
Proceedings of the Royal Society of Edinburgh, 145A, 445–465, 2015

Infinitely many solutions for a class of sublinear
Schrödinger equations with indefinite potentials

Anouar Bahrouni and Hichem Ounaies
Mathematics, Faculty of Sciences, University of Monastir,
5019 Monastir, Tunisia (bahrounianouar@yahoo.fr;
hichem.ounaies@fsm.rnu.tn)
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In this paper we are concerned with qualitative properties of entire solutions to a
Schrödinger equation with sublinear nonlinearity and sign-changing potentials. Our
analysis considers three distinct cases and we establish sufficient conditions for the
existence of infinitely many solutions.

1. Historical perspective of the Schrödinger equation

The Schrödinger equation plays the role of Newton’s laws and conservation of energy
in classical mechanics, that is, it predicts the future behaviour of a dynamic system.
The linear Schrödinger equation is a central tool of quantum mechanics, which pro-
vides a thorough description of a particle in a non-relativistic setting. Schrödinger’s
linear equation is

Δψ +
8π2m

�2 (E − V (x))ψ = 0,

where ψ is the Schrödinger wave function, m is the mass, � denotes Planck’s con-
stant, E is the energy and V stands for the potential energy.

The structure of the nonlinear Schrödinger equation is much more complicated.
This equation is a prototypical dispersive nonlinear partial differential equation
that has been central for almost four decades to a variety of areas in mathematical
physics. The relevant fields of application vary from Bose–Einstein condensates
and nonlinear optics (see [15]), propagation of the electric field in optical fibres
(see [26,32]) to the self-focusing and collapse of Langmuir waves in plasma physics
(see [43]) and the behaviour of deep water waves and freak waves (so-called rogue
waves) in the ocean (see [34]). The nonlinear Schrödinger equation also describes
various phenomena arising in the theory of Heisenberg ferromagnets and magnons,
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the self-channelling of a high-power ultra-short laser in matter, condensed matter
theory, dissipative quantum mechanics, electromagnetic fields (see [5]) and plasma
physics (for example, the Kurihara superfluid film equation). We refer to Ablowitz
et al . [1] and Sulem [36] for a modern overview, including applications.

Schrödinger also established the classical derivation of his equation based upon
the analogy between mechanics and optics and closer to de Broglie’s ideas. He
developed a perturbation method, inspired by the work of Lord Rayleigh in acous-
tics, proved the equivalence between his wave mechanics and Heisenberg’s matrix
mechanics and introduced the time-dependent Schrödinger equation

i�ψt = − �
2

2m
Δψ + V (x)ψ − γ|ψ|p−1ψ in R

N (N � 2), (1.1)

where p < 2N/(N − 2) if N � 3 and p < +∞ if N = 2. In physical problems a
cubic nonlinearity corresponding to p = 3 is common; in this case (1.1) is called
the Gross–Pitaevskii equation. In the study of (1.1), Floer and Weinstein [24] and
Oh [33] supposed that the potential V is bounded and possesses a non-degenerate
critical point at x = 0. More precisely, it is assumed that V belongs to the class
(Va) (for some real number a) introduced by Kato [29]. Taking γ > 0 and � > 0
sufficiently small and using a Lyapunov–Schmidt type reduction, Oh [33] proved
the existence of standing wave solutions of (1.1), that is, a solution of the form

ψ(x, t) = e−iEt/�u(x). (1.2)

Using the ansatz (1.2), we reduce the nonlinear Schrödinger equation (1.1) to the
semilinear elliptic equation

− �
2

2m
Δu + (V (x) − E)u = |u|p−1u.

The change of variable y = �
−1x (and replacing y by x) yields

−Δu + 2m(V�(x) − E)u = |u|p−1u in R
N , (1.3)

where V�(x) = V (�x).
If, for some ξ ∈ R

N \ {0}, V (x + sξ) = V (x) for all s ∈ R, then (1.1) is invariant
under the Galilean transformation

ψ(x, t) �→ ψ(x − ξt, t) exp(iξ · x/� − 1
2 i|ξ|2t/�)ψ(x − ξt, t).

Thus, in this case, standing waves reproduce solitary waves travelling in the direc-
tion of ξ. In other words, Schrödinger discovered that the standing waves are scalar
waves rather than vector electromagnetic waves. This is an important difference:
vector electromagnetic waves are mathematical waves that describe a direction (vec-
tor) of force, whereas the wave motions of space are scalar waves, which are simply
described by their wave amplitude. The importance of this discovery was pointed
out by Einstein [23], who wrote:

The Schrödinger method, which has in a certain sense the character of
a field theory, does indeed deduce the existence of only discrete states,
in surprising agreement with empirical facts. It does so on the basis of
differential equations applying a kind of resonance argument.
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In a celebrated paper, Rabinowitz [35] proved that (1.3) has a ground-state
solution (mountain pass solution) for � > 0 small, under the assumption that
infx∈RN V (x) > E. After making a standing wave ansatz, Rabinowitz reduced the
problem to that of studying the semilinear elliptic equation

−Δu + V (x)u = f(x, u) in R
N (1.4)

under suitable conditions on V and assuming that f is smooth, superlinear and has
a subcritical growth.

2. Introduction and main results

In the present paper we are concerned with the existence of infinitely many solutions
of the semilinear Schrödinger equation

−Δu + V (x)u = a(x)g(u) x ∈ R
N (N � 3), (2.1)

where V and a are functions changing sign and the nonlinearity g has a sublinear
growth. Such problems in R

N arise naturally in various branches of physics and
present challenging mathematical difficulties.

