a. x ∈ �, then

[u, v] = {h ∈ W 1,η
0 (�) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ �}.
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To overcome the absence of a global regularity theory, we will use critical
groups(Morse theory). Let X be a Banach space, ϕ ∈ C1(X), c ∈ R. We set

Kϕ = {u ∈ X : ϕ′(u) = 0}(the critical set of ϕ),

ϕc = {u ∈ X : ϕ(u) ≤ c}.

Consider a topological pair (Y1,Y2) such thatY2 ⊆ Y1 ⊆ X . For k ∈ N0, by Hk(Y1,Y2)
we denote the k-th relative singular homology groupwith integer coefficients. Suppose
u ∈ Kϕ is isolated and c = ϕ(u). Then the critical groups of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕ
c ∩ U , ϕc ∩ U\{u}) for all k ∈ N0,

with U being an open neighborhood of u such that Kϕ ∩ ϕc ∩ U = {u}. The excision
property of singular homology implies that this definition is independent of the iso-
lating neighborhood U . Suppose that ϕ ∈ C1(X) satisfies the C-condition (see [21,
p.366] and that −∞ < inf ϕ(Kϕ). Then the critical groups of ϕ at infinity are defined
by

Ck(ϕ,∞) = Hk(X , ϕc) for all k ∈ N0.

The second deformation theorem (see [21, p.366]) implies that this definition is
independent of the choice of the level c < inf ϕ(Kϕ). Suppose that Kϕ is finite. We
introduce the following series in t ∈ R.

M(t, u) =
∑
k∈N0

rankCk(ϕ, u)tk for all u ∈ Kϕ,

P(t,∞) =
∑
k∈N0

rankCk(ϕ,∞)tk .

The “Morse relation” says that

∑
u∈Kϕ

M(t, u) = P(t,∞) + (1 + t)Q(t), t ∈ R, (1)

with Q(t) = ∑
k∈N0

βk tk being a formal series in t ∈ R with nonnegative integer
coefficients.

To exploit the properties of critical groups, we will need the following notion.
Suppose X is a finite dimensional Banach space and g : X → R. We say that g(·) is
locally Lipschitz, if for every K ⊆ X compact, g|K is Lipschitz with constant θK > 0,
that is,

|g(u) − g(v)| ≤ θK ‖u − v‖X for all u, v ∈ K .

If ĝ : � × X → R, then we say that ĝ(·, ·) is an L∞-locally Lipschitz integrand, if
for all x ∈ R, z �→ ĝ(z, x) is measurable and for a.a. z ∈ �, x �→ ĝ(z, x) is locally
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Lipschitz with constant θK ∈ L∞(�) for all K ⊆ R compact. Such a function is
jointly measurable (see Hu-Papageorgiou [10, p.59]).

The hypotheses on the reaction f (z, x) are the following:
H1 : f : �×R → R is on L∞-locally Lipschitz integrand such that for a.a. z ∈ �,

f (z, 0) = 0, f (z, x)x ≥ 0 for all x ∈ R and

(i) | f (z, x)| ≤ â(z)(1 + |x |r−1) for a.a. z ∈ �, all x ∈ R, with â ∈ L∞(�),
p < r < q∗;

(ii) if F(z, x) = ∫ x0 f (z, s) ds, then there exist δ > 0 and τ ∈ (1, q) such that

c2|x |τ ≤ f (z, x)x ≤ τ F(z, x) for a.a. z ∈ �, all |x | ≤ δ, some c2 > 0,

lim sup
x→0

F(z, x)

|x |τ ≤ c∗ for a.a. z ∈ �, some c∗ > 0.

Remark 2.5 The hypotheses on f (z, x) are minimal and imply the presence of a “con-
cave” term near zero.

To produce nodal solutions, we will first show that the problem has extremal con-
stant sign solutions, that is, a smallest positive solution u∗

λ and a biggest negative
solution v∗

λ. Then we will look at the order interval [v∗
λ, u∗

λ] and try to obtain a non-
trival solution of (Pλ) distinct from u∗

λ and v∗
λ. The extremality of u∗

λ and v∗
λ will imply

that such a solution is nodal. To do this, we need to use critical groups since the lack of
regularity properties on the solutions does not permit the use of more direct methods.

3 An Auxiliary Problem

To implement the strategy outlined above, we need to produce extremal constant sign
solutions. To do this first we consider the following auxiliary double phase problem,
the solutions ofwhichwill be helpful in producing the extremal constant sign solutions.

The auxiliary double phase problem is the following

{−�a
pu − �qu = λc2|u|τ−2u in �,

u|∂� = 0, 1 < q < p < N , λ > 0.

}
(Qλ)

Proposition 3.1 If hypotheses H0 hold and λ > 0, then problem (Qλ) has a unique
positive solution

ūλ ∈ W 1,η
0 (�) ∩ L∞(�), 0 ≺ ūλ,

and since the equation is odd, v̄λ = −ūλ is the unique negative solution of (Qλ).

Proof Consider the C1-functional β+
λ : W 1,η

0 (�) → R defined by

β+
λ (u) = 1

p
ρa(Du) + 1

q
‖Du‖qq − λc2

τ
‖u+‖τ

τ .
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Suppose that ‖u‖ ≥ 1. Then

β+
λ (u) ≥ 1

p
‖u‖q − λc3‖u‖τ for some c3 > 0(see Propositions 2.2 and 2.3).

Since q > τ , we see that β+
λ (·) is coercive. Also using Proposition 2.3, we see that

β+
λ (·) is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli

theorem, we can find ūλ ∈ W 1,η
0 (�) such that

β+
λ (ūλ) = inf{β+

λ (u) : u ∈ W 1,η
0 (�)}. (2)

Let u ∈ W 1,η
0 (�)\{0} with u(z) ≥ 0 for a.a. z ∈ �. For t ∈ (0, 1), we have

β+
λ (tu) = t p

p
ρa(Du) + tq

q
‖Du‖qq − λc2tτ

τ
‖u‖τ

τ .

Since τ < q < p, choosing t ∈ (0, 1) small, we see that

β+
λ (tu) < 0,

⇒β+
λ (ūλ) < 0 = β+

λ (0)(see (2)),

⇒ūλ �= 0.

