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1. Introduction

In this paper, we consider the existence and concentration of solutions to the quasi-
linear elliptic problems with potentials{

ε2Δ2
1u− εΔ1u + V (x) u

|u| = K(x)f(u) in RN ,

u ∈ BL(RN ),
(1.1)

where N ≥ 3, ε > 0 is a positive parameter, V, K, f satisfy some proper conditions and 
BL(RN ) is a space of functions of bounded variation, which will be defined in Section 2. 
The 1-Laplacian operator is formally defined as

Δ1u = div( Du

|Du| ),

and the 1-biharmonic operator is given by

Δ2
1u = Δ( Δu

|Δu| ).

In the last years, the interest in elliptic problems involving the 1-Laplacian operator 
has increased a lot. The 1-Laplacian operator comes out from an optimal design problem 
in the theory of torsion and from the level set formulation of the Inverse Mean Curvature 
Flow, and also appears in the variational approach to image denoising restoration. On the 
other hand, from a purely mathematical point of view, there are a lot of papers on this 
highly singular operator. For example, in [2], F. Andreu, C. Ballesteler, V. Caselles and 
J.M. Mazón made a pioneering study of problems involving this operator, and produced 
the monograph [3]; in [1,8,11,12], the authors analyzed related questions based on the 
energy functional of the space BV , and in [17–20], the authors used a method based on 
approximation through p-Laplacian problems. The 1-Laplacian operator can be seen as 
the p-Laplacian ones, as the parameter p → 1+. As pointed out in [10], this fact has 
great mathematical significance because diffusion processes involving this operator do 
not have diffusion on different levels.

One can consider its higher-order counterparts, including problems involving the 1-
biharmonic operator Δ2

1u = Δ( Δu
|Δu| ), which can be seen as the limit of the p-biharmonic 

ones, as the parameter p goes to 1+. The difference is that few articles discuss the problem 
of designing this operator. Indeed, in [21], E. Parini, B. Ruf and C. Tarsi first studied 
the problem of such operator and dealt with the related eigenvalue problem; they proved 
that
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Λ1,1(Ω) = inf
u∈BL0(Ω)\{0}

∫
Ω |Δu|
‖u‖1

is attained by a non-negative and superharmonic function v that belongs to the space

BL0(Ω) = {u ∈ W 1,1
0 (Ω); Δu ∈ M(Ω)}

where M(Ω) is the space of the Radon measures defined on Ω. In fact, their result is 
more complete, as it also provides information about the shape of the domain Ω that 
maximizes Λ1,1(Ω). In [23], the same authors also dealt with the 1-biharmonic operator; 
they studied the following minimization problem

Λc
1,1(Ω) = inf

u∈C∞
c (Ω)\{0}

∫
Ω |Δu|
‖u‖1

.

Similarly, in [23] the authors also studied the shape of the subset that maximizes the 
quantity Λc

1,1(Ω). In [22], these authors studied some optimal constants of Sobolev em-
beddings in some spaces of functions related to 1-biharmonic operator. In [6], S. Barile 
and M.T. Pimenta studied some existence results of bounded variation solutions to the 
following quasilinear fourth-order problem

{
Δ2

1u = f(x, u) in Ω,

u = Δu
|Δu| = 0 on ∂Ω,

where f is superlinear and subcritical at infinity which satisfies the Ambrosetti-
Rabinowitz condition and a monotonicity one or f is sublinear. In [13], E.J. Hurtado, 
M.T. Pimenta and O.H. Miyagaki proved some compactness results of BLrad(RN ), the 
space BL(RN ) of radially symmetric functions and the existence of the ground state 
solution for the quasilinear elliptic problem

{
Δ2

1u− Δ1u + u
|u| = f(u) in RN ,

u ∈ BL(RN ).

Moreover, Alves and Pimenta [1], Che [9], Liu and Guo [15] considered existence and 
concentration of solutions for quasilinear elliptic problems with potentials; see also the 
references there. The above applications make one consider if these relevant results can 
be generalized to problems involving the 1-biharmonic operator.

Motivated by the aforementioned works, we will deal with some generalizations of the 
above results to problem (1.1) under the following assumptions:

(f1) f is continuous in R;
(f2) lim|s|→0 f(s) = 0;
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(f3) There exist constants c1, c2 > 0 and p ∈ (1, 1∗) such that

|f(s)| ≤ c1 + c2|s|p−1, ∀s ∈ R;

(f4) There exists κ > 1 such that

0 < κF (s) ≤ f(s)s, for s �= 0,

where F (s) =
∫ s

0 f(t)dt;
(f5) f is increasing.

Moreover, the potentials are assumed to satisfy some of the following conditions:

(V1) V (x) ∈ C(RN ) and V∞ = lim inf |x|→∞ V (x) > V0 = infx∈RN V (x) > 0;
(V2) V (x) ∈ C(RN ), V∞ = lim|x|→∞ V (x) ≥ V (x) > 0 for x ∈ RN ;
(K1) K(x) ∈ C(RN ), K0 = maxx∈RN K(x) ≥ K(x) ≥ K∞ = lim|x|→∞ K(x) > 0 for 

x ∈ RN ;
(K2) K(x) ∈ C(RN ), lim|x|→∞ K(x) = K∞ ≥ K(x) > 0 for x ∈ RN ;
(V K) Λ =

{
x ∈ RN : V (x) = V0

}
and Λ1 =

{
x ∈ RN : K(x) = K0

}
, and Λ ∩ Λ1 �= ∅.

Obviously, note that V (x) satisfies the Rabinowitz’s condition when (V1) hold, and K(x)
is a bounded continuous function.

The main results in this work are the following.

Theorem 1.1. Suppose that assumptions (f1) − (f5), (V1), (K1) and (V K) hold. Then 
there exists ε0 > 0 such that for each ε ∈ (0, ε0), problem (1.1) has a nontrivial 
ground state solution uε. Moreover, uε has a global maximum point xε ∈ RN such that 
limε→0 V (xε) = V0 and limε→0 K(xε) = K0. More specifically, there exists C > 0 such 
that for all δ > 0, there exist R > 0 and n0 ∈ N such that,∫

Bc
εnR

(x0)

f(vn)vndx < εNn δ and
∫

BεnR(x0)

f(vn)vndx ≥ CεNn ,

for all n ≥ n0.

Our second result shows the existence of solution for all ε > 0 when V is asymptotically 
constant and it has the following statement.

Theorem 1.2. Suppose that assumptions (f1) − (f5), (V2) and (K2) hold. Then for each 
ε > 0, problem (1.1) has a nontrivial ground state solution uε.

Our third result shows the existence of a ground state solution to the autonomous 
problem
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{
Δ2

1u− Δ1u + V∞
u
|u| = K∞f(u) in RN ,

u ∈ BL(RN ),
(1.2)

where V∞ and K∞ are constants.

Theorem 1.3. Suppose that assumptions (f1) − (f5), (V1) and (K1) hold. Then problem 
(1.2) has a ground state solution w∞.

The proofs of Theorem 1.1- 1.3 are based on an abstract version of the Mountain-
Pass Theorem which can be applied to the space of functions (see Theorem 4.1). The 
difficulties arise mainly from the following facts:

• The energy functional associated with the problem (1.1) lacks smoothness;
• The space BL(RN ) lacks reflexivity.

Therefore, we need to use the critical point theory of nonsmooth functional.
Since a version of the Lions’ Lemma to BL(RN ) seems not available in the literature, 

we will give its proof by drawing on the literature [14]. We consider it is interesting in 
its own way because it is a classical and largely used tool in the analysis of quasilinear 
elliptic problems.

Theorem 1.4. (Lions’ Lemma in BL(RN )). Suppose there exist R > 0, 1 ≤ q < 1∗, and 
a bounded sequence (un) in BL(RN ) such that

sup
y∈RN

∫
BR(y)

|un|q dx → 0, as n → ∞.

Then un → 0 in Ls(RN ) for all s ∈ (1, 1∗).

This paper is arranged as follows. In Section 2 we give a detailed description of the 
variational framework and the properties of the working space defined by the energy 
functional. In Section 3 we prove the Lions’ Lemma in BL(RN). In Section 4 we consider 
the autononous case and give the proof of Theorem 1.3. In Section 5 we present the proof 
of Theorem 1.1, studying separately the arguments on existence and concentration of 
the solutions. Finally, we give the proof of Theorem 1.2 in Section 6.