If (2.1) is considered in a bounded domain Ω, with the Dirichlet boundary con-
dition, then there is a large literature on existence and a multiplicity of solutions
(see [4,14,27,28,37,38,41]). In particular, Kajikiya [27] has considered such sublin-
ear cases with sign-changing nonlinearity and has proved the existence of infinitely
many solutions.

If Ω is an unbounded domain, and especially if Ω = R
N , then the existence

and multiplicity of non-trivial solutions for (2.1) have been extensively investigated
in the literature over the past several decades, both for sublinear and superlinear
nonlinearities.

In the superlinear case, we can cite [2,3,6,8,17,19,21,22,25,35,42]. In particular,
Costa and Tehrani [17] have considered the problem

−Δu − λh(x)u = a(x)g(u), u > 0, in R
N , (2.2)

where λ > 0, h is a positive function, a changes the sign in R
N , N � 3, and g is

a superlinear function. With further assumptions on h, a and g, they proved the
existence of λ1(h) > 0 such that (2.2) admits one positive solution for 0 < λ < λ1(h)
and two positive solutions for λ1(h) < λ < λ1(h) + ε for some ε > 0.

In recent years, many authors have studied the question of existence and multi-
plicity of solutions for (2.1) with sublinear nonlinearity (see [7,10–12,16,18,30,39]).
In most of the problems studied in these papers, V and a are considered to be pos-
itive. In particular, Brezis and Kamin [12] gave a sufficient and necessary condition
for the existence of bounded positive solutions of (2.1) with V = 0 and a > 0.

Balabane et al . [7] proved that for each integer k, (2.1) has a radially compactly
supported solution that has k zeros in its support provided that V = a = −1 and
g(u) = |u|−2θu, where θ ∈ ]0, 1

2 [.
Zhang and Wang [44] proved the existence of infinitely many solutions for (2.1)

with g(u) = |u|p−1u, 0 < p < 1, and the potentials V > 0, a > 0 satisfy the
following assumptions:
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(S1) V ∈ C(RN , R) and there exists r > 0 such that

m{x ∈ B(y, r); V (x) � M} → 0 as |y| → +∞ ∀M > 0,

where m is the Lebesgue measure in R
N ;

(S2) a : R
N → R is a continuous function and a ∈ L2/(1−p)(RN ), 0 < p < 1.

If V and a both change sign on R
N , various difficulties arise. To the authors’ know-

ledge, few results are known in this case. On this subject, Costa and Tehrani [18]
have proved the existence of at least one non-trivial solution for the equation

−Δu + V (x)u = λu + g(x, u)

under the following conditions:

(VC1) V ∈ Cβ(RN ) (0 < β < 1) and lim
|x|→+∞

V (x) = 0;

(VC2)
∫

RN

(|∇ϕ|2 + V (x)ϕ2) dx < 0 for some ϕ ∈ C1
0 (RN );

(GC1) |g(x, s)| � b1(x)|s|α + b2(x) for some 0 < α < 1 and a class of integrable
functions b1 and b2;

(GC2) λ < 0 is an eigenvalue of the Schrödinger operator LV = −Δ + V (x) in R
N .

(GC2) lim
‖u0‖→+∞,

u0∈Ker(−Δ+V −λ)

1
‖u0‖2α

∫
RN

G(x, u0(x)) dx = ±∞.

Tehrani [39] studied the perturbed equation

−Δu + V (x)u = a(x)g(u) + f, (2.3)

where a and V change sign on R
N , f ∈ L2(RN ) and g is a sublinear function.

With further assumptions on a, V , f and g, he proved the existence of at least one
non-trivial solution.

Costa and Chabrowski [16] considered the p-Laplacian equation

−Δpu − λV (x)|u|p−2u = a(x)|u|q−2u, x ∈ R
N , (2.4)

where λ ∈ R is a parameter, 1 < q < p < p∗ = Np/(N − p), V ∈ LN/p(RN ) ∩
L∞(RN ), a ∈ L∞(RN ) and lim|x|→+∞ a(x) = a∞ < 0. With further assumptions
on a and V , they proved the existence of λ1 > 0 and λ−1 < 0 such that (2.4)
admits at least one positive solution for λ−1 < λ < λ1 and two positive solutions
for λ > λ1 and λ < λ−1.

Benrhouma [9] proved the existence of at least three solutions for (2.3) with
g(u) = |u|p sgn(u), 0 < p < 1, V changing sign and a < 0.

In all works cited above, where a and V change sign the authors proved the
existence of at most three solutions. In this paper, we prove the existence of infinitely
many solutions of (2.1) with a and V changing sign, under various assumptions on
these potential functions.
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Denote by s the best Sobolev constant,

s = inf
{

‖∇u‖2
2, u ∈ W 1,2(RN ),

∫
RN

|u(x)|2N/(N−2) dx = 1
}

, N � 3.

We suppose the following hypotheses on g:

(G1) g ∈ C(R, R), g is odd and there exist c > 0, q ∈ ]0, 1[ such that

|g(x)| � c|x|q for all x ∈ R;

(G2) lim
x→0

G(x)
|x|2 = +∞, where G(x) =

∫ x

0
g(t) dt ∀x ∈ R;

(G3) G is positive on R \ {0}.