From (2), we have

〈(β+
λ )′(ūλ), h〉 = 0 for all h ∈ W 1,η

0 (�),

⇒〈V (ūλ), h〉 = λc2

∫
�

(ū+
λ )τ−1h dz for all h ∈ W 1,η

0 (�), (3)

In (3) we use the test function h = −ū−
λ ∈ W 1,η

0 (�) and obtain

ϕη(Dū−
λ ) = 0,

⇒ūλ ≥ 0, ūλ �= 0 (see Proposition2.2).

Then ūλ is a positive solution of (Qλ). Thereom 3.1 of Gasinski-Winkert [7] implies
that ūλ ∈ W 1,η

0 (�) ∩ L∞(�). Finally, Proposition 2.4 of Papageorgiou-Vetro-Vetro
[23] says that 0 ≺ ūλ.

Next we show the uniqueness of this positive solution. For this purpose, we intro-
duce the integral functional j : L1(�) �→ R̄ = R ∪ {+∞} defined by

j(u) =
{

1
pρa

(
Du

1
q

)
+ 1

q ‖Du
1
q ‖qq if u ≥ 0, u

1
q ∈ W 1,η

0 (�),

+∞ otherwise.



Multiple and Nodal Solutions for Parametric Dirichlet... Page 9 of 28 62

Let dom j = {u ∈ L1(�) : j(u) < ∞}(the effective domain of j(·)). Consider the
intergrand η̂(z, t) defined by

η̂(z, t) = 1

p
a(z)t p + 1

q
tq for all z ∈ �, all t ≥ 0.

Evidently η̂(·, ·) is continuous and for all z ∈ �, η̂(z, ·) is increasing and t �→ η̂
(
z, t

1
q

)
is convex. Let u1, u2 ∈ dom j and set

u = (tu1 + (1 − t)u2)
1
q with t ∈ [0, 1].

From Diaz-Saa [3](proof of Lemma 1), we have

|Du| ≤
(
t

∣∣∣∣Du
1
q
1

∣∣∣∣
q

+ (1 − t)

∣∣∣∣Du
1
q
2

∣∣∣∣
q) 1

q

⇒η̂(z, |Du|) ≤ η̂

⎛
⎝z,

(
t

∣∣∣∣Du
1
q
1

∣∣∣∣
q

+ (1 − t)

∣∣∣∣Du
1
q
2

∣∣∣∣
q) 1

q

⎞
⎠ (since η̂(z, ·) is increasing)

≤ t η̂
(
z, |Du1|

1
q

)
+ (1 − t)η̂

(
z, |Du2|

1
q

)
(since t �→ η̂

(
z, t

1
q

)
is convex).

Then j(·) is convex. Suppose ω̄λ is another positive solution of problem (Qλ). Again
we have

ω̄λ ∈ W 1,η
0 (�) ∩ L∞(�), 0 ≺ ω̄λ.

Let ε > 0 and define ūε
λ = ūλ + ε, w̄ε

λ = w̄λ + ε. Let L∞(�)+ denote the positive
(order) cone of L∞(�)(that is, L∞(�)+ = {u ∈ L∞(�) : u(z) ≥ 0 for a.a. z ∈
�}). This cone has a nonempty interior given by intL∞(�)+ = {u ∈ L∞(�)+ :
0 < essinf�u}. Evidently ūε

λ, w̄ε
λ ∈ intL∞(�)+. Then using Proposition 4.1.22 of

Papageorgiou-Rădulescu-Repovs [21, p.274], we have

ūε
λ

w̄ε
λ

∈ L∞(�),
w̄ε

λ

ūε
λ

∈ L∞(�). (4)

Let h = (ūε
λ)

q − (w̄ε
λ)

q ∈ W 1,η
0 (�) ∩ L∞(�). On account of (4), we see that for

t ∈ (0, 1) small,

(ūε
λ)

q + th ∈ dom j, (w̄ε
λ)

q + th ∈ dom j .

We compute the directional derivatives of j(·) at (ūε
λ)

q and at (w̄ε
λ)

q in the direction h.
From the convexity of j(·) and using the nonlinear Green’s identity (see [21, p.34]),
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we have

j ′((ūε
λ)

q)(h) = 1

q

∫
�

−�a
pūλ − �q ūλ

(ūε
λ)

q−1 h dz

= λc2
q

∫
�

ūτ−1
λ

(ūε
λ)

q−1 h dz,

j ′((w̄ε
λ)

q)(h) = 1

q

∫
�

−�a
pw̄λ − �qw̄λ

(w̄ε
λ)

q−1 h dz

= λc2
q

∫
�

w̄τ−1
λ

(w̄ε
λ)

q−1 h dz.

The convexity of j(·) implies the monotonicity of the directional derivative. Therefore
we have

0 ≤
∫

�

(
ūτ−1

λ

(ūε
λ)

q−1 − w̄τ−1
λ

(w̄ε
λ)

q−1

)
((ūε

λ)
q − (w̄ε

λ)
q) dz (5)

Note that as ε → 0+, we have
(

ūτ−1
λ

(ūε
λ)

q−1 − w̄τ−1
λ

(w̄ε
λ)

q−1

)
((ūε

λ)
q − (w̄ε

λ)
q)

−→
(

1

ūq−τ
λ

− 1

w̄
q−τ
λ

)
(ūqλ − w̄

q
λ) for a.a. z ∈ �.

Also, we have

∣∣∣∣∣
(

ūτ−1
λ

(ūε
λ)

q−τ
− w̄τ−1

λ

(w̄ε
λ)

q−τ

)
((ūε

λ)
q − (w̄ε

λ)
q)

∣∣∣∣∣
≤ c4[‖ūλ‖τ∞ + ‖w̄λ‖τ∞ + 1] for some c4 > 0, a.a. z ∈ �(see (4)).

Therefore applying the Lebesgue dominated convergence theorem on (5) as ε → 0+,
we obtain

0 ≤
∫

�

[
1

ūq−τ
λ

− 1

w̄
q−τ
λ

]
(ūqλ − w̄

q
λ) dz ≤ 0,

⇒ūλ = w̄λ

(
x �→ 1

xq−τ
is strictly decreasing on R̊+ = (0,∞)

)
.