2. Preliminaries

2.1. The space and the energy functional

First of all, making the change of variable x = εz, we note that the problem (1.1) is 
equivalent to the problem
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{
Δ2

1 − Δ1u + V (εx) u
|u| = K(εx)f(u) in RN ,

u ∈ BL(RN ).
(2.1)

Let us introduce the space we are going to deal with, which is defined by

BL(RN ) :=
{
u ∈ W 1,1(RN ) : Δu ∈ M(RN )

}
,

where we recall M(RN ) is the set of Radon measures in RN . In [21], it is proved that 
u ∈ W 1,1(RN ) belongs to BL(RN ) if and only if∫

RN

|Δu| < +∞,

where

∫
RN

|Δu| := sup

⎧⎨⎩
∫
RN

uΔϕdx : ϕ ∈ C∞
0 (RN ), ‖ϕ‖∞ � 1

⎫⎬⎭ .

The space BL(RN ) is a Banach space when endowed with the following norm

‖u‖BL(RN ) =
∫
RN

|Δu| + ‖∇u‖1 + ‖u‖1,

and it is continuously embedded into Lr(RN ) for all r ∈ [1, 1∗] (see [13]).
Nevertheless, as one can see, the space of smooth functions is not dense in BL(RN)

with respect to the topology of the norm, and it is dense with respect to another, weaker, 
notion of convergence. We say that a sequence (un) ⊂ BL(RN ) converges to u ∈ BL(RN )
in the sense of the “strict convergence” if both of the following conditions are satisfied

un → u in W 1,1(RN ),

and ∫
RN

|Δun| →
∫
RN

|Δu|,

as n → +∞. In fact, with respect to the “strict convergence”, C∞(RN ) ∩ BL(RN ) is 
dense in BL(RN ) and C∞

0 (RN ) is dense in BL(RN ).
For a vector Radon measure μ ∈ M(RN , RN ), we denote by μ = μa + μs the usual 

decomposition stated in the Radon Nikodym Theorem, where μa and μs are, respec-
tively, the absolute continuous and the singular parts with respect to the N -dimensional 
Lebesgue measure LN . Denoting with |μ| as the scalar Radon measure defined like in 
[5], the usual Lebesgue-Radon-Nikodym derivative of μ with respect to |μ| is given by
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μ

|μ| (x) = lim
r→0

μ(Br(x))
|μ|(Br(x)) .

It is easy to see that J : BL(RN ) → R, given by

J (u) =
∫
RN

|Δu| +
∫
RN

|∇u|dx +
∫
RN

|u|dx (2.2)

is a convex functional which is Lipschitz continuous in its domain and lower semicon-
tinuous with respect to the W 1,r(RN ) topology, for r ∈ [1, 1∗]. Meanwhile, J is lower 
semicontinuous with respect to the Lr(RN ) topology, for r ∈ [1, 1∗) (see [13]). Although 
nonsmooth, the functional J admits some directional derivatives. More precisely, as is 
shown in [4], given u ∈ BL(RN ), for all v ∈ BL(RN ) such that (Δv)s is absolutely 
continuous with respect to (Δu)s, (Δv)a vanishes LN -a.e. in 

{
x ∈ RN ; (Δu)a(x) = 0

}
, 

∇v vanishes a.e. in the set where ∇u vanishes and v ≡ 0, a.e. in the set where u vanishes, 
it follows that

J ′(u)v =
∫
RN

(Δu)a(Δv)a

|(Δu)a| dx +
∫
RN

Δu

|Δu| (x) Δv

|Δv| (x) |(Δv)s| +
∫
RN

∇u · ∇v

|∇u| dx

+
∫
RN

sgn(u)vdx,
(2.3)

where sgn(u(x)) = 0 if u(x) = 0 and sgn(u(x)) = u(x)/|u(x)| if u(x) �= 0. In particular, 
taking (2.3) into account, for all u ∈ BL(RN ), we have

J ′(u)u = J (u). (2.4)

Now let us define in the space BL(RN ) the following norm

‖u‖ε =
∫
RN

|Δu| +
∫
RN

|∇u|dx +
∫
RN

V (εx)|u|dx. (2.5)

Then we present the energy functional associated to (2.1). Let Φε : BL(RN ) → R be 
given by

Φε(u) = Jε(u) −F(u),

where Jε = ‖u‖ε and F : BL(RN ) → R is defined by

F(u) =
∫
RN

K(εx)F (u)dx.

It can be a plain matter to prove that Jε is a convex functional which is Lipschitz 
continuous in its domain and F ∈ C1(BL(RN ), R). Similar to (2.4), we have
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J ′
ε(u)v =

∫
RN

(Δu)a(Δv)a

|(Δu)a| dx +
∫
RN

Δu

|Δu| (x) Δv

|Δv| (x) |(Δv)s| +
∫
RN

∇u · ∇v

|∇u| dx

+
∫
RN

V (εx) sgn(u)vdx.
(2.6)

In particular, note that, for all u ∈ BL(RN ), J ′
ε(u)u = Jε(u). Moreover, taking v = u

in (2.6), it shows that

Φ′
ε(u)u = J ′

ε(u)u−
∫
RN

K(εx)f(u)udx = ‖u‖ε −
∫
RN

K(εx)f(u)udx. (2.7)

Let us give a precise definition of the solution we are considering. Since Φε can be 
written as the difference between the Lipschitz functional Jε and a smooth functional 
F , we say that uε ∈ BL(RN ) is a solution of (1.1) if 0 ∈ ∂Φε(uε), where ∂Φε(uε)
denotes the subdifferential of Φε in uε, as defined in [7]. This, in turn, is equivalent to 
F ′(uε) ∈ ∂Jε(uε). However, since the convexity of Jε, it implies that F ′(uε) ∈ ∂Jε(uε)
if and only if

Jε(v) − Jε(uε) ≥ F ′(uε)(v − uε), ∀v ∈ BL(RN ),

or equivalently

‖v‖ε − ‖uε‖ε ≥
∫
R

K(εx)f(uε)(v − uε)dx, ∀v ∈ BL(RN ). (2.8)

Hence, every u0 ∈ Xε such that (2.8) holds is going to be called a solution of (1.1).

2.2. The Euler-Lagrange equation

In this section, we give the precise version of the problem satisfied by critical points of 
Φε, whose formal version is given by (2.1). More specifically, we prove that if u ∈ BL(RN )
is such that 0 ∈ ∂Φε(u), then there exists z ∈ W 1,1(RN ) ∩L∞(RN ), which plays the role 
of Δu

|Δu| in (2.1) and is well defined even where Δu = 0, ∇u = 0 or u = 0. In order to do so, 
we start by extending the functionals Jε, F and Φε to the space E = L1(RN ) ∩L1∗(RN )
equipped with the norm

‖u‖E = ‖u‖1 + ‖u‖1∗ , u ∈ E.

More precisely, define the functionals Jε, F , Φε : E → R ∪ {+∞}, by

Jε(u) =
{

Jε, if u ∈ BL(RN ),
+∞, if u ∈ E\BL(RN ),

F(u) = F(u), and Φ (u) = J (u) −F(u), ∀u ∈ E.
ε ε
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By standard arguments, one can easily see that the function F belongs to C1(E, R) and 
Jε is convex and lower semicontinuous, then the subdifferential ([24]) of Jε, introduced 
by ∂Jε, is well defined. The following result is immediate.

Lemma 2.1. If uε ∈ BL(RN ) is such that 0 ∈ ∂Φε(uε), then 0 ∈ ∂Φε(uε).

Proof. Suppose that uε ∈ BL(RN ) is such that 0 ∈ ∂Φε(uε), then uε satisfies (2.8). 
Consider v ∈ E and note that:

• if v ∈ BL(RN ) ∩E, then

Jε(v) − Jε(uε) = Jε(v) − Jε(uε)
� F ′(uε)(v − uε)

=
∫
RN

f(uε)(v − uε)dx

= F ′(uε)(v − uε);

• if v ∈ E \BL(RN ), since Jε(v) = +∞ and Jε(uε) < +∞, it follows that

Jε(v) − Jε(uε) = +∞
� F ′(uε)(v − uε).

Then, in any case 0 ∈ ∂Φε(uε). �
Let us assume that uε ∈ BL(RN ) is a bounded variation solution of (2.1). Since 

0 ∈ ∂Φε(uε), from the last result it follows that 0 ∈ ∂Φε(uε). Since Jε is convex and F
is smooth, it follows that F ′(uε) ∈ ∂Jε(uε). Then, we set the functionals J 1

ε , J 2
ε : E →

R ∪ {+∞}, by

J 1
ε (u) =

{ ∫
RN |Δu| +

∫
RN |∇u|dx, if u ∈ BL(RN ),

+∞, if u ∈ E\BL(RN ),

and

J 2
ε (u) =

∫
RN

V (εu)|u|dx.

Note that J 2
ε ∈ C(E, R), J 2

ε ∈ C
(
BL(RN ),R

)
and

Jε(u) = J 1
ε (v) + J 2

ε (u), ∀u ∈ E.