We give three theorems on the existence of infinitely many solutions to the non-
linear problem (2.1).

Theorem 2.1. Assume that g(x) = |x|q−1x, 0 < q < 1, and that V satisfies:

(V1) V ∈ L∞(RN ), lim|x|→+∞ V (x) = v∞ > 0 and

‖V −‖N/2 < s,

where u∓(x) = max{∓u(x), 0} for all x ∈ R
N and for all u ∈ E.

Assume also that a satisfies:

(A1) a ∈ L∞(RN ), lim|x|→+∞ a(x) = a∞ < 0 and there exist y = (y1, . . . , yN ) ∈
R

N , R0 > 0 such that

a(x) > 0 for all x ∈ B(y, R0).

Then (2.1) possesses a sequence of non-trivial solutions converging to 0.

In the next two theorems we change the assumption of boundedness of a by
the integrability condition. The last assumption was supported to make the energy
functional associated with (2.1) well defined and to guarantee that the functional
F (u) =

∫
RN a(x)G(u(x)) dx has a compact gradient. This compactness property in

turn was used to prove the required Palais–Smale condition, which is essential in the
application of the critical point theory. We then have the following two multiplicity
properties.

Theorem 2.2. Suppose that g satisfies (G1)–(G3) and the potentials V and a sat-
isfy the following hypotheses:

(V2) V ∈ LN/2(RN ) and
‖V −‖N/2 < s;

(A2) a ∈ L2∗/(2∗−(q+1))(RN ) and there exist y ∈ R
N and R0 > 0 such that

a(x) > 0 ∀x ∈ B(y, R0).

Then (2.1) possesses a bounded sequence of non-trivial solutions.
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Theorem 2.3. Assume that g satisfies (G1)–(G3), V satisfies (V1) and a satisfies:

(A3) a ∈ L2/(1−q)(RN ) and there exist y = (y1, . . . , yN ) ∈ R
N and R0 > 0 such

that
a(x) > 0 ∀x ∈ B(y, R0).

Then (2.1) possesses a bounded sequence of non-trivial solutions.

This paper is organized as follows. In § 2 we give some notation, we present the
variational framework and we recall some definitions and standard results. Then
§§ 3–5 are dedicated to the proof of theorems 2.1, 2.2 and 2.3.

3. Notation and preliminary results

In this section we present some notation and preliminaries that will be useful in
the following. We make the following definitions:

• ‖u‖m =
( ∫

RN

|u(x)|m dx

)1/m

, 1 � m < +∞;

• 2∗ =
2N

N − 2
if N � 3 and 2∗ = +∞ if n ∈ {1, 2};

• BR denotes the ball centred at the origin of radius R > 0 in R
N and Bc

R =
R

N\BR;

• F ′(u) is the Fréchet derivative of F at u.

Let F1, F2 be Banach spaces and let T : F1 → F2. T is said to be a sequentially com-
pact operator if, given any bounded sequence (xn) in F1, (T (xn)) has a convergent
subsequence in F2.

Let E = H1(RN ) ∩ Lq+1(RN ) (0 < q < 1) be the reflexive Banach space endowed
with the norm

‖u‖ = ‖∇u‖2 + ‖u‖q+1.

Let X = D1,2(RN ) = {u ∈ L2∗
(RN ); ∇u ∈ (L2(RN ))N}, endowed with the norm

‖u‖X =
( ∫

RN

|∇u(x)|2 dx

)1/2

,

be a Hilbert space. Moreover, the embedding X ⊂ L2∗
(RN ) is continuous, which

implies that

S := inf
{ ∫

RN

|∇u(x)|2 dx; u ∈ X,

∫
RN

|u(x)|2∗
dx = 1

}
> 0.

We refer the reader to [40, pp. 8 and 9] for more details.
Let

Y =
{

u ∈ H1(RN );
∫

RN

V +(x)u2(x) dx < +∞
}

,
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under the hypotheses V ∈ L∞(RN ) and esslimx→+∞ V (x) > 0. We endow Y with
the inner product

〈u, v〉 =
∫

RN

∇u∇v +
∫

RN

V +(x)uv dx

and the associated norm ‖ · ‖Y , which is equivalent to the usual norm

‖u‖H1 = ‖∇u‖2 + ‖u‖2.

Consider the functionals

I(u) = 1
2

∫
RN

(|∇u|2(x) + V (x)u2(x)) dx −
∫

RN

a(x)G(u(x)) dx,

ϕ(u) = 1
2

∫
RN

V (x)u2(x) dx −
∫

RN

a(x)G(u(x)) dx,

ψ(u) = −1
2

∫
RN

V −(x)u2(x) dx −
∫

RN

a(x)G(u(x)) dx.

Under suitable assumptions on a, G and V (to be fixed later), I, ϕ and ψ are well
defined and of class C1 on X, Y or E. A critical point of I is a weak solution
of (2.1).

Next, let us recall that a Palais–Smale (PS) sequence for the functional I is a
sequence (un) such that

I(un) is bounded and ‖I ′(un)‖ → 0.

The functional I is said to satisfy the PS condition if any PS sequence possesses a
convergent subsequence.

A first main difficulty that appears in the study of (2.1) is the loss of compactness.
In order to overcome this difficulty, we use the Lions compactness principle [31].
A second main difficulty is to satisfy the geometric conditions required by the
Ambrosetti–Rabinowitz theorem [4]. We use a geometrical construction of subsets
to overcome this difficulty. Let us give a definition and recall the mountain pass
theorem of Ambrosetti and Rabinowitz.