This proves the uniqueness of the positive solution of (Qλ). Since (Qλ) is odd, v̄λ =
−ūλ is the unique negative solution of (Qλ). ��
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4 Extremal Constant Sign Solutions

In this section, we look for solutions of (Pλ) which have constant sign and we will
produce a smallest positive solution and a biggest negative solution (extremal constant
sign solutions).

we introduce the following sets

S+
λ : set of positive solutions of (Pλ),

S−
λ : set of negative solutions of (Pλ).

We have S+
λ , S−

λ ⊆ W 1,η
0 (�) ∩ L∞(�). First we show that for λ > 0 small, these

sets are nonempty.

Proposition 4.1 If hypotheses H0, H1 hold, then there exists λ∗ > 0 such that S±
λ �= ∅

for all λ ∈ (0, λ∗) and 0 ≺ u for all u ∈ S+
λ , 0 ≺ −v for all v ∈ S−

λ .

Proof First we show the nonemptiness of S+
λ . To this end, let ϕ+

λ : W 1,η
0 (�) �→ R be

the C1-functional defined by

ϕ+
λ (u) = 1

p
ρa(Du) + 1

q
‖Du‖qq −

∫
�

λF(z, u+) dz for all u ∈ W 1,η
0 (�).

Hypotheses H1 imply that

F(z, x) ≤ c5(|x |τ + |x |r ) for a.a. z ∈ �, all x ∈ R, some c5 > 0. (6)

Then for u ∈ W 1,η
0 (�) with ‖u‖ ≤ 1, we have

ϕ+
λ (u) ≥ 1

p
ρη(Du) − λc5(‖u‖τ

τ + ‖u‖rr )(see (6) and recall q < p)

≥ 1

p
‖u‖p−λc5(‖u‖τ+‖u‖r ) for some c6 > 0(see Propositions 2.2 and 2.3).

(7)

Let θ ∈
(
0, 1

p−τ

)
and consider λ ∈ (0, 1) and u ∈ W 1,η

0 (�) with ‖u‖ = λθ < 1.

From (7), we have

ϕ+
λ (u) ≥

(
1

p
− c6

(
λ1−(p−τ)θ + λ1+(r−p)θ

))
λθ p. (8)

From the choice of θ , we have 1 − θ(p − τ) > 0. Also 1 + θ(r − p) > 1. Hence
γ (λ) = λ1−(p−τ)θ +λ1+(r−p)θ → 0 as λ → 0+. So we can find λ∗ ∈ (0, 1) such that
c6γ (λ) < 1

p for all λ ∈ (0, λ∗). From (8), we have

ϕ+
λ (u) ≥

(
1

p
− c6γ (λ)

)
λθ p > 0 for all ‖u‖ = λθ , all λ ∈ (0, λ∗).
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Let B̄λ = {u ∈ W 1,η
0 (�) : ‖u‖ ≤ λθ }. The reflexivity of W 1,η

0 (�) and the
Eberlein-Smulian theorem imply that B̄λ is sequentiallyweakly compact.Alsoϕ+

λ (·) is
sequentially weakly lower-semicontinuous. So, by the Weierestrass-Tonelli theorem,
we can find uλ ∈ B̄λ such that

ϕ+
λ (uλ) = inf

{
ϕ+

λ (u) : u ∈ B̄λ

}
. (9)

Let u ∈ C1
0(�̄)+, u �= 0 and choose t ∈ (0, 1) small so that

0 ≤ tu(z) ≤ δ for all z ∈ �̄,

where δ > 0 is as postulated by hypothesis H1(ii). We have

ϕ+
λ (tu) ≤ tq

q
ρη(Du) − λc2tτ

τ
‖u‖τ

τ (since q < p, t ∈ (0, 1) and see H1(ii)).

Since τ < q, chooseing t ∈ (0, 1) even smaller if necessary, we have

ϕ+
λ (tu) < 0,

⇒ϕ+
λ (uλ) < 0 = ϕ+

λ (0)(see (9)),

⇒uλ �= 0.

From (9), we have

〈(ϕ+
λ )′(uλ), h〉 = 0 for all h ∈ W 1,η

0 (�),

⇒〈V (uλ), h〉 =
∫

�

λ f (z, u+
λ )h dz for all h ∈ W 1,η

0 (�).

Let h = −u−
λ ∈ W 1,η

0 (�). We obtain

ρη(Du−
λ ) = 0,

⇒uλ ≥ 0, uλ �= 0 (see Proposition 2.2) .

So, uλ ∈ W 1,η
0 (�)∩L∞(�) is a positive solution of (Pλ) and we infer that S

+
λ �= ∅ for

λ ∈ (0, λ∗). If u ∈ S+
λ , then u ∈ W 1,η

0 (�) ∩ L∞(�). Let ρ = ‖u‖∞. On account of
hypothesis H1(ii), we can find F̂ρ > 0 such that f (z, x)+ F̂ρx p−1 ≥ 0 for a.a. z ∈ �.
Hence

− �a
pu − �qu + F̂ρu

p−1 ≥ 0 in �,

⇒0 ≺ u(see Papageorgiou-Vetro-Vetro [23,Proposition2.4]).
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For the negative solutions, we work with the C1-functional

ϕ−
λ (u) = 1

p
ρa(Du) + 1

q
‖Du‖qq −

∫
�

λF(z,−u−) dz for all u ∈ W 1,η
0 (�).

Reasoning as above we show that S−
λ �= ∅ for all λ ∈ (0, λ∗)(by taking λ∗ > 0

even smaller if necessary) and if v ∈ S−
λ , then 0 ≺ −v. ��

From Papageorgiou-Rădulescu-Repovs [20] (proof of Proposition 7), we have that
S+
λ is downward directed (that is, if u1, u2 ∈ S+

λ , there is u ∈ S+
λ with u ≤ u1,

u ≤ u2), S
−
λ is upward directed (that is, if v1, v2 ∈ S−

λ , there is v ∈ S−
λ with v1 ≤ v,

v2 ≤ v).
Using these properties of the solution sets, we can generate extremal constant sign

solutions, that is, we can prove that there is u∗
λ ∈ S+

λ such that u∗
λ ≤ u for all u ∈ S+

λ

and there is v∗
λ ∈ S−

λ such that v ≤ v∗
λ for all v ∈ S−

λ .