Since J 1
ε and J 2

ε are convex, and J 2
ε is finite and continuous in every point of BL(RN), 

it follows that
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F ′(u) ∈ ∂Jε(u) = ∂J 1
ε (u) + ∂J 2

ε (u).

By E. Parini, B. Ruf and C. Tarsi [21], there exist a function γ ∈ L∞,N (RN ) and a 
vector field z ∈ W 1,1(RN ) ∩ L∞(RN ) such that ‖z‖∞ ≤ 1 and⎧⎪⎪⎪⎨⎪⎪⎪⎩

div z ∈ L∞,N (RN ),Δz ∈ L∞,N (RN ),∫
RN uεΔz −

∫
RN uε div zdx =

∫
RN |Δuε| +

∫
RN |∇uε| dx,

γ |uε| = V (εx)uε a.e. in RN ,

Δz − div z + γ = K(εx)f(uε), a.e. in RN ,

(2.9)

where

L∞,N

(
RN

)
=

{
g : RN → R measurable ; ‖g‖∞,N < ∞

}
and

‖g‖∞,N = sup
‖φ‖1+‖φ‖1∗≤1

∣∣∣∣∣∣
∫
RN

gφdx

∣∣∣∣∣∣ .
Hence, (2.9) is the precise version of (1.1).

Analogously, we can define the norms

‖u‖V∞ =
∫
RN

|Δu| +
∫
RN

|∇u|dx +
∫
RN

V∞|u|dx,

‖u‖V0 =
∫
RN

|Δu| +
∫
RN

|∇u|dx +
∫
RN

V0|u|dx,

and the functionals

Φ∞(u) = ‖u‖V∞ −
∫
RN

K∞F (u)dx,

Φ0(u) = ‖u‖V0 −
∫
RN

K0F (u)dx.

Similarly we define critical points of the functionals Φ∞(u) and Φ0(u), since they have 
the same properties that Φε(u).

3. Proof of Theorem 1.4

In this section, let us present the proof of the Lions’ type result.
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Proof of Theorem 1.4. Let q < s < 1∗ and u ∈ BL(RN ). Since BL(RN ) ↪→ Lr(RN ) for 
all r ∈ [1, 1∗], then u ∈ Lq(RN ) and u ∈ L1∗(RN ).

For R > 0, by interpolation inequality with θ = s−q
1∗−q

1∗

s and embedding inequality, 
we have

‖u‖Ls(BR(y)) ≤ ‖u‖1−θ
Lq(BR(y))‖u‖

θ
L1∗(BR(y))

≤ c‖u‖1−θ
Lq(BR(y))‖u‖

θ
BL(BR(y)).

Let us cover RN by balls of radius R and center in (yn) in such a way that each point 
in RN belongs at most N + 1 balls, we obtain that

∫
RN

|u|sdx ≤
+∞∑
n=1

∫
BR(yn)

|u|sdx

≤ c

+∞∑
n=1

‖u‖(1−θ)s
Lq(BR(yn))‖u‖

θs
BL(BR(yn))

≤ c

⎛⎜⎝ sup
y∈RN

∫
BR(y)

|u|qdx

⎞⎟⎠
(1−θ)s

q

lim
k→+∞

k∑
n=1

( ∫
BR(yn)

|Δu|

+
∫

BR(yn)

|∇u|dx +
∫

BR(yn)

|u|dx
)θs

= c

⎛⎜⎝ sup
y∈RN

∫
BR(y)

|u|qdx

⎞⎟⎠
(1−θ)s

q

lim
k→+∞

k∑
n=1

(∫
RN

χBR(yn)|Δu|

+
∫
RN

χBR(yn)(|∇u| + |u|)dx
)θs

= c

⎛⎜⎝ sup
y∈RN

∫
BR(y)

|u|qdx

⎞⎟⎠
(1−θ)s

q

lim
k→+∞

(∫
RN

k∑
n=1

χBR(yn)|Δu|

+
∫
RN

k∑
n=1

χBR(yn)(|∇u| + |u|)dx
)θs

≤ c

⎛⎜⎝ sup
y∈RN

∫
BR(y)

|u|qdx

⎞⎟⎠
(1−θ)s

q

(N + 1)‖u‖θs.

Suppose that (un) is bounded in BL(RN ), by the last inequality and the hypothesis, we 
have
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un → 0 in Ls(RN ), (3.1)

for all q < s < 1∗.
Then, if q = 1 we are done. Otherwise, if 1 < q < 1∗, let us consider 1 < s ≤ q and 

take s0 ∈ (q, 1∗) in such a way that (3.1) holds. Note that u ∈ L1(RN ) ∩ Ls0(RN ) and, 
since s ∈ (1, s0), by doing

θ = s0 − s

s(s0 − 1) ,

we have that

1
s

= θ

1 + 1 − θ

s0
and 0 < θ < 1.

Then, again, the interpolation inequality, the embedding of BL(RN) and (3.1), imply 
that

‖un‖s ≤ ‖un‖1‖un‖s0 ≤ ‖un‖‖un‖s0 → 0,

as n → ∞, since (un) is bounded in BL(RN ). �
4. The autonomous case

Let us first recall the Mountain-Pass Theorem in its version from [13].

Theorem 4.1 (Mountain-Pass Theorem). Let E be a Banach space, Ψ = I0 − I, where 
I ∈ C1(E, R) and I0 is a locally Lipschitz convex functional defined in E. Suppose that 
the functional Ψ satisfies the following conditions:

(g1) There exist ρ > 0 and α > Ψ(0) such that Ψ|∂Bρ(0) ≥ α.
(g2) Ψ(e) < Ψ(0), for some e ∈ E \Bρ(0).

Then for all τ > 0, there exists xτ ∈ E such that

c− τ < Ψ (xτ ) < c + τ,

and

I0(y) − I0 (xτ ) ≥ I ′ (xτ ) (y − xτ ) − τ ‖y − xτ‖ for all y ∈ E,

where c ≥ α is characterized by

c = inf
γ∈Γ

sup
t∈[0,1]

Ψ(γ(t)),
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where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0 and γ(1) = e}.

Now let us verify that the functional Φε : BL(RN ) → R satisfies the geometrical 
conditions of the Mountain-Pass Theorem.

Lemma 4.2. There exist �, ρ > 0 such that,

(g1) Φε(u) ≥ � for each u ∈ BL(RN ) such that ‖u‖ε = ρ;
(g2) There exists e ∈ BL(RN ) such that ‖u‖ε > ρ and Φε(e) < 0.

Proof. We start to verify the first condition. Note that, from (f2) − (f3), for all η > 0, 
there exists Aη > 0 such that

F (s) ≤ η|s| + Aη|s|p, ∀s ∈ R, (4.1)

where p is as in (f3). Then, by (K1), (4.1) and the continuous embeddings of BL(RN)
we have that

Φε(u) =
∫
RN

|Δu| +
∫
RN

|∇u|dx +
∫
RN

V (εx)|u|dx−
∫
RN

K(εx)F (u)dx

= ‖u‖ε −
∫
RN

K(εx)F (u)dx

≥ ‖u‖ε −K0η

∫
RN

|u|dx−K0Aη

∫
RN

|u|pdx

≥ ‖u‖ε −K0ηC‖u‖ε −K0AηC‖u‖pε
= (1 −K0ηC)‖u‖ε −K0AηC‖u‖pε .

(4.2)

Let us consider η > 0 such that (1 −K0ηC) > 0 and ρ such that

0 < ρ < (1 −K0ηC

K0AηC
)

1
p−1 .

Hence, from (4.2), it implies that

Φε(u) ≥ � > 0, (4.3)

for all u ∈ BL(RN ) such that ‖u‖ε = ρ, where � = (1 −K0ηC)ρ +K0AηCρp > 0. Hence 
we have verified the condition (g1) in Lemma 4.2.

Now let us prove that Φ satisfies (g2). Note that condition (f4) implies that there 
exist constants d1, d2 > 0 such that

F (s) ≥ d1|s|κ − d2, ∀s ∈ R. (4.4)
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Let u ∈ BL(RN ), with compact support, u �= 0 and let t > 0. Then

Φε(tu) ≤ t‖u‖ε −K∞d1t
κ|u|κκ + K0d2| supp(u)| → −∞, (4.5)

as t → +∞. Since κ > 1 and then we can choose e ∈ X such that Φε(e) < 0. �
Analogously, Φ∞(u) and Φ0(u) also satisfy the geometrical conditions of the 

Mountain-Pass Theorem. Then the following minimax levels are well defined

cε = inf
γ∈Γε

sup
t∈[0,1]

Φε(γ(t)),

c∞ = inf
γ∈Γ∞

sup
t∈[0,1]

Φ∞(γ(t)),

and

c0 = inf
γ∈Γ0

sup
t∈[0,1]

Φ0(γ(t)),

where Γε =
{
γ ∈ C0([0, 1], BL(RN )); γ(0) = 0,Φε(γ(1)) < 0

}
and Γ∞, Γ0 are defined in 

an analogous way.
Now let us define the Nehari manifolds associated to Φε, which are well defined by

Nε =
{
u ∈ BL(RN )\{0}; Φ′

ε(u)u = 0
}
.