Definition 3.1. Let E be a Banach space. A subset A of E is said to be symmetric
if u ∈ E implies −u ∈ E. For a closed symmetric set A that does not contain the
origin, we define the genus γ(A) of A by the smallest integer k such that there
exists an odd continuous mapping from A to R

k\{0}. If there does not exist such
a k, we define γ(A) = +∞. We set γ(∅) = 0. Let Γk denote the family of closed
symmetric subsets A of E such that 0 /∈ A and γ(A) � k.

Theorem 3.2 (Ambrosetti and Rabinowitz [4]). Let E be an infinite-dimensional
Banach space and let I ∈ C1(E, R) satisfy the following conditions.

(1) I is even, bounded from below, I(0) = 0 and I satisfies the PS condition.

(2) For each k ∈ N there exists Ak ∈ Γk such that

sup
u∈Ak

I(u) < 0.
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Under assumptions (1) and (2) we define ck by

ck = inf
A∈Γk

sup
u∈A

I(u).

Then each ck is a critical value of I, ck � ck+1 < 0 for k ∈ N and (ck) converges
to zero. Moreover, if ck = ck+1 = · · · = ck+p = c, then γ(Kc) � p + 1. The critical
set Kc is defined by

Kc = {u ∈ E; I ′(u) = 0, I(u) = c}.

4. Proof of theorem 2.1

In this section we consider the case in which a is bounded and we define I on the
function space E = H1(RN ) ∩ Lq+1(RN ).

Lemma 4.1. Assume that (A1) and (V1) hold. Then any PS sequence of I is
bounded in E.

Proof. By standard arguments, I is well defined and of class C1 on E.
Let (un) be a PS sequence of I. There then exists α > 0 such that I(un) � α.

Applying Hölder’s inequality and conditions (A1) and (V1), we have

α � I(un) =
1
2

∫
RN

(|∇un|2(x) + V (x)un(x)2) dx − 1
q + 1

∫
RN

a(x)|un(x)|q+1 dx

� 1
2

∫
RN

|∇un(x)|2 dx − 1
2

∫
RN

V −(x)un(x)2 dx

− 1
q + 1

∫
RN

a+(x)|un|q+1(x) dx +
1

q + 1

∫
RN

a−(x)|un|q+1(x) dx

� 1
2

∫
RN

|∇un|2(x) dx −
‖V −‖N/2

2s
‖∇un‖2

2

− 1
q + 1

∫
RN

a+(x)|un|q+1(x) dx. (4.1)

By (A1), there exists R > 0 such that

−‖a‖∞ � a(x) � a∞
2

< 0 ∀|x| � R and a+ ∈ Lm(RN ) ∀1 � m � +∞.

(4.2)
Combining (4.1) and (4.2), we infer that

α � I(un) � 1
2
‖∇un‖2

2 −
‖V −‖N/2

2s
‖∇un‖2

2 − s(−q−1)/2‖a+‖2∗/(2∗−(q+1))‖∇un‖q+1
2

�
(

1
2

−
‖V −‖N/2

2s

)
‖∇un‖2

2 − s(−q−1)/2‖a+‖2∗/(2∗−(q+1))‖∇un‖q+1
2 ,

and hence there exists β > 0 such that

‖∇un‖2 � β ∀n ∈ N. (4.3)
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On the other hand, there exists c > 0 such that

c +
‖un‖

2
� −1

2
〈I ′(un), un〉 + I(un)

=
(

1
2

− 1
q + 1

) ∫
RN

a(x)|un|q+1(x) dx

=
(

1
q + 1

− 1
2

) ∫
RN

a−(x)|un|q+1 dx

−
(

1
q + 1

− 1
2

) ∫
RN

a+(x)|un|q+1 dx

=
(

1
q + 1

− 1
2

) ∫
RN

(a−(x) + χBR
(x))|un|q+1 dx

−
(

1
q + 1

− 1
2

) ∫
RN

(a+(x) + χBR
(x))|un|q+1 dx

�
(

1
q + 1

− 1
2

)
min

{
−a∞

2
, 1

} ∫
RN

|un|q+1(x) dx

− s(−q−1)/2
(

1
q + 1

− 1
2

)
‖a+ + χBR

‖2∗/(2∗−(q+1))‖∇un‖q+1
2 .

Thus, there is a constant c > 0 such that∫
RN

|un|q+1 dx � c(‖∇un‖2 + ‖un‖q+1 + ‖a+ + χR‖2∗/(2∗−(q+1))‖∇un‖q+1
2 ).

Relation (4.3) yields

‖un‖q+1
q+1 � c + c‖un‖q+1 for all n ∈ N. (4.4)

Combining (4.3) and (4.4), we get

‖un‖ � c ∀n ∈ N.

The proof is complete.

We need the following lemma to prove that the PS condition is satisfied for I
on E.

Lemma 4.2. There exists a constant c > 0 such that for all real numbers x, y,

||x + y|q+1 − |x|q+1 − |y|q+1| � c|x|q|y|. (4.5)

Proof. If x = 0, the inequality (4.5) is trivial.
Suppose that x �= 0. We consider the continuous function f defined on R\{0} by

f(t) =
|1 + t|q+1 − |t|q+1 − 1

|t| .
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Then lim|t|→+∞ f(t) = 0 and limt→0± f(t) = ±(q+1). Thus, there exists a constant
c > 0 such that |f(t)| � c for all t ∈ R\{0}. In particular, |f(y/x)| � c, so∣∣∣∣

∣∣∣∣1 +
y

x

∣∣∣∣
q+1

−
∣∣∣∣yx

∣∣∣∣
q+1

− 1
∣∣∣∣ � c

∣∣∣∣yx
∣∣∣∣.