Proposition 4.2 if hypotheses H0, H1 hold and λ ∈ (0, λ∗), then problem (Pλ) has
extremal constant sign solutions

u∗
λ ∈ S+

λ and v∗
λ ∈ S−

λ .

Proof Theorem 5.109, p.308 of Hu-Papageorgiou [10] says that we can find a decreas-
ing sequence {un}n∈N ⊆ S+

λ such that

inf S+
λ = inf

n∈N un .

We have

〈V (un), h〉 =
∫

�

λ f (z, un)h dz for all h ∈ W 1,η
0 (�), all n ∈ N, (10)

0 ≤ un ≤ u1 for all n ∈ N. (11)

In (10) we choose the test function h = un ∈ W 1,η
0 (�). Using (11) and hypothesis

H1(i), we obtain

ρη(Dun) ≤ λc7 for some c7 > 0, all n ∈ N,

⇒{un}n∈N ⊆ W 1,η
0 (�) is bounded (see Proposition 2.2). (12)

From Colasuonno-Squassina [2] (Section 3.2), for m ∈
(
N
q ,∞

)
, we have

‖un‖∞ ≤ λc8‖ f (·, un(·))‖
1

q−1
m for some c8 > 0, all n ∈ N. (13)

From (12), we see that at least for a subsequence, we have

un
w−→ u∗

λ in W 1,η
0 (�), un → u∗

λ in Lr (�)(see Proposition 2.3). (14)
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In (10) we use h = un − u∗
λ ∈ W 1,η

0 (�), pass to the limit as n → ∞ and use (14). We
obtain

lim
n→∞〈V (un), un − u∗

λ〉 = 0,

⇒un → u∗
λ in W 1,η

0 (�)(see Proposition 2.4). (15)

Suppose that u∗
λ = 0. From (13) and (15), we see that

‖un‖∞ → 0.

Therefore we can find n0 ∈ N such that

0 ≤ un(z) ≤ δ for a.a. z ∈ �, all n ≥ n0,

⇒c2un(z)
τ−1 ≤ f (z, un(z)) for a.a. z ∈ �, all n ≥ n0(see hypothesis H1(ii)).

(16)

Fix n ≥ n0 and consider the Caratheodary function k+(z, x) defined by

k+(z, x) =
{
c2(x+)τ−1 if x ≤ un(z)

c2un(z)τ−1 if un(z) < x
(17)

We set K+(z, x) = ∫ x
0 k+(z, s) ds and consider the C1-functional ϕ+

λ : W 1,η
0 (�) �→

R defined by

ϕ+
λ (u) = 1

p
ρa(Du) + 1

q
‖Du‖qq −

∫
�

λK+(z, u) dz for all u ∈ W 1,η
0 (�).

From (17), we see that ϕ+
λ (·) is coercive. Also, it is sequentially weakly lower semi-

continuous. So, we can find ũλ ∈ W 1,η
0 (�) such that

ϕ+
λ (ũλ) = inf

{
ϕ+

λ (u) : u ∈ W 1,η
0 (�)

}
. (18)



Multiple and Nodal Solutions for Parametric Dirichlet... Page 15 of 28 62

Let v ∈ C1
0(�̄)+, v �= 0 and t ∈ (0, 1). We have

ϕ+
λ (tv) ≤ tq

q
ρη(Dv) −

∫
�

λK+(z, tv) dz(since q < p)

= tq

q
ρη(Dv) − λc2tτ

τ

∫
{tv≤vn}

vτ dz

− λc2
τ

∫
�

uτ
n dz − λc2

∫
{un<tv}

uτ−1
n (tv − un) dz(see (17))

≤ tq

q
ρη(Dv) − λc2tτ

τ

∫
{tv≤un}

vτ dz

= tq

q
ρη(Dv) − λc2tτ

τ

∫
�

vτ dz + λc2
τ

∫
{un<tv}

vτ dz

=
[
tq−τ

q
ρη(Dv) − λc2

τ
‖v‖τ

τ + λc2
τ

∫
{un<tv}

vτ dz

]
tτ

If by | · |N we denote the Lebesgue measure onRN , then |{un < tv}|N → 0 as t → 0+
(recall that 0 ≺ un). So, for t ∈ (0, 1) small, we have

ϕ+
λ (tv) < 0,

⇒ϕ+
λ (ũλ) < 0 = ϕ+

λ (0)(see (18)),

⇒ũλ �= 0.

From (18), we have

〈(ϕ+
λ )′(ũλ), h〉 = 0 for all h ∈ W 1,η

0 (�),

⇒〈V (ũλ), h〉 =
∫

�

λk+(z, ũλ)h dz for all h ∈ W 1,η
0 (�). (19)

In (19) first we choose h = −ũ−
λ ∈ W 1,η

0 (�) and obtain

ρη(Dũ−
λ ) = 0(see (17)),

⇒ũλ ≥ 0, ũλ �= 0.

Next in (19) we use the test function h = (ũλ − un)+ ∈ W 1,η
0 (�). We obtain

〈V (ũλ), (ũλ − u)+〉
=
∫

�

λc2u
τ−1
n (ũλ − un)

+ dz

≤
∫

�

λ f (z, un)(ũλ − un)
+ dz since n ≥ n0(see (16))
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= 〈V (un), (ũλ − un)
+〉(since un ∈ S+

λ ),

⇒ũλ ≤ un (see Proposition (2.4)).

So, we have proved that

ũλ ∈ [0, un], ũλ �= 0. (20)

From (17, (19), (20)) and Proposition 3.1, we infer that ũλ = ūλ. We have

ūλ ≤ un for all n ≥ n0,

contradicting the assumption that u∗
λ = 0 and so that un → 0 in L∞(�). Therefore

u∗
λ �= 0. If in (10) we pass to the limit as n → ∞ and use (15), then

〈V (u∗
λ), h〉 = λ

∫
�

f (z, u∗
λ)h dz for all h ∈ W 1,η

0 (�),

⇒u∗
λ ∈ S+

λ , u∗
λ = inf S+

λ .

Similarly for S−
λ which is upward directed and so we can find {vn}n∈N ⊆ S−

λ

increasing such that sup S−
λ = supn∈N vn . ��

5 Nodal Solutions

In this section, using the extremal constant sign solutions and the theory of critical
groups (see [21]), we will produce nodal solutions and determine their asymptotic
behavior as λ → 0+.