This set is going to give us a better characterization of the minimax level cε. Arguing 
as in [11] it is possible to show that Nε contains all nontrivial solutions of (1.1). More 
specifically, Figueiredo and Pimenta performed a study of the fibering maps γu(t) :=
Φε(tu), by using (f1) − (f5) to show that Nε is radially homeomorphic to the unit sphere 
in Xε. In fact, for each u ∈ Xε\{0}, by (f2) and (f3), it can be seen that there exists t0 > 0
such that γu (t0) > 0. On the other hand, (f4) implies that γu(t) → −∞ as t → +∞. 
Then there exists tu > 0 such that γu (tu) = maxt>0 γu(t) and then that γ′

u (tu) = 0. 
But (f5) implies that such tu is unique. Then for each u ∈ BL(RN )\{0}, there exists a 
unique tu > 0 such that tuu ∈ Nε. This establishes such a radial homeomorphism. Still 
with arguments presented in Rabinowitz [16], one can prove that the minimax level cε
satisfies

cε = inf
u∈BL(RN )\{0}

max
t≥0

Φε(tu) = inf
u∈Nε

Φε(u).

Similarly, setting

N∞ =
{
u ∈ BL(RN )\{0}; Φ′

∞(u)u = 0
}
,

and
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N0 =
{
u ∈ BL(RN )\{0}; Φ′

0(u)u = 0
}
,

then one can easily prove that c∞ = infN∞ Φ∞ and c0 = infN0 Φ0.

4.1. Proof of Theorem 1.3

In this section, let us consider that existence of ground-state solutions to the au-
tonomous problem {

Δ2
1 − Δ1u + V∞

u
|u| = K∞f(u) in RN ,

u ∈ BL(RN ).

Since Φ∞(u) satisfies the geometrical conditions of the Mountain-Pass Theorem, then 
by the Mountain-Pass Theorem, given a sequence τn → 0, there exists (wn) ⊂ BL(RN )
from [13] such that Φ∞(wn) → c∞ and moreover,

‖v‖V∞
− ‖wn‖V∞

≥
∫
RN

K∞f(wn)(v − wn)dx− τn‖v − wn‖V∞ , ∀v ∈ BL(RN ), (4.6)

as n → ∞.
Let us show that the sequence (wn) is bounded in BL(RN ).

Lemma 4.3. The sequence (wn) is a bounded sequence in BL(RN ).

Proof. Taking as test function v = 2wn in (4.6), we get

‖wn‖V∞ ≥
∫
RN

K∞f(wn)wndx− τn‖wn‖V∞ ,

which implies that

(1 + τn)‖wn‖V∞ ≥
∫
RN

K∞f(wn)wndx. (4.7)

Then, by (f4) and (4.7), it yields

c∞ + on(1) ≥ Φ∞(wn)

= ‖wn‖V∞ +
∫
RN

K∞( 1
κ
f(wn)wn − F (wn))dx−

∫
RN

1
κ
K∞f(wn)wndx

≥ ‖wn‖V∞(1 − 1
κ
− τn

κ
)

≥ C‖w ‖ ,

(4.8)
n V∞
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for some C > 0 uniform in n ∈ N. Then we conclude that (wn) is bounded in 
BL(RN ). �

Since the sequence (wn) is bounded in BL(RN ) and the compactness of the embed-
dings of BL(RN ) in Lq

loc(RN ) for 1 ≤ q < 1∗, there exists w∞ ∈ BLloc(RN ) such that

wn → w∞ in Lq
loc(R

N ), for 1 ≤ q < 1∗, (4.9)

and

wn → w∞ a.e. in RN , (4.10)

as n → +∞. Note that w∞ ∈ BL(RN ). In fact, by Fatou’s Lemma, it follows that 
w∞ ∈ L1(RN ). For a given R > 0, from the semicontinuity of the norm in BL (BR(0))
with respect to the Lq(BR(0)) convergence, we have that∫

BR(0)

|Δw∞| ≤ lim inf
n→+∞

∫
BR(0)

|Δwn| ≤ lim inf
n→+∞

‖wn‖BL(RN ) ≤ C, (4.11)

where C does not depend on n or R. Since the last inequality (4.11) holds for every R > 0, 
then Δu ∈ M(RN ). Hence, by Proposition 2.1 of [13], it follows that w∞ ∈ BL(RN ). 
Moreover, there exist R, β > 0 and a sequence (yn) ⊂ RN such that

lim inf
n→+∞

∫
BR(yn)

|wn| dx ≥ β.

Indeed, otherwise, from [13], wn → 0 in Lq(RN ) for all 1 < q < 1∗ and then, by (f2) and 
(f3), Φ∞(wn) → 0, which lead to a contradiction with the fact that c∞ > 0. Since Φ∞
is invariant by translation, we can assume that w∞ �= 0 without lack of generality.

Now let us consider the following Lemma.

Lemma 4.4. Φ′
∞(w∞)w∞ ≤ 0.

Proof. Note that, if ϕ ∈ C∞
0 (RN ), 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in BR(0), ϕ ≡ 0 in B2R(0)c and 

there exists a fixed positive constant C > 0 such that |∇ϕ| ≤ C and |Δϕ| ≤ C, for 
ϕR := ϕ(·/R), it shows that for all u ∈ BL(RN ),

(Δ(ϕRu))s is absolutely continuous w.r.t. (Δu)s. (4.12)

Indeed, note that

Δ(ϕRu) =ΔϕRu + 2∇ϕR · ∇u + ϕRΔu

=Δϕ u + 2∇ϕ · ∇u + ϕ (Δu)a + ϕ (Δu)s, in D′(RN ).
R R R R
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Then it follows that

(Δ(ϕRu))s = (ϕR(Δu)s)s = ϕR(Δu)s.

Taking (4.12) into account and the fact that ϕRwn is equal to 0 a.e. in the set where 
un vanishes, note that ϕRwn and wn fulfill two of the three requirements that would 
allow us to calculate Φ′

∞(wn)(ϕRwn). However, we have no ensure that (Δ(ϕRwn))a =
ΔϕRwn + 2∇ϕR∇wn + ϕR(Δwn)a vanishes a.e. in the set

{
x ∈ RN ; (Δwn)a(x) = 0

}
.

Hence, it might not be possible to calculate the Gateaux derivative Φ′
∞(wn)(ϕRwn) and 

then we have to work in a slightly different way. In fact, it will be enough to work with 
the left Gateaux derivative

lim
t→0−

Φ∞(wn + tϕRwn) − Φ∞(wn)
t

,

which, by (4.6), satisfy

lim
t→0−

Φ∞(wn + tϕRwn) − Φ∞(wn)
t

≤ on(1). (4.13)

In order to calculate the limit above, let us first calculate separately a part of it. Let us 
define for all u ∈ BL(RN ),

Ja(u) =
∫
RN

|(Δu)a(x)| dx.

Then, for all u, v ∈ BL(RN ), we have that

lim
t→0−

Ja(u + tv) − Ja(u)
t

= lim
t→0−

1
t

∫
RN

(|(Δu)a + t(Δv)a| − |(Δu)a|)dx

= −
∫
Tu

|(Δv)a| dx +
∫

RN\Tu

(Δu)a(Δv)a

|(Δu)a| dx,
(4.14)

where Tu =
{
x ∈ RN ; (Δu)a(x) = 0

}
.
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Taking into account (4.13) and (4.14), it follows that

on(1) ≥
∫

RN\Twn

(Δwn)a[ΔϕRwn + 2∇ϕR · ∇wn + ϕR(Δwn)a]
|(Δwn)a| dx

−
∫

Twn

|(ΔϕRwn + 2∇ϕR · ∇wn)|dx

+
∫
RN

Δwn

|Δwn|
ϕR(Δwn)s +

∫
RN

∇wn · (∇ϕRwn + ϕR∇wn)
|∇wn|

dx

+
∫
RN

V∞ sgn(wn)(ϕRwn)dx−
∫
RN

K∞f(wn)ϕRwndx

=
∫

RN\Twn

ϕR|(Δwn)a|dx +
∫

RN\Twn

(Δwn)a(ΔϕRwn + 2∇ϕR · ∇wn)
|(Δwn)a| dx

−
∫

Twn

|(ΔϕRwn + 2∇ϕR · ∇wn)|dx

+
∫
RN

Δwn

|Δwn|
ϕR(Δwn)s +

∫
RN

∇wn · (∇ϕRwn + ϕR∇wn)
|∇wn|

dx

+
∫
RN

V∞ |wn|ϕRdx−
∫
RN

K∞f(wn)ϕRwndx.