Multiplying by |x|q+1, we obtain the desired result.

Lemma 4.3. Assume (A1) and (V1) hold. Then I satisfies the PS condition on E.

Proof. Let (un) be a PS sequence. By lemma 4.1, (un) is bounded in E. There then
exists a subsequence un ⇀ u in E, un → u in Lp

loc(R
N ) for all 1 � p � 2∗ and

un → u almost everywhere (a.e.) in R
N .

Fix ϕ ∈ D(RN ). By the weak convergence of (un) to u, we obtain∫
RN

∇un∇ϕ(x) + V (x)unϕ(x) dx →
∫

RN

∇u∇ϕ + V (x)uϕ(x) dx. (4.6)

By compactness Sobolev embedding, un → u in Lq+1(supp(ϕ)), and hence there
exists a function h ∈ Lq+1(RN ) such that

a(x)|un|q−1unϕ → a(x)|u|q−1uϕ a.e. in R
N

and
|a| |un|q|ϕ| � ‖a‖∞|h| |ϕ| in R

N .

Using the Lebesgue dominated convergence theorem, we deduce that∫
RN

a(x)|un|q−1unϕ(x) dx →
∫

RN

a(x)|u|q−1uϕ(x) dx. (4.7)

Combining (4.6) and (4.7), we obtain

0 = lim
n→+∞

〈I ′(un), ϕ〉 = 〈I ′(u), ϕ〉 ∀ϕ ∈ D(RN ).

Then,
〈I ′(u), u〉 = 0. (4.8)

Since un ⇀ u in E, we have ‖u‖ � lim infn→+∞ ‖un‖ = limn→+∞ ‖un‖. We distin-
guish two cases.

Case 1 (compactness). ‖u‖ = limn→+∞ ‖un‖, so

lim sup
n→+∞

‖un‖q+1 � ‖u‖q+1 + ‖∇u‖2 − lim inf
n→+∞

‖∇un‖2.

Since
‖∇u‖2 � lim inf

n→+∞
‖∇un‖2, ‖u‖q+1 � lim inf

n→+∞
‖un‖q+1,

we obtain

‖u‖q+1 � lim inf
n→+∞

‖un‖q+1 � lim sup
n→+∞

‖un‖q+1 � ‖u‖q+1,
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and thus

un → u a.e. in R
N ,

‖un‖q+1 → ‖u‖q+1.

By the Brezis–Lied lemma [13], we infer that

un → u in Lq+1(RN ). (4.9)

Therefore, ‖∇un‖2 → ‖∇u‖2. On the other hand,∫
RN

|∇un − ∇u|2 dx =
∫

RN

|∇un|2 dx +
∫

RN

|∇u|2 dx − 2
∫

RN

∇un∇u dx,

and hence ∫
RN

∇un∇u dx →
∫

RN

|∇u|2 dx.

Therefore,
‖∇un − ∇u‖2 → 0. (4.10)

Combining (4.9) and (4.10), we deduce that un → u in E and the PS condition for
I is satisfied.

Case 2 (dichotomy). ‖u‖ < limn→+∞ ‖un‖. We prove that this case cannot occur.
Set vn = un − u.

Step 1 (There exists (yn) ⊂ R
N such that vn(· + yn) ⇀ v �= 0 in E). If not, for all

(yn) ⊂ R
N , vn(· + yn) ⇀ 0 in E. Then

∀R > 0 sup
y∈RN

∫
B(y,R)

|vn|q+1(x) dx → 0.

By [31, lemma I.1, p. 231],

vn → 0 in Lp(RN ) ∀q + 1 < p < 2∗. (4.11)

On the other hand,

〈I ′(un), un〉

=
∫

RN

(|∇un|2 + V (x)u2
n) dx −

∫
RN

a(x)|un|q+1 dx

=
∫

RN

(|∇vn|2 + V (x)v2
n) dx +

∫
RN

|∇u|2 dx +
∫

RN

(V (x)u2 + 2∇vn∇u) dx

+
∫

RN

2V (x)vnu dx −
∫

RN

a(x)(|un|q+1 − |u|q+1) dx −
∫

RN

a(x)|u|q+1 dx.

(4.12)

By (4.5) in lemma 4.2, we obtain

|a(x)| ||un|q+1 − |u|q+1 − |vn|q+1| = |a(x)| ||vn + u|q+1 − |u|q+1 − |vn|q+1|
� c|a(x)| |u|qvn.
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Since vn ⇀ 0 in E, we deduce that

lim
n→+∞

∫
RN

a(x)(|un|q+1 − |u|q+1) dx = lim
n→+∞

∫
RN

a(x)|vn|q+1(x) dx. (4.13)

Using Hölder’s inequality in combination with (4.2) and (4.11), we obtain∫
RN

(a+(x) + χBR
(x))|vn|q+1 dx � ‖a+ + χBR

‖2/(1−q)‖vn‖q+1
L2(B(0,R)) → 0. (4.14)

Passing to the limit in (4.12) and using (4.2), (4.11), (4.13) and (4.14), we obtain

0 = lim
n→+∞

〈I ′(un), un〉 = 〈I ′(u), u〉 + lim
n→+∞

( ∫
RN

(|∇vn|2 − a(x)|vn|q+1) dx

)

= 〈I ′(u), u〉 + lim
n→+∞

( ∫
RN

|∇vn|2 + (a−(x) + χBR
)|vn|q+1

)

− lim
n→+∞

∫
RN

(a+(x) + χBR
)|vn|q+1 dx

= lim
n→+∞

∫
RN

|∇vn|2 + (a−(x) + χBR
)|vn|q+1 dx.