We introduce the energy functional for problem (Pλ), ϕλ : W 1,η
0 (�) �→ R defined

by

ϕλ(u) = 1

p
ρa(Du) + 1

q
‖Du‖qq − λ

∫
�

F(z, u) dz for all u ∈ W 1,η
0 (�).

Evidently ϕλ ∈ C1(W 1,η
0 (�)).

Proposition 5.1 If hypotheses H0, H1 hold, λ > 0 and 0 ∈ Kϕλ is isolated, then
Ck(ϕλ, 0) = 0 for all k ∈ N0.

Proof Hypotheses H1 imply that

c2|x |τ − c9|x |r ≤ F(z, x) for a.a. z ∈ �, all x ∈ R, some c9 > 0. (21)

If u ∈ W 1,η
0 (�)\{0} and t ∈ (0, 1), then

ϕλ(tu) ≤ tq

q
ρη(Du) + c9t

r‖u‖rr − c2t
τ‖u‖τ

τ (recall q < p, see (21)).
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Since τ < q < r , we see that there exists t∗ ∈ (0, 1) such that

ϕλ(tu) < 0 for all t ∈ (0, t∗).

Consider u ∈ W 1,η
0 (�) with 0 < ‖u‖ ≤ 1 which satisfies also ϕλ(u) = 0. We have

d

dt
ϕλ(tu)|t=1 = 〈ϕ′

λ(u), u〉(by the chain rule)

= ρη(Du) − λ

∫
�

f (z, u)u dz

=
(
1 − τ

p

)
ρa(Du) +

(
1 − τ

q

)
‖Du‖qq

+ λ

∫
�

[τ F(z, u) − f (z, u)u] dz(since ϕλ(u) = 0)

≥
(
1 − τ

p

)
ρa(Du) +

(
1 − τ

q

)
‖Du‖qq

+ λ

∫
{|u|>δ}

[τ F(z, u) − f (z, u)u] dz(see H1(ii))

≥
(
1 − τ

q

)
ρη(Du) − λc10‖u‖r for some c10 > 0

(since q < p, F ≥ 0 and using H1(i))

≥
(
1 − τ

q

)
‖u‖p − λc10‖u‖r (recall ‖u‖ ≤ 1 and see Proposition 2.2)

(22)

But p < r . So, from (22), we see that for ρ ∈ (0, 1) small, we have

d

dt
ϕλ(tu)

∣∣∣
t=1

> 0 for all u ∈ W 1,η
0 (�) with 0 < ‖u‖ ≤ ρ, ϕλ(u) = 0. (23)

Consider u ∈ W 1,η
0 (�) as in (23). We will show that

ϕλ(tu) ≤ 0 for all t ∈ [0, 1]. (24)

If (24) is not true, then we can find t0 ∈ (0, 1) such that

ϕλ(t0u) > 0.

Recall that ϕλ(u) = 0(see (23)). So, we can define

t̂ = min {t ∈ (t0, 1] : ϕλ(tu) = 0} > t0 > 0,

⇒ϕλ(tu) > 0 for all t ∈ [t0, t̂). (25)
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Let y = t̂u. Then

0 < ‖y‖ = t̂‖u‖ < ‖u‖ ≤ ρ and ϕλ(y) = ϕλ(t̂u) = 0.

Therefore from (23), we have

d

dt
ϕλ(t y)

∣∣∣
t=1

> 0. (26)

Also we have

ϕλ(y) = ϕλ(t̂u) = 0 < ϕλ(tu) for all t ∈ [t0, t̂)(see (25))
⇒ d

dt
ϕλ(t y)

∣∣∣
t=1

= t̂
d

dt
ϕλ(tu)

∣∣∣
t=t̂

= t̂ lim
t→t̂−

ϕλ(tu)

t − t̂
≤ 0. (27)

We compare (26) and (27) and we have a contradiction. So (24) is true.
Since by hypothesis 0 ∈ Kϕλ is isolated, we can always choose ρ ∈ (0, 1) small

so that Kϕλ ∩ B̄ρ = {0}
(
recall B̄ρ =

{
u ∈ W 1,η

0 (�) : ‖u‖ ≤ ρ
})

. We consider the

deformation

H(t, u) = (1 − t)u for all t ∈ [0, 1], all u ∈ ϕ0
λ ∩ B̄ρ.

From (24), we see that this is a well-defined deformation of ϕ0
λ ∩ B̄ρ . H shows shat

ϕ0
λ ∩ B̄ρ is contractible. Let u ∈ B̄ρ with ϕλ(u) > 0. We will show that there exists

unique t(u) ∈ (0, 1) such that

ϕλ(t(u)u) = 0.

From the first part of the proof and Bolzano’s theorem, we know that such a t(u) ∈
(0, 1) exists. So, we have to show that it is unique. Arguing by contradiction, suppose
we can find t1 = t1(u) < t2 = t2(u) < 1 such that

ϕλ(t1u) = ϕλ(t2u) = 0.

From (24), we have

ϕλ(t t2u) ≤ 0 for all t ∈ [0, 1].

Hence t̃ = t1
t2

∈ (0, 1) is a maximizer of the function t �→ ϕλ(t t2u) on [0, 1]. It follows
that

0 = d

dt
ϕλ(t t2u)

∣∣∣
t= t1

t2

= d

dt
ϕλ(t t1u)

∣∣∣
t=1

. (28)
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Since ϕλ(t1u) = 0 and 0 < t1‖u‖ ≤ ‖u‖ ≤ ρ, we see that (28) contradicts (26). This
proves the uniqueness of t(u) ∈ (0, 1) such that ϕλ(t(u)u) = 0. Then we have

ϕλ(tu) < 0 if 0 < t < t(u)

ϕλ(tu) > 0 if t(u) < t ≤ 1.

We introduce the map ξ : B̄ρ\{0} �→ [0, 1] defined by

ξ(u) =
{
1 if u ∈ B̄ρ\{0}, ϕλ(u) ≤ 0

t(u) if u ∈ B̄ρ\{0}, ϕλ(u) > 0.
(29)

We claim that ξ(·) is continuous.We need to show continuity on the interface of the two
branches. So, consider u ∈ B̄ρ\{0}with ϕλ(u) = 0 and a sequence {un}n∈N ⊆ B̄ρ\{0}
such that

un → u, ϕλ(un) > 0 for all n ∈ N(see (29)).