Noting that 
∫
RN\Twn

ϕR |(Δwn)a| dx =
∫
RN ϕR |(Δwn)a| dx and calculating the lim inf 

in the inequality above as n → +∞, we have that

0 ≥ lim inf
n→+∞

⎛⎝∫
RN

ϕR |(Δwn)a| dx +
∫
RN

(Δwn)s

|(Δwn)s|ϕR(Δwn)s
⎞⎠

+ lim inf
n→+∞

∫
RN\Twn

(Δwn)a(ΔϕRwn + 2∇ϕR · ∇wn)
|(Δwn)a| dx

− lim sup
n→+∞

∫
Twn

|(ΔϕRwn + 2∇ϕR · ∇wn)| dx

+ lim inf
n→+∞

∫
RN

∇wn · (∇ϕRwn + ϕR∇wn)
|∇wn|

dx

+
∫
RN

V∞ |w∞|ϕRdx−
∫
RN

K∞f(w∞)ϕRw∞dx.

(4.15)

Now, by the lower semicontinuity of the norm in BL(BR(0)) w.r.t. the L1(BR(0)) con-
vergence and also the fact that ϕRμ = μ a.e. in BR(0) with (4.15), we have that
|ϕRμ| |μ|
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∫
BR(0)

|Δw∞| ≤ − lim inf
n→+∞

∫
RN\Twn

(Δwn)a(ΔϕRwn + 2∇ϕR · ∇wn)
|(Δwn)a| dx

+ lim sup
n→+∞

∫
Twn

|(ΔϕRwn + 2∇ϕR · ∇wn)| dx

− lim inf
n→+∞

∫
RN

∇wn · (∇ϕRwn + ϕR∇wn)
|∇wn|

dx

−
∫
RN

V∞ |w∞|ϕRdx +
∫
RN

K∞f(w∞)ϕRw∞dx.

(4.16)

And since (wn) is a bounded sequence in L1(RN ), it shows that

lim
R→+∞

∣∣∣∣∣∣∣lim inf
n→∞

∫
RN\Twn

wn(Δwn)a · ΔϕR

|(Δwn)a| dx

∣∣∣∣∣∣∣
≤ lim

R→+∞
(lim inf

n→∞

∫
RN\Twn

|wn| |ΔϕR| dx)

≤ lim
R→+∞

C

R2 (lim inf
n→∞

∫
RN\Twn

|wn| dx) = 0.

(4.17)

Similarly, we can also get that

lim
R→+∞

∣∣∣∣∣∣∣lim inf
n→∞

∫
RN\Twn

(Δwn)a(2∇ϕR · ∇wn)
|(Δwn)a| dx

∣∣∣∣∣∣∣ = 0,

lim
R→+∞

∣∣∣∣∣∣∣lim inf
n→+∞

∫
Twn

|(wnΔϕR + 2∇ϕR · ∇wn)| dx

∣∣∣∣∣∣∣ = 0,

(4.18)

and

lim
R→+∞

∣∣∣∣∣∣lim inf
n→+∞

∫
RN

wn∇wn · ∇ϕR

|∇wn|
dx

∣∣∣∣∣∣ = 0. (4.19)

By doing R → +∞ in both sides of (4.16) and taking into account (4.17), (4.18) and 
(4.19), we get that∫

RN

|Δw∞| +
∫
RN

|∇w∞|dx +
∫
RN

V∞ |w∞| dx ≤
∫
RN

K∞f(w∞)w∞dx, (4.20)

and the Lemma is proved. �
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Proof of Theorem 1.3. By the last results, then there exists t∞ ∈ (0, 1] such that 
t∞w∞ ∈ N∞. Note also that

c∞ + on(1) = Φ∞(wn) ≥
∫
RN

K∞(f(wn)wn − F (wn))dx + on(1), (4.21)

and under (f5), it is easy to see that t �→ f(t)t − F (t) is increasing for t ∈ (0, +∞) and 
decreasing for t ∈ (−∞, 0), then by Fatou Lemma in the last inequality, we derive that

c∞ ≥
∫
RN

K∞(f(w∞)w∞ − F (w∞))dx

≥
∫
RN

K∞(f(t∞w∞)t∞w∞ − F (t∞w∞))dx

= Φ∞(t∞w∞) − Φ′
∞(t∞w∞)t∞w∞

= Φ∞(t∞w∞)
≥ c∞,

which implies that t∞ = 1, Φ∞(w∞) = c∞. And it follows by [11] that w∞ is a ground-
state solution of problem (1.2). �
Remark 4.5. Note that, by the same reason, there exists a critical point of Φ0, w0 ∈
BL(RN ), such that Φ0(w0) = c0.

5. Proof of Theorem 1.1

5.1. Existence of solution

First of all, we study the behavior of the minimax levels cε, when ε → 0+. Without 
lack of generality, let us suppose that V (0) = V0 and K(0) = K0.

Lemma 5.1. limε→0+ cε = c0.

Proof. Let εn → 0 as n → +∞. Let ψ ∈ C∞
0 (RN ) be such that 0 ≤ ψ ≤ 1, ψ ≡ 0 in 

B2(0)c, ψ ≡ 1 in B1(0), |∇ψ| ≤ C and |Δψ| ≤ C in RN . Let us define

wεn(x) = ψ(εnx)w0(x),

where w0 is a ground-state critical point of Φ0. And note that wεn → w0 in BL(RN )
and Φ0 (wεn) → Φ0(w0), as n → +∞. Let tεn > 0 be such that tεnwεn ∈ Nεn and let us 
suppose just for a while that tεn → 1 as n → +∞. Then we have
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cεn ≤ Φεn(tεnwεn)

=
∫
RN

|Δ(tεnwεn)| +
∫
RN

|∇(tεnwεn)|dx +
∫
RN

V (εnx)|tεnwεn |dx

−
∫
RN

K(εnx)F (tεnwεn)dx

= Φ0 (tεnwεn) +
∫
RN

(V (εnx) − V0) |tεnwεn | dx−
∫
RN

(K(εnx) −K0)F (tεnwεn)dx.

Using the Lebesgue Dominated Theorem, it follows that

lim sup
n→+∞

cεn ≤ Φ0 (w0) = c0.

On the other hand, since Φ0(u) ≤ Φεn(u) for all u ∈ BL(RN ), it follows that c0 ≤ cεn . 
Then

lim
n→+∞

cεn = c0.

Now let us prove that in fact tεn → 1, as n → +∞. Since Φ′
εn (tεnwεn)wεn = 0, it 

shows that∫
RN

|Δwεn | +
∫
RN

|∇wεn |dx +
∫
RN

V (εnx)|wεn |dx =
∫
RN

K(εnx)f(tεnwεn)wεndx.

We claim that (tεn)εn>0 is bounded. Indeed, on the contary, up to a subsequence, tεn →
+∞. Let Σ ⊂ RN be such that |Σ| > 0 and w0(x) �= 0 for all x ∈ Σ. Hence it holds for 
all n ∈ N that

‖wεn‖εn =
∫
RN

K(εnx)f (tεnwεn) tεnwεn

tεn
dx

≥
∫
Σ

κK(εnx)F (tεnwεn)
tεn

dx.

Then by (f4) and Fatou’s Lemma, it follows that

‖wεn‖εn → +∞, as n → ∞,

which contradicts the fact that wεn → w0 in BL(RN ) as n → ∞. Now we have to 
verify that tεn � 0 as n → +∞. Indeed, on the contrary, from (f2) and the fact that 
tεnwεn ∈ Nεn , we would have that

‖wεn‖εn =
∫

K(εnx)f (tεnwεn)wεndx = on(1),

RN
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which lead to a clear contradiction. Then there exist α, β > 0 such that

α ≤ tεn ≤ β for all n ∈ N

and then, up to a subsequence, tεn → t̄ > 0, as n → +∞. Since∫
RN

|Δwεn | +
∫
RN

|∇wεn |dx +
∫
RN

V (εnx)|wεn |dx →
∫
RN

|Δw0| +
∫
RN

|∇w0|dx

+
∫
RN

V (0) |w0| dx,

and ∫
RN

K (εnx) f(wεn)dx →
∫
RN

K(0)f(w0)dx,

from the definition of w0, it follows by (f5) that t̄ = 1. Hence, limε→0+ cε = c0. The 
proof is complete. �

Since by (V1) and (K1), we know V0 < V∞ and K0 ≥ K∞, it shows from the mono-
tonicity of the energy functional w.r.t. the potentials that

c0 < c∞. (5.1)

Thus, from Lemma 5.1 and (5.1), we can easily get the following Corollary.