� lim
n→+∞

∫
RN

(|∇vn|2 + min(1
2 − a∞, 1)|vn|q+1) dx

� lim
n→+∞

min(1, min( 1
2 − a∞, 1))

∫
RN

(|∇vn|2 + |vn|q+1) dx.

Then vn → 0 in E, which yields a contradiction.

Step 2. (yn) is not bounded. Indeed, suppose that (yn) is bounded and there exists
a subsequence of (yn), also denoted by (yn), such that yn → y0. Then, for all
ϕ ∈ D(RN ),

0 = lim
n→+∞

∫
RN

ϕ(x − yn)vn dx = lim
n→+∞

∫
RN

ϕ(x)vn(x + yn) dx =
∫

RN

ϕ(x)v(x) dx.

Hence, v = 0 a.e. in R
N , a contradiction.

Step 3. We show that v is a solution of the following problem:

−Δu + v∞u = a∞|u|q−1u in R
N ,

u ∈ E.

}
(P∞)

We first prove that (P∞) admits only the trivial solution. Thus, since v solves (P∞),
we will obtain a contradiction.

Since (yn) is not bounded, un(· + yn) ⇀ v is in E. In fact, u(· + yn) ⇀ ψ ∈ E,
and hence

0 = lim
n→+∞

∫
RN

u(x + yn)ϕ(x) dx =
∫

RN

ψ(x)ϕ(x) dx ∀ϕ ∈ D(RN ).

It follows that ψ = 0 a.e. Therefore,

un(· + yn) ⇀ v in E. (4.15)
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Let ϕ ∈ D(RN ). We have

〈I ′(un), ϕ(· − yn)〉 =
∫

RN

(∇un∇ϕ(x − yn) + V (x)unϕ(x − yn)) dx

−
∫

RN

a(x)|un|q−1unϕ(x − yn) dx

=
∫

RN

∇un(x + yn)∇ϕ(x) + V (x + yn)un(x + yn)ϕ(x) dx

−
∫

RN

a(x + yn)|un|q−1(x + yn)un(x + yn)ϕ(x) dx.

Relation (4.15) yields∫
RN

∇un(x + yn)∇ϕ(x) dx →
∫

RN

∇v(x)∇ϕ(x) dx. (4.16)

Since (un(· + yn)) is bounded in E, un(· + yn) → v in Lp
loc(R

N ) for all 1 � p � 2∗

(up to a subsequence), un(x + yn) → v a.e. in R
N and there exists K ∈ Lp(RN )

such that ϕ|un(· + yn)| � |K| in R
N , 1 � p � 2∗. Then, by (V1), we obtain

V (x + yn)un(x + yn)ϕ → v∞vϕ a.e. in R
N ,

|V (x + yn)un(x + yn)ϕ| � ‖V ‖∞|K| |ϕ| ∈ L1(RN ).

Applying Lebesgue’s dominated convergence theorem, we deduce that∫
RN

V (x + yn)un(x + yn)ϕ(x) dx → v∞

∫
RN

v(x)ϕ(x) dx. (4.17)

From hypothesis (A1), we find

a(x + yn)|un(x + yn)|q−1un(x + yn)ϕ → a∞|v|q−1vϕ a.e. in R
N ,

|a(x + yn)| |un(x + yn)|q|ϕ| � ‖a‖∞|K|q|ϕ| ∈ L1(RN ).

Next, by Lebesgue’s dominated convergence theorem, we obtain

lim
n→+∞

∫
RN

a(x+yn)|un|q−1(x+yn)un(x+yn) dx = a∞

∫
RN

|v|q−1vϕ(x) dx. (4.18)

Combining (4.16)–(4.18), we deduce that for all ϕ ∈ D(RN ),

0 = lim
n→+∞

〈I ′(un), ϕ(· − yn)〉

=
∫

RN

(∇v(x)∇ϕ(x) + v∞vϕ) dx − a∞

∫
RN

|v|q−1vϕ(x) dx.

Thus, v is a weak solution of (P∞), and hence v = 0, which yields a contradiction.
From steps 1, 2, and 3, we conclude that the dichotomy does not occur. The proof
is complete.

Lemma 4.4. Assume that (A1) and (V1) are fulfilled. Then, for each k ∈ N, there
exists Ak ∈ Γk such that supu∈Ak

I(u) < 0.
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Proof. We use some ideas developed in [27].
Let R0 and y0 be fixed by assumption (A1) and consider the cube

D(R0) = {(x1, . . . , xN ) ∈ R
N : |xi − yi| < R0, 1 � i � N}.