Arguing by contradiction, suppose that

t(un) ≤ t̃0 < 1 for all n ∈ N,

⇒ϕλ(tun) > 0 for all t ∈ (t̃0, 1], all n ∈ N,

⇒ϕλ(tu) ≥ 0 for all t ∈ (t̃0, 1],
⇒ϕλ(tu) = 0 for all t ∈ (t̃0, 1](see (24)),
⇒ d

dt
ϕλ(tu)

∣∣∣
t=1

= 0,

which contradicts (26). Therefore ξ(·) is continuous. Now consider the map ξ∗ :
B̄ρ\{0} �→ (ϕ0

λ ∩ B̄ρ)\{0} defined by

ξ∗(u) =
{
u if u ∈ B̄ρ\{0}, ϕλ(u) ≤ 0

ξ(u)u if u ∈ B̄ρ\{0}, ϕλ(u) > 0.

The continuity of ξ(·) implies the continuity of ξ∗(·). Also, we have

ξ∗
∣∣∣
(ϕ0

λ∩B̄ρ)\{0} = id(ϕ0
λ∩B̄ρ)\{0}

⇒(ϕ0
λ ∩ B̄ρ)\{0} is a retract of B̄ρ\{0}.

The set B̄ρ\{0} is contractible. A retract of a contractible space is contractible. There-
fore (ϕ0

λ ∩ B̄ρ)\{0} is contractible. Earlier in the proof we showed that ϕ0
λ ∩ B̄ρ is

contractible. Then from Papageorgiou-Rădulescu-Repovs [21, p.469], we have

Hk(ϕ
0
λ ∩ B̄ρ, (ϕ0

λ ∩ B̄ρ)\{0}) = 0 for all k ∈ N0,

⇒Ck(ϕλ, 0) = 0 for all k ∈ N0.
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The proof is now complete. ��

Let u∗
λ, v

∗
λ be the two extremal constant sign solutions of problem (Pλ) produced

in Proposition 4.2. We introduce the Caratheodary function gλ(z, x) defined by

gλ(z, x) =

⎧⎪⎨
⎪⎩

λ f (z, v∗
λ(z)) if x < v∗

λ(z)

λ f (z, x) if v∗
λ(z) ≤ x ≤ u∗

λ(z)

λ f (z, u∗
λ) if u∗

λ < x .

(30)

Also we consider the positive and negative trucations of gλ(z, ·), namely the
Caratheodary functions

g±
λ (z, x) = gλ(z,±x±). (31)

We set Gλ(z, x) = ∫ x
0 gλ(z, s) ds, G

±
λ (z, x) = ∫ x

0 g±
λ (z, s) ds and consider the C1-

functionals σλ, σ±
λ : W 1,η

0 (�) �→ R defined by

σλ(u) = 1

p
ρa(Du) + 1

q
‖Du‖qq −

∫
�

Gλ(z, u) dz,

σ±
λ (u) = 1

p
ρa(Du) + 1

q
‖Du‖qq −

∫
�

G±
λ (z, u) dz

for all u ∈ W 1,η
0 (�).

Using (30), (31) and the extremality of u∗
λ, v

∗
λ, we prove easily the following propo-

sition.

Proposition 5.2 If hypotheses H0, H1 hold and λ ∈ (0, λ∗), then Kσλ ⊆ [v∗
λ, u∗

λ] ∩
L∞(�), Kσ+

λ
= {0, u∗

λ}, Kσ−
λ

= {0, v∗
λ}.

From this proposition, we see that we may assume that Kδλ is finite or otherwise we
already have an infinity of bounded nodal solutions and so we are done. From (30),
we see that

σ ′
λ|[v∗

λ,u∗
λ] = ϕ′

λ|[v∗
λ,u∗

λ],
⇒Kϕλ ∩ [v∗

λ, u∗
λ] is finite,

⇒0 ∈ Kϕλ is isolated.

Proposition 5.3 If hypotheses H0, H1 hold and λ ∈ (0, λ∗), then Ck(σλ, 0) = 0 for
all k ∈ N0.
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Proof we have

|σλ(u) − ϕλ(u)|
≤
∫

�

|Gλ(z, u) − λF(z, u)| dz

= λ

∫
{u<v∗

λ}
|F(z, v∗

λ) + (u − v∗
λ) f (z, v∗

λ) − F(z, u)| dz

+ λ

∫
{u∗

λ<u}
|F(z, u∗

λ) + (u − u∗
λ) f (z, u

∗
λ) − F(z, u)| dz

≤ λ

∫
{u<v∗

λ}
(2F(z, u) + 2| f (z, v∗

λ)||u|) dz

+ λ

∫
{u∗

λ<u}
(2F(z, u) + 2 f (z, u∗

λ)u) dz(from the sign condition)

≤ 2λ
∫

�

F(z, u) dz + λc11‖u‖ for some c11 > 0

≤ 2λc12[‖u‖τ + ‖u‖r ] + λc11‖u‖ for some c12 > 0(see hypotheses H1)

≤ λc13‖u‖ for some c13 > 0 and for ‖u‖ ≤ 1. (32)

Next let h ∈ W 1,η
0 (�). We have

|〈σ ′
λ(u) − ϕ′

λ(u), h〉|
≤
∫

�

|gλ(z, u) − λ f (z, u)||h| dz

=
∫

{u<v∗
λ}

λ| f (z, v∗
λ) − f (z, u)||h| dz +

∫
{u∗

λ<u}
λ| f (z, u) − f (z, u∗

λ)||h| dz

≤ λc14

[∫
{u<v∗

λ}
(|u|τ−1 + |u|r−1)|h| dz +

∫
{u∗

λ<u}
(uτ−1 + |u|r−1)|h| dz

]
for some c14 > 0

(note that |v∗
λ| ≤ |u| on {u < v∗

λ})
≤ λc14

∫
�

(|u|τ−1 + |u|r−1)|h| dz.