Corollary 5.2. There exists ε0 > 0 such that cε < c∞ for all ε ∈ (0, ε0).

As in the proof of Lemma 4.3, it is possible to prove that (un) is a bounded sequence 
in BL(RN ). By Theorem 4.1, for each ε > 0, there exists a Palais–Smale sequence 
(un) ⊂ BL(RN ) to Φε in the level cε, i.e.

lim
n→∞

Φε(un) = cε, (5.2)

and

‖v‖ε − ‖un‖ε ≥
∫
R

K(εx)f(un)(v − un)dx− τn‖v − un‖ε, ∀v ∈ BL(RN ), (5.3)

where τn → 0 as n → ∞. As in the proof of Lemma 4.3, it is possible to prove that 
the sequence (un) is a bounded sequence in BL(RN ) and by the compactness of the 
embeddings of BL(RN ) in Lq

loc(RN ) for 1 ≤ q < 1∗, there exists uε ∈ BLloc(RN ) such 
that
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un → uε in Lq
loc(R

N ), for 1 ≤ q < 1∗, (5.4)

and

un → uε a.e. in RN , (5.5)

as n → +∞. Note that as in the last section, it is possible to prove that uε ∈ BL(RN ).
The next result is a key tool in our work. We will use Concentration of Compactness 

Principle due to Lions [14] to get its proof.

Lemma 5.3. If (un) ⊂ BL(RN ) is a sequence satisfying (5.2) and (5.3). Then there exists 
uε ∈ BL(RN ) such that for all ε ∈ (0, ε0), where ε0 like in Corollary 5.2, and un → uε

in Lq(RN ) for all 1 ≤ q < 1∗.

Proof. Let us use the Concentration of Compactness Principle of Lions to the following 
bounded sequence in L1(RN ), and set the function ρn(x) = |un(x)|

‖un‖1
. Note that

‖un‖1 � 0, as n → +∞. (5.6)

Indeed, otherwise, by interpolation inequality (un) would converge to 0 in Lq(RN ) for 
all 1 ≤ q < 1∗. By taking w = un + tun in (5.3) and doing t → 0, it is easy to see that

‖un‖ε =
∫
RN

K(εx)f(un)undx + on(1). (5.7)

Then, by the last equality, (f2), (f3), the fact that un → 0 in Lq(RN ) for all 1 ≤ q < 1∗
and the Lebesgue Convergence Theorem, we have that un → 0 in BL(RN ), implying 
that cε = 0, which is a contradiction.

It is easy to see that (ρn) is bounded in L1(RN ), then the Concentration of Compact-
ness Principle implies that one and only one of the following statements holds:

(i) (Vanishing) For all R > 0, there holds limn→+∞ supy∈RN

∫
BR(y) ρndx = 0;

(ii) (Compactness) There exist (yn) ⊂ RN such that for all η > 0, there exists R > 0
such that ∫

BR(yn)

ρndx ≥ 1 − η, ∀n ∈ N; (5.8)

(iii) (Dichotomy) There exist (yn) ⊂ RN , α ∈ (0, 1), R1 > 0, Rn → +∞ such that the 
functions ρn,1(x) := χBR1 (yn)(x)ρn(x) and ρn,2(x) := χBc

Rn
(yn)(x)ρn(x) satisfy∫

ρn,1dx → α and
∫

ρn,2dx → 1 − α. (5.9)

RN RN
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Our target is to show that (ρn) verifies the Compactness condition and in order to do 
so we act by ruling out the others two possibilities. Note that the Vanishing case does 
not occur. Indeed, otherwise, it will hold that ρn → 0 in Lq(RN ), for all 1 ≤ q < 1∗. 
Taking (5.6) into account, this implies that un → 0 in Lq(RN ), for all 1 ≤ q < 1∗ and 
then, this will lead us to cε = 0, which is a clear contradiction.

Now we show the Dichotomy case also does not hold. Firstly, it follows from (5.3) that 
Φ′

ε(un)un = on(1), as n → ∞. As far as the sequence (yn) is concerned, let us consider 
the following two possible situations.

• (yn) is bounded.
In this case, the function uε is nontrivial, since 

∫
BR(yn)

|un|
‖un‖1

dx → α, it implies that

∫
BR(yn)

|un| dx ≥ δ, for n sufficiently large.

Thus, by taking R0 > 0 such that BR(yn) ⊂ BR0(0) for all n ∈ N, then ∫
BR0 (0) |un| dx ≥ δ for n large enough. It follows from the Sobolev embedding in-

equality that ∫
BR0 (0)

|uε| dx ≥ δ, for n sufficiently large. (5.10)

Similarly to the proof of Lemma 4.4, we obtain that

Φ′
ε(uε)uε ≤ 0.

Then, there exists tε ∈ (0, 1] such that tεuε ∈ Nε. Note also that

cε + on(1) = Φε(un) ≥
∫
RN

K(εx)(f(un)un − F (un))dx + on(1), (5.11)

and by (f5) and Fatou Lemma in the last inequality, we have that

cε ≥
∫
RN

K(εx)(f(uε)uε − F (uε))dx

≥
∫
RN

K(εx)(f(tεuε)tεuε − F (tεuε))dx

= Φε(tεuε) − Φ′
ε(tεuε)tεuε

= Φε(tεuε)
≥ c .
ε
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Hence, tε = 1, Φε(uε) = cε, and by (5.11),

K(εx)(f(un)un − F (un)) → K(εx)(f(uε)uε − F (uε)) in L1(RN ). (5.12)

Moreover, by (f4), we have

0 ≤ (1 − 1
κ

)f(un)un ≤ f(un)un − F (un),

and

0 ≤ (κ− 1)F (un) ≤ f(un)un − F (un).

Then, by (5.12), we can apply the Lebesgue Dominated Convergence Theorem to get

K(εx)f(un)un → K(εx)f(uε)uε in L1(RN ), (5.13)

and

K(εx)F (un) → K(εx)F (uε) in L1(RN ). (5.14)

Since that ‖uε‖ε =
∫
RN K(εx)f(uε)uεdx, by the limit (5.13) combines with (5.7), we 

obtain

‖un‖ε → ‖uε‖ε , (5.15)

from where it follows that

‖un‖1 → ‖uε‖1, (5.16)

as n → ∞. As a consequence, since (yn) is bounded and Rn → +∞, the L1(RN )
convergence of (un) leads to∫

Bc
Rn

(yn)

|un| dx → 0, as n → +∞. (5.17)

On the other hand, since un → uε �= 0 in L1(RN ) and by (5.9), it follows that∫
Bc

Rn
(yn)

|un| dx → (1 − α)‖uε‖1 > 0, as n → +∞,

which is a contradiction with (5.17).
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• (yn) is unbounded.
In this case, we should define the sequence {ũn}, where ũn = un(· + yn). Indeed, 
note that {ũn} is bounded in BL(RN ) and then converges, up to a subsequence, to 
some function ũ ∈ BL(RN ) in L1

loc(RN ), where ũ �= 0 by (5.9).

Now let us show a claim.

Claim 5.4. Φ′
∞(ũ)ũ ≤ 0.

Let us define

‖u‖ε,yn
=

∫
RN

|Δu| +
∫
RN

|∇u|dx +
∫
RN

V (εx + εyn)|u|dx

and

Φε,yn
(u) = ‖u‖ε,yn

−
∫
RN

K(εx + εyn)F (u)dx,

for all u ∈ BL(RN ). Note that, just like before, Φ′
ε,yn

(u)v is well denoted for all u, v ∈
BL(RN ) such that (Δv)s is absolutely continuous with respect to (Δu)s, (Δv)a vanishes 
LN -a.e. in 

{
x ∈ RN ; (Δu)a(x) = 0

}
, ∇v vanishes a.e. in the set where ∇u vanishes and 

v ≡ 0, a.e. in the set where u vanishes, it follows that

Φ′
ε,yn

(u)v =
∫
RN

(Δu)a(Δv)a

|(Δu)a| dx +
∫
RN

Δu

|Δu| (x) Δv

|Δv| (x) |(Δv)s| +
∫
RN

∇u · ∇v

|∇u| dx

+
∫
RN

V (εx + εyn) sgn(u)vdx−
∫
RN

K(εx + εyn)f(u)vdx.
(5.18)

Similar to the Lemma 4.4, taking into account that |yn| → +∞ and the invariance of 
translation, we can get

Φ′
ε,yn

(ũn)(ϕRũn) = on(1), (5.19)

and ∫
RN

|Δũ| +
∫
RN

|∇ũ|dx +
∫
RN

V∞|ũ|dx ≤
∫
RN

K∞f(ũ)ũdx, (5.20)

and the Claim 5.4 is proved.
Then from Claim 5.4 and ũ �= 0, it follows that there exists t̃ ∈ (0, 1] such that 

t̃ũ ∈ N∞. Note that



T. Huo et al. / Bull. Sci. math. 186 (2023) 103275 27
cε + on(1) = Φ(un) + on(1)
= Φ(un) − Φ′(un)un

=
∫
RN

K(εx)(f(un)un − F (un))dx

=
∫
RN

K(εx)(f(ũ)ũ− F (ũ))dx.