Fix k ∈ N arbitrarily. Let n ∈ N be the smallest integer such that nN � k. We divide
D(R0) equally into nN small cubes (denote them by Di with 1 � i � nN ) with
planes parallel to each face of D(R0). The edge of Di has the length of a = R0/n.
We construct new cubes Ei in Di such that Ei has the same centre as that of Di.
The faces of Ei and Di are parallel and the edge of Ei has the length 1

2a. Thus, we
can construct a function ψi, 1 � i � k, such that

sup(ψi) ⊂ Di, supp(ψi) ∩ supp(ψj) = ∅ (i �= j),

ψi(x) = 1 for x ∈ Ei, 0 � ψi(x) � 1 ∀x ∈ R
N .

We define

Sk−1 =
{

(t1, . . . , tk) ∈ R
k : max

1�i�k
|ti| = 1

}
, (4.19)

Wk =
{ k∑

i=1

tiψi(x) : (t1, . . . , tk) ∈ Sk−1
}

⊂ E. (4.20)

Since the mapping (t1, . . . , tk) →
∑k

i=1 tiψi from Sk−1 to Wk is odd and homeo-
morphic, we have γ(Wk) = γ(Sk−1) = k. But Wk is compact in E, and thus there
is a constant αk > 0 such that

‖u‖2 � αk for all u ∈ Wk.

We recall the inequality

‖u‖2 � c‖∇u‖r
2‖u‖1−r

q+1 � c‖u‖ (4.21)

with r = 2∗(q − 1)/2(2∗ − q − 1). Then there is a constant ck > 0 such that

‖u‖2
2 � ck for all u ∈ Wk.

Let z > 0 and u =
∑k

i=1 tiψi(x) ∈ Wk. We have

I(zu) � z2

2
αk + z2 ‖V ‖∞

2
ck − 1

q + 1

k∑
i=1

∫
Di

a(x)|ztiψi|q+1 dx. (4.22)

By (4.19), there exists j ∈ [1, k] such that |tj | = 1 and |ti| � 1 for i �= j. Then

k∑
i=1

∫
Di

a(x)|ztiψi|q+1 dx =
∫

Ej

a(x)|ztjψj |q+1 dx +
∫

Dj\Ej

a(x)|ztjψj(x)|q+1 dx

+
∑
i 	=j

∫
Di

a(x)|ztiψi|q+1 dx. (4.23)

Since ψj(x) = 1 for x ∈ Ej and |tj | = 1, we have∫
Ej

a(x)|ztjψj |q+1 dx = |z|q+1
∫

Ej

a(x) dx. (4.24)
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On the other hand, by (A1),∫
Dj\Ej

a(x)|ztjψj |q+1 dx +
∑
i 	=j

∫
Di

a(x)|ztiψi|q+1 dx � 0. (4.25)

Relations (4.22)–(4.25) yield

I(zu)
z2 � αk

2
+

‖V ‖∞
2

ck − |z|q+1

z2 inf
1�i�k

( ∫
Ei

a(x) dx

)
. (4.26)

By (4.26), we conclude that

lim
z→0

sup
u∈Wk

I(zu)
z2 = −∞.

We fix z small enough such that

sup{I(u), u ∈ Ak} < 0, where Ak = zWk ∈ Γk.

This concludes the proof.

Lemma 4.5. Assume that (A1) and (V1) hold. Then I is bounded from below.

Proof. By (A1), we obtain

a+ ∈ Lp(RN ) for all 1 � p � +∞. (4.27)

Then

I(u) =
1
2

∫
RN

(|∇u|2 + V (x)u2) dx − 1
q + 1

∫
RN

a(x)|u|q+1 dx

� 1
2

∫
RN

(|∇u|2 − V −(x)u2) dx − 1
q + 1

∫
RN

a+(x)|u|q+1 dx

�
(

1
2

−
‖V −‖N/2

2s

)
‖∇u‖2

2 −
‖a+‖2∗/(2∗−q−1)

s(q+1)/2 ‖∇u‖q+1
2 .

In view of (V1), we conclude the proof.

Proof of theorem 2.1 concluded. We have I(0) = 0 and I is even. Combining lem-
mas 4.3, 4.4 and 4.5, we deduce that theorem 3.2(1) and (2) are satisfied. Thus,
there exists a sequence (un) ⊂ E such that I(un) < 0, I ′(un) = 0 and I(un) → 0
for all n � 0, and hence un is a weak solution of (2.1).

By (V1), we deduce that

1
q + 1

〈I ′(un), un〉 − I(un) =
(

1
q + 1

− 1
2

) ∫
RN

(|∇un|2 + V (x)u2
n) dx

�
(

1
q + 1

− 1
2

)(
1
2

− 1
2s

‖V −‖N/2

)
‖∇un‖2

2.

It follows that
lim

n→+∞

∫
RN

|∇un|2 dx = 0. (4.28)
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On the other hand, by Hölder’s inequality, (4.2) and (4.28), we have

0 = lim
n→+∞

(I(un) − 1
2 〈I ′(un), un〉)

= lim
n→+∞

(
1
2

− 1
q + 1

) ∫
RN

a(x)|un|q+1

=
(

1
q + 1

− 1
2

)
lim

n→+∞

( ∫
RN

(a−(x) + χBR
)|un|q+1 dx

−
∫

RN

(a+(x) + χBR
)|un|q+1

)

�
(

1
q + 1

− 1
2

)
lim

n→+∞

( ∫
RN

(a−(x) + χBR
)|un|q+1 dx

− ‖a+ + χBR
‖2∗/(2∗−q−1)

s(q+1)/2 ‖∇un‖q+1
2

)

=
(

1
q + 1

− 1
2

)
lim

n→+∞

∫
RN

(a−(x) + χBR
)|un|q+1 dx

�
(

1
q + 1

− 1
2

)
min

(
−a∞

2
, 1

)
lim

n→+∞
‖un‖q+1

q+1.