Since h ∈ W 1,η
0 (�) and W 1,η

0 (�) ↪→ Lτ (�) and in Lr (�) continuously(in fact
compactly, see Proposition 2.3), using Hölder’s inequality, we have

|〈σ ′
λ(u) − ϕ′

λ(u), h〉| ≤ λc15[‖u‖τ−1
τ + ‖u‖r−1

r ]‖h‖ for some c15 > 0,

≤ λc16‖u‖ · ‖h‖ for some c16 > 0 (since ‖u‖ ≤ 1, 1 < τ < r).

Then

‖σ ′
λ(u) − ϕ′

λ(u)‖∗ ≤ λc16‖u‖. (33)
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From (32) and (33), we see that given ε > 0, for δ ∈ (0, 1) small, we have

‖σλ − ϕλ‖C1(B̄δ)
≤ ε with B̄δ = {u ∈ W 1,η

0 (�) : ‖u‖ ≤ δ}.

The functional σλ(·) is coercive(see (30)). So, from Proposition 5.1.15 of [21, p.369],
we know that σλ(·) satisfies theC-condition. So,we can use theC1-continuity property
of critical groups(seeGasinski-Papageorgiou [5], Theorem5.129, p.836) and infer that

Ck(σλ, 0) = Ck(ϕλ, 0) for all k ∈ N0,

⇒Ck(σλ, 0) = 0 for all k ∈ N0 (see Proposition 5.1).

This completes the proof. ��
Now we are ready to produce a nodal solution yλ and determine its asymptotic

behavior as λ → 0+.
Proposition 5.4 If hypotheses H0, H1 hold and λ ∈ (0, λ∗), then problem (Pλ) has a
nodal solution yλ ∈ W 1,η

0 (�)∩L∞(�) and yλ → 0 in W 1,η
0 (�)∩L∞(�) as λ → 0+.

Proof From (30) and (31), it is clear that σ+
λ (·) is coercive. Also it is sequentially

weakly lower semicontinuous. So, we can find ũ∗
λ ∈ W 1,η

0 (�) such that

σ+
λ (ũ∗

λ) = inf{σ+
λ (u) : u ∈ W 1,η

0 (�)}. (34)

Let u ∈ C1
0(�̄+), u �= 0 and choose t ∈ (0, 1) small so that 0 ≤ tu(z) ≤ δ for all

z ∈ �̄, with δ > 0 as postulated in hypothesis H1(ii). We have

σ+
λ (tu) ≤ t p

p
ρa(Du) + tq

q
‖Du‖qq − c2tτ

τ

∫
{tu≤u∗

λ}
uτ dz(see hypothesis H1(ii))

≤ tq

q
ρη(Du) − c2tτ

τ

∫
�

uτ dz + c2tτ

τ

∫
{u∗

λ<tu}
uτ dz

=
[
tq−τ

q
ρη(Du) − c2

τ
‖u‖τ

τ + c2
τ

∫
{u∗

λ<tu}
uτ dz

]
tτ (35)

Note that |{u∗
λ < tu}|N → 0 as t → 0+ (recall that 0 ≺ u∗

λ). Then from (35), we see
that for t ∈ (0, 1) small, we have

σ+
λ (tu) < 0,

⇒σ+
λ (ũ∗

λ) < 0 = σ+
λ (0)(see (34))

⇒ũ∗
λ �= 0.

From (34), we have ũ∗
λ ∈ Kσ+

λ
. Then by Proposition 5.2, we have ũ∗

λ = u∗
λ. So, we

have

Ck(σ
+
λ , u∗

λ) = δk,0Z for all k ∈ N0. (36)
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Claim: Ck(σλ, u∗
λ) = CK (σ+

λ , u∗
λ) for all k ∈ N0. Note that gλ(z, u∗

λ) = g+
λ (z, u∗

λ)

and Gλ(z, u∗
λ) = G+

λ (z, u∗
λ) (see (30) and (31)). We have

|σλ(u) − σ+
λ (u)| ≤

∫
�

|Gλ(z, u) − Gλ(z, u
∗
λ)| dz +

∫
�

|G+
λ (z, u∗

λ) − G+
λ (z, u)| dz.

(37)

We estimate each term in the right hand side of (37). We have

∫
�

|Gλ(z, u) − Gλ(z, u
∗
λ)| dz

≤
∫

{u<v∗
λ}
(
λ|(u − v∗

λ) f (z, v∗
λ) + F(z, v∗

λ) − F(z, u∗
λ)|
)
dz

+
∫

{v∗
λ≤u≤u∗

λ}
λ|F(z, u) − F(z, u∗

λ)| dz

+
∫

{u∗
λ<u}

λ(u − u∗
λ) f (z, u

∗
λ) dz. (38)

Note that on {u < v∗
λ} we have

|(u − v∗
λ) f (z, v∗

λ)|
≤ c17|u − v∗

λ| for some c16 > 0 (see H1(i))

≤ c17(|u − u∗
λ| + (u∗

λ − v∗
λ))

≤ 2c17|u − u∗
λ|(since u∗

λ − v∗
λ ≤ u∗

λ − u on {u < v∗
λ}).

Since by hypothesis f (z, ·) is an L∞-locally Lipschitz integrand, on {u < v∗
λ} we

have

|F(z, v∗
λ) − F(z, u∗

λ)| ≤ c18(u
∗
λ − v∗

λ) for some c18 > 0

≤ c18(u
∗
λ − u) (since − v∗

λ ≤ −u)

Therefore we obtain

∫
{u<v∗

λ}
(
λ|(u − v∗

λ) f (z, v∗
λ) + F(z, v∗

λ) − F(z, u∗
λ)|
)
dz

≤ λc19‖u − u∗
λ‖ for some c19 > 0.

Also using once again the hypothesis that f (z, ·) is an L∞-locally Lipschitz integrand,
we have

∫
{v∗

λ≤u≤u∗
λ}

λ|F(z, u) − F(z, u∗
λ)| dz ≤ λc20‖u − u∗

λ‖ for some c20 > 0.
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Finally we have

∫
{u∗

λ<u}
λ(u − u∗

λ) f (z, u
∗
λ) dz ≤ λc21‖u − u∗

λ‖ for some c21 > 0.