(5.21)

Then from (5.21), (K1) and Fatou’s Lemma, we have that

cε ≥
∫
RN

K(εx)(f(ũ)ũ− F (ũ))dx ≥
∫
RN

K(εx)(f(t̃ũ)t̃ũ− F (t̃ũ))dx = Φ∞(t̃ũ) ≥ c∞,

which is a contradiction with Corollary 5.2.
Therefore, we can inference that Dichotomy case does not hold and then, it follows 

that Compactness must happen.

Claim 5.5. The sequence (yn) in (5.8) is bounded in RN .

Now we can prove this claim by contradiction that, up to a subsequence, |yn| → +∞
and then proceed as in the case of Dichotomy, where (yn) is unbounded, getting that 
cε ≥ c∞, which is also a contradiction with Corollary 5.2.

By Claim 5.5, for η > 0, it follows from (5.8) that there exists R > 0 such that∫
Bc

R(0)

ρndx < η, ∀n ∈ N,

that is, ∫
Bc

R(0)

|un|dx < η‖un‖1 ≤ Cη, ∀n ∈ N. (5.22)

Since uε ∈ L1(RN ), there exists R0 > 0 such that∫
Bc

R0
(0)

|uε|dx ≤ η. (5.23)

Therefore, for R1 ≥ max {R,R0}, since un → uε in L1(BR1(0)), there exists n0 ∈ N

such that ∫
|un − uε|dx ≤ η, ∀n ≥ n0. (5.24)
BR1 (0)
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Then from (5.22), (5.23) and (5.24), it follows that if n ≥ n0,∫
RN

|un − uε|dx ≤
∫

Bc
R1

(0)

|un − uε|dx + η ≤
∫

Bc
R1

(0)

|un|dx +
∫

Bc
R1

(0)

|uε|dx + η ≤ C1η.

Thus, un → uε in L1(RN ), and since (un) is bounded in L1∗(RN ), we have from the 
interpolation inequality that

un → uε in Lq(RN ), 1 ≤ q < 1∗.

The proof of Lemma 5.3 is complete. �
Proposition 5.6. Under the assumptions of Theorem 1.1, problem (1.1) has at least a 
nontrivial ground state solution.

Proof. Firstly, from (f2), (f3) and Lemma 5.3, it follows that

∫
RN

K(εx)f(un)undx →
∫
RN

K(εx)f(uε)uεdx, as n → +∞. (5.25)

From (5.3), (5.25) and the lower semicontinuity of the norm w.r.t. the L1(RN ) conver-
gence, we have that

‖v‖ε − ‖uε‖ε ≥
∫
RN

K(εx)f(uε)(v − uε)dx, ∀v ∈ BL(RN ). (5.26)

Hence, uε is a nontrivial solution of problem (2.1). Moreover, by (5.2), we have that

cε ≤ Φε(uε)
= Φε(uε) − Φ′

ε(uε)uε

=
∫
RN

K(εx)(f(uε)uε − F (uε))dx

≤ lim inf
n→∞

∫
RN

K(εx)(f(un)un − F (un))dx

= Φε(un) + on(1)
= cε.

(5.27)

Thus, uε is a ground state solution of problem (2.1) and then vε = uε(·/ε) is a ground 
state solution of problem (1.1). �
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5.2. Concentration behavior

In the last section, we have proved that for each ε ∈ (0, ε0), there exists a solution 
uε ∈ BL(RN ) of problem (2.1) such that Φε(uε) = cε. Now let us show that the sequence 
of solutions concentrate on the intersection set of global minimum points of V (x) and 
maximum points of K(x). And before I do that, let us prove the following preliminaries 
lemmas.

Lemma 5.7. There exist {yε}ε>0 ⊂ RN and R, δ > 0 such that

lim inf
ε→0

∫
BR(yε)

|uε| dx ≥ δ > 0. (5.28)

Moreover, the family {εyε}ε>0 is bounded in RN .

Proof. Suppose by contradiction that (5.28) does not hold. In fact, on the contrary, 
thanks to Lions’ Lemma in BL(RN ), it follows that uεn

→ 0 in Lq(RN ) for all 1 < q < 1∗, 
where εn → 0, as n → ∞. Then, by (f2), (f3) and the Lebesgue Convergence Theorem, 
it shows that ∫

RN

K(εnx)f(uεn)uεndx = on(1).

Taking w = uεn ± tuεn in (2.8) and passing to the limit as t → 0+, we obtain

‖uεn‖εn =
∫
RN

K(εnx)f(uεn)uεndx = on(1),

which implies that cεn = Φεn(uεn) = on(1). This leads to a contradiction with Lemma 5.1
and then (5.28) holds.

Set yn := yεn and un := uεn . Suppose by contradiction that there exist εn → 0, such 
that |εnyn| → ∞, as n → ∞. Next we proceed as in the proof of Claim 5.4 of Lemma 5.3. 
Note that, if ϕR is as in the proof of such claim, it shows that

Φ′
εn,yn

(ũn)(ϕRũn) = 0,

where ũn := un(· + yn). As (un), (ũn) is bounded in BL(RN ) and then ũn → ũ in 
L1
loc(RN ), where ũ �= 0. Then, as before, we also get that

Φ′
∞(ũ)ũ ≤ 0,

and then there exists t̃ ∈ (0, 1] such that t̃ũ ∈ N∞. Therefore, in the same way of 
Claim 5.4, we will get the contradiction that c0 = limn→∞ cεn ≥ c∞. Hence, {εyn} is 
bounded. �
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Corollary 5.8. If εn → 0, then up to a subsequence, there exists a point x0 ∈ RN such 
that εnyn → x0 where

V (x0) = V0 = inf
x∈RN

V, and K(x0) = K0 = max
x∈RN

K.

Proof. If εn → 0, according to Lemma 5.7, we know that {εnyn} is bounded, then there 
exists a point x0 ∈ RN such that εnyn → x0. Denote a functional ΦV K(x0) as follows:

ΦV K(x0)(u) =
∫
RN

|Δu| +
∫
RN

|∇u|dx +
∫
RN

V (x0)|u|dx−
∫
RN

K(x0)F (u)dx.

Since V (x0) ≥ V0 and K(x0) ≤ K0, similarly to the arguments that used in the proof of 
Claim 5.4 and of Lemma 5.7, it is possible to prove that

c0 = lim
n→∞

cεn ≥ cV K(x0) ≥ c0,

where cV K(x0) is the mountain pass minimax level of problem (2.1) with V (x0) playing 
the role of V (εx) and K(x0) playing the role of K(εx). Then it shows that V (x0) = V0 =
infx∈RN V and K(x0) = K0 = maxx∈RN K. Thus, x0 ∈ Λ ∩ Λ1, i.e., V (x0) = V0 and 
K (x0) = K0. The proof is complete. �

Lemma 5.9. If εn → 0, then there exists ũ ∈ BL(RN ) such that

ũn := un(· − yn) → ũ in L1
loc(RN ),

and

f(ũn)ũn → f(ũ)ũ in L1(RN ). (5.29)

Proof. Firstly, note that as in Lemma 4.3, it is possible to prove that (ũn) is bounded 
in BL(RN ) and then that ũn → ũ in Lq

loc(RN ) for all 1 ≤ q < 1∗, where ũ ∈ BL(RN ). 
As in the proof of Lemma 5.7, we can prove that t̃ ∈ (0, 1] such that t̃ũ ∈ N0 and verify 
t̃ = 1. Hence, ũ ∈ N0 and note that Φ0(ũ) = c0. Indeed,
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c0 ≤ Φ0(ũ)
= Φ0(ũ) − Φ′

0(ũ)ũ

=
∫
RN

K0(f(ũ)ũ− F (ũ))dx

≤ lim inf
n→∞

∫
RN

K0(f(ũn)ũn − F (ũn))dx

= lim
n→∞

(Φεn(un) − Φ′
εn(un)un)

= lim
n→∞

cεn

= c0.