Returning to (38), we see that

∫
�

|Gλ(z, u) − Gλ(z, u
∗
λ)| dz ≤ λc22‖u − u∗

λ‖ for some c22 > 0. (39)

In a similar fashion, we show that

∫
�

|G+
λ (z, u∗

λ) − G+
λ (z, u)| dz ≤ λc23‖u − u∗

λ‖ for some c23 > 0. (40)

Returning to (37) and using (39) and (40), we obtain

|σλ(u) − σ+
λ (u)| ≤ λc24‖u − u∗

λ‖ for some c24 > 0. (41)

Now we perform a similar estimation for the derivatives. Let h ∈ W 1,η
0 (�). As before

we have

|〈σ ′
λ(u) − (σ+

λ )′(u), h〉|
≤
∫

�

|gλ(z, u) − gλ(z, u
∗
λ)||h| dz +

∫
�

|g+
λ (z, u∗

λ) − g∗
λ(z, u)||h| dz (42)

We estimate the two terms in the right hand side of (42). We have

∫
�

|gλ(z, u) − gλ(z, u
∗
λ)||h| dz

=
∫

{u<v∗
λ}

λ| f (z, v∗
λ) − f (z, u∗

λ)||h| dz +
∫

{v∗
λ≤u≤u∗

λ}
λ| f (z, u) − f (z, u∗

λ)||h| dz

≤ λc25

∫
�

|u − u∗
λ||h| dz(again we use that u∗

λ − v∗
λ ≤ u∗

λ − u on {u < v∗
λ}).

On account of hypotheses H0, if s > 1 is close to 1, we have

u − u∗
λ ∈ L

p
s (�) and h ∈ L( p

s )
′
(�).

Since
( p
s

)′ = p
p−s < q∗ = Nq

N−q (recall that p ≥ 2 and 1
q < 1

p + 1
Np see hypotheses

H0). Therefore by Hölder’s inequality, and Proposition 2.3, we have

∫
�

|gλ(z, u) − gλ(z, u
∗
λ)||h| dz ≤ λc26‖u − u∗

λ‖‖h‖ for some c26 > 0. (43)
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Similarly, we show that

∫
�

|g+
λ (z, u∗

λ) − g+
λ (z, u)| dz ≤ λc27‖u − u∗

λ‖‖h‖ for some c27 > 0. (44)

Using (43) and (44) in (42) and taking supremum over h ∈ W 1,η
0 (�), ‖h‖ ≤ 1, we

obtain

‖σ ′
λ(u) − (σ+

λ )′(u)‖∗ ≤ λc28‖u − u∗
λ‖ for some c28 > 0. (45)

From (41) and (45), we infer that given ε > 0, we can find δ ∈ (0, 1) small such that

‖σλ − σ+
λ ‖C1(B̄δ(u∗

λ)) ≤ ε

where B̄δ(u∗
λ) =

{
u ∈ W 1,η

0 (�) : ‖u − u∗
λ‖ ≤ δ

}
. Then the C1-continunity property

of critical groups(see [5, p.836]) implies that

Ck(σλ, u
∗
λ) = Ck(σ

+
λ , u∗

λ) for all k ∈ N0.

This proves the claim. From the claim and (36), we have

Ck(σλ, u
∗
λ) = δk,0Z for all k ∈ N0. (46)

Working with σ−
λ , first we show as above that v∗

λ is a global minimizer of σ−
λ (·) and

so

Ck(σ
−
λ , v∗

λ) = δk,0Z for all k ∈ N0.

Reasoning as in the claim, we show that

Ck(σλ, v
∗
λ) = Ck(σ

−
λ , v∗

λ) for all k ∈ N0

⇒Ck(σλ, v
∗
λ) = δk,0Z for all k ∈ N0. (47)

From Proposition 5.3, we know that

Ck(σλ, 0) = 0 for all k ∈ N0. (48)

The function σλ(·) is coercive and so from Proposition 6.2.24 of [21, p.491], we have

Ck(σλ,∞) = δk,0Z for all k ∈ N0. (49)

Suppose Kσλ = {0, u∗
λ, v

∗
λ}. Then from (46), (47), (48), (49) and the Morse relation

with t = −1(see (1)), we have 2(−1)0 = (−1)0, a contradiction. So, there exists



62 Page 26 of 28 L. Cai et al.

yλ ∈ Kσλ ⊆ [v∗
λ, u∗

λ] ∩ L∞(�)(see Proposition 5.2), yλ /∈ {0, u∗
λ, v

∗
λ}. On account of

the extremality of u∗
λ, v

∗
λ, this solution is nodal. We have

〈V (yλ), h〉 =
∫

�

λ f (z, yλ)h dz for all h ∈ W 1,η
0 (�).

Choosing h = yλ ∈ W 1,η
0 (�), we obtain

ρη(Dyλ) ≤ λc29 for some c29 > 0, (50)

⇒yλ → 0 in W 1,η
0 (�) as λ → 0+. (51)

Evidently {u∗
λ}λ∈(0,1] is decreasing and {v∗

λ}λ∈(0,1] is increasing as λ → 0+. Also,
using the Moser iteration technique as in Guedda-Véron [8](see also [2]), for m > N

q ,
we have

‖yλ‖∞ ≤ λc30‖ f (·, yλ(·))‖
1

q−1
m for some c30 > 0, all λ ∈ (0, 1],

⇒yλ → 0 in L∞(�) as λ → 0+.

Recall that W 1,η
0 (�) ∩ L∞(�) is a Banach space with norm | · | = max{‖ · ‖, ‖ · ‖∞}.

Therefore we conclude that

yλ → 0 in W 1,η
0 (�) ∩ L∞(�) as λ → 0+.

The proof is now complete. ��
Summarizing our findings, we can state the following multiplicity theorem for

problem (Pλ).

Theorem 5.5 If hypotheses H0, H1 hold, then for all λ > 0 small problem (Pλ) has at
least three nontrivial solutions uλ, vλ, yλ ∈ W 1,η

0 (�) ∩ L∞(�) such that

0 ≺ uλ, 0 ≺ −vλ, yλ ∈ [vλ, uλ] is nodal

and yλ → 0 in W 1,η
0 (�) ∩ L∞(�) as λ → 0+.

Remark 5.6 In this multiplicity theorem we provide sign information for all the solu-
tions produced and the solutions are ordered.
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