Then

lim
n→∞

∫
RN

K0(f(ũn)ũn − F (ũn))dx =
∫
RN

K0(f(ũ)ũ− F (ũ))dx,

and hence K0(f(ũn)ũn − F (ũn)) → K0(f(ũ)ũ − F (ũ)) in L1(RN ). Therefore, by (f4), 
we have

f(un)un → f(ũ)ũ in L1(RN ). �
Proof of the last part to Theorem 1.1. Based on the previous results, we can finish the 
proof of Theorem 1.1. Indeed, if εn → 0, as n → ∞, denoting L =

∫
RN f(ũ)ũdx > 0, for 

a given δ > 0, by (5.29), there exist R > 0 and n0 ∈ N such that, for n ≥ n0,∫
Bc

R(0)

f(ũn)ũndx < δ,

which implies that ∫
BR(0)

f(ũn)ũndx ≥ L− δ + on(1).

By the change of variable ũn(x) = vn(εnx + εnyn) and the above inequalities indicate 
that ∫

Bc
εnR(εnyn)

f(vn)vndx < εNn δ, (5.30)

and ∫
f(vn)vndx ≥ CεNn , (5.31)
BεnR(εnyn)
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where n ≥ n0 and C > 0. Taking into account the fact that εnyn → x0 where V (x0) = V0
and K(x0) = K0, we can consider R > 0 such that, for n ≥ n0, BR(εnyn) ⊂ BR(x0), 
and then from (5.30) and (5.31), for all n ≥ n0∫

Bc
εnR

(x0)

f(vn)vndx < εNn δ,

and ∫
BεnR(x0)

f(vn)vndx ≥ CεNn .

The proof of Theorem 1.1 is complete. �
6. The asymptotic constant case

In the section, we can prove Theorem 1.2 under (f1) − (f5), (V2) and (K2). It can be 
seen from the statement of Theorem 1.2 that our existence result is related to ε > 0, and 
then we can assume ε = 1 without lack of generality.

Proof of Theorem 1.2. Let us denote ‖u‖Y =
∫
RN |Δu| +

∫
RN |∇u|dx +

∫
RN V (x)|u|dx, 

Φ(u)Y = ‖u‖Y −
∫
RN K(x)F (u)dx and consider Φ∞ as in Sect. 2.

As in proof of Lemma 4.2, it is easy to see that ΦY and Φ∞ satisfy the geometric 
conditions of the Mountain Pass Theorem and then the minimax levels are well defined

cY = inf
γ∈ΓY

sup
t∈[0,1]

ΦY (γ(t)),

c∞ = inf
γ∈Γ∞

sup
t∈[0,1]

Φ∞(γ(t)),

where ΓY =
{
γ ∈ C0([0, 1], BL(RN )); γ(0) = 0,ΦY (γ(1)) < 0

}
and Γ∞ is defined in a 

similar way.
By the results in Sect. 4, it follows that there exists a critical point of Φ∞, w∞ ∈

BL(RN ), such that Φ∞(w∞) = c∞. Now let us define the Nehari manifolds associated 
to ΦY and Φ∞, which are well defined by

NY =
{
u ∈ BL(RN )\{0}; Φ′

Y (u)u = 0
}
,

N∞ =
{
u ∈ BL(RN )\{0}; Φ′

∞(u)u = 0
}
.

From [11], we know that cY = infNY
ΦY and c∞ = infN∞ Φ∞. Moreover, it has been 

proved there that if there exists u0 ∈ BL(RN ) such that ΦY (u0) = infNY
ΦY , then u0 is 

a solution of (1.1).
By (V2) and (K2), it is easy to see that ΦY (u) ≤ Φ∞(u) for all u ∈ BL(RN ) and as 

a consequence,
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cY ≤ c∞. (6.1)

To prove Theorem 1.2, let us consider two possible cases of cY and c∞.

• Case A: cY = c∞.

If this case holds, problem (1.1) has a ground state solution. Indeed, since w∞ ∈ N∞, 
then

‖w∞‖Y =
∫
RN

|Δw∞| +
∫
RN

|∇w∞|dx +
∫
RN

V (x)|w∞|dx

≤
∫
RN

|Δw∞| +
∫
RN

|∇w∞|dx +
∫
RN

V∞|w∞|dx

=
∫
RN

K∞f(w∞)w∞dx,

is that,

Φ′
Y (w∞)w∞ ≤ 0.

Then there exists t ∈ (0, 1] such that tw∞ ∈ NY . Hence, from (f5), we have that

cY ≤ ΦY (tw∞)
= ΦY (tw∞) − Φ′

Y (tw∞)tw∞

=
∫
RN

K(x)(f(tw∞)tw∞ − F (tw∞))dx

≤
∫
RN

K∞(f(w∞)w∞ − F (w∞))dx

= Φ∞(w∞)
= c∞
= cY .

It indicates that t = 1 and w∞ is also a minimizer of ΦY on NY and then is a ground-state 
solution of (1.1).

• Case B: cY < c∞.

From [13], there exists (un) ⊂ BL(RN ) such that

lim ΦY (un) = cY , (6.2)

n→∞
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and

‖v‖Y − ‖un‖Y ≥
∫
RN

K(x)f(un)(v − un)dx− τn ‖v − un‖Y , ∀v ∈ BL(RN ), (6.3)

where τn → 0, as n → ∞. Note that as in Lemma 4.3, it is possible to prove that (un) is 
bounded in BL(RN ). From the compactness of the embeddings of BL(RN), it implies 
that there exists u0 ∈ BLloc(RN ) such that

un → u0 in Lq
loc(R

N ) for all 1 ≤ q < 1∗,

and

un → u0 a.e. in RN ,

as n → +∞. In addition, note that as in Section 4, it is possible to prove that u0 ∈
BL(RN ). And as in the proof of Lemma 5.3, let us use the Concentration of Compactness 
Principle of Lions to the following bounded sequence in L1(RN ), and set the function 
ρn(x) = |un(x)|

‖un‖1
. Note that

‖un‖1 � 0, as n → +∞. (6.4)

Similarly, the Concentration of Compactness Principle implies that one and only one 
of the following statements holds:

(i) (Vanishing) For all R > 0, there holds limn→+∞ supy∈RN

∫
BR(y) ρndx = 0;

(ii) (Compactness) There exist (yn) ⊂ RN such that for all η > 0, there exists R > 0
such that ∫

BR(yn)

ρndx ≥ 1 − η, ∀n ∈ N; (6.5)

(iii) (Dichotomy) There exist (yn) ⊂ RN , α ∈ (0, 1), R1 > 0, Rn → +∞ such that the 
functions ρn,1(x) := χBR1 (yn)(x)ρn(x) and ρn,2(x) := χBc

Rn
(yn)(x)ρn(x) satisfy

∫
RN

ρn,1dx → α and
∫
RN

ρn,2dx → 1 − α.

As can be seen in Lemma 5.3, we also have that the Vanishing case and the Dichotomy 
case do not hold. It follows that Compactness must occur and then, the sequence (yn)
is bounded. Then, for η > 0, it follows from (6.5) that there exists R > 0 such that
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∫
Bc

R(0)

ρndx < η, ∀n ∈ N,

that is, ∫
Bc

R(0)

|un|dx < η‖un‖1 ≤ Cη, ∀n ∈ N. (6.6)

Since u0 ∈ L1(RN ), there exists R0 > 0 such that∫
Bc

R0
(0)

|u0|dx ≤ η. (6.7)

Therefore, for R1 ≥ max {R,R0}, since un → u0 in L1(BR1(0)), there exists n0 ∈ N

such that ∫
BR1 (0)

|un − u0| dx ≤ η, ∀n ≥ n0. (6.8)

Then from (6.6), (6.7) and (6.8), it follows that when n ≥ n0,∫
RN

|un − u0|dx ≤
∫

Bc
R1

(0)

|un − u0|dx + η ≤
∫

Bc
R1

(0)

|un|dx +
∫

Bc
R1

(0)

|u0|dx + η ≤ C1η.

Thus, un → u0 in L1(RN ), and since (un) is bounded in L1∗(RN ), we have from the 
interpolation inequality that

un → u0 in Lq(RN ), ∀1 ≤ q < 1∗. (6.9)

From (f2), (f3) and (6.9), it follows that∫
RN

K(x)f(un)undx →
∫
RN

K(x)f(u0)u0dx, (6.10)

as n → +∞. From (6.3), (6.10) and the lower semicontinuity of the norm ‖ · ‖Y w.r.t. 
the L1(RN ) convergence, we have that

‖v‖Y − ‖u0‖Y ≥
∫
RN

K(x)f(u0)(v − u0)dx, ∀v ∈ BL(RN ).

Hence, u0 is a nontrivial solution of problem (1.1). Moreover, by (6.2), we have that
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cY ≤ ΦY (u0)
= ΦY (u0) − Φ′

Y (u0)u0

=
∫
RN

K(x)(f(u0)u0 − F (u0))dx

≤ lim inf
n→∞

∫
RN

K(x)(f(un)un − F (un))dx

= ΦY (un) + on(1)
= cY .

Thus, u0 is a ground-state solution of problem (1.1). The proof is complete. �
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