This shows that

lim
n→+∞

∫
RN

|un|q+1 dx = 0, (4.29)

and hence limn→+∞ un = 0 in E. This concludes the proof.

5. Proof of theorem 2.2

In this section we define I and ϕ on X. We use standard arguments based on the
fact that I ′ is a sequentially compact operator in order to prove that I satisfies
the PS condition. We then deduce that (2.1) admits infinitely many non-trivial
solutions in X.

To prove theorem 2.2, we need the following auxiliary results.

Lemma 5.1. Assume that (A2), (V2) and (G1) are satisfied. Then ϕ′ is a sequen-
tially compact operator on X.

Proof. By standard arguments, the functionals I and ϕ are well defined and of class
C1 on X.

Let (un) ⊂ X be a bounded sequence. Then, for all h ∈ X,

〈ϕ′(un) − ϕ′(u), h〉 =
∫

RN

[V (x)(un − u) − a(x)(g(un) − g(u))]h(x) dx.

Let R > 0 and h ∈ X be such that ‖h‖ = 1. We have

〈ϕ′(un) − ϕ′(u), h〉 = J1(n, h, R) + J2(n, h, R),
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where

J1(n, h, R) =
∫

BR

[V (x)(un − u) − a(x)(g(un) − g(u))]h(x) dx,

J2(n, h, R) =
∫

Bc
R

[V (x)(un − u) − a(x)(g(un) − g(u))]h(x) dx.

By Hölder’s inequality, (V2), (A2) and (G1), we obtain

|J2(n, h, R)|

�
∫

Bc
R

|V (x)(un − u)h(x) − a(x)(g(un) − g(u))h(x)| dx

�
( ∫

Bc
R

|V (x)|N/2 dx

)2/N( ∫
Bc

R

|un − u|2∗
dx

)1/2∗( ∫
Bc

R

|h(x)|2∗
dx

)1/2∗

+ c

( ∫
Bc

R

|a(x)|2∗/(2∗−(q+1)) dx

)(2∗−(q+1))/2∗( ∫
Bc

R

(|un(x) + u(x)|)2∗
dx

)q/2∗

×
( ∫

Bc
R

|h(x)|2∗
dx

)1/2∗

�
( ∫

Bc
R

|V (x)|N/2 dx

)2/N

+
( ∫

Bc
R

|a(x)|2∗/(2∗−(q+1)) dx

)(2∗−(q+1))/2∗

.

The last expression can be made arbitrarily small by taking R > 0 large enough.
For J1, since V ∈ LN/2(RN ) and a ∈ L2∗/(2∗−(q+1))(RN ), we deduce that for all

ε > 0 there exists η > 0 such that

( ∫
K

|a(x)|2∗/(2∗−(q+1)) dx

)(2∗−(q+1))/2∗

+
( ∫

K

|V (x)|N/2 dx

)2/N

< ε

for all K ⊂ BR with m(K) < η (see [20]). Moreover,

∫
K

|V (x)(un − u) − a(x)(g(un) − g(u))| |h(x)| dx

� c

( ∫
K

|V (x)|N/2 dx

)2/N

+ c

( ∫
K

|a(x)|2∗/(2∗−(q+1)) dx

)(2∗−(q+1))/2∗

� cε,

where c is independent of n and h. By using the Vitali convergence theorem, we
deduce that J1(n, h, R) → 0 as n → +∞ uniformly for ‖h‖ = 1. We conclude that
ϕ′(un) → ϕ′(u) strongly in X ′. The proof is complete.

Lemma 5.2. Assume that (V2), (A2) and (G1) are satisfied. Then any PS sequence
of I is bounded in X.
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Proof. Let (un) ⊂ X be a PS sequence. There then exists α > 0 such that I(un) �
α. By Hölder’s inequality and conditions (A2), (V2) and (G1), we have

α � I(un) � 1
2

∫
RN

(|∇un|2(x) − V −(x)un(x)2) dx −
∫

RN

a(x)G(un(x)) dx

�
(

1
2

− 1
2s

‖V −‖N/2

)
‖un‖2

X − s(−q−1)/2‖a‖2∗/(2∗−(q+1))‖un‖q+1
X .

Since 0 < q < 1, the last inequality shows that (un) is bounded in X. The proof is
complete.

As a consequence, we obtain the following result.

Lemma 5.3. Assume that (V2), (A2) and (G1) are satisfied. Then I satisfies the
PS condition in X.

Proof. Set

F : D1,2(RN ) → (D1,2(RN ))′,

u �→ F (u),

〈F (u), v〉 =
∫

RN

∇u∇v dx ∀v ∈ D1,2(RN ).

Then F is an isomorphism. Let (un) be a PS sequence of I; hence,

un = F−1(ϕ′(un)) + o(1). (5.1)

By lemma 5.2, (un) is bounded in X. Since ϕ′ is a compact operator and using (5.1),
we deduce that (un) is strongly convergent in X (up to a subsequence).

Lemma 5.4. Assume that (G1), (V2) and (A2) are satisfied. Then I is bounded
from below.

Proof. By (G1), (V2) and (A2), we have

I(u) =
1
2

∫
RN

(|∇u(x)|2 + V (x)u2(x)) dx −
∫

RN

a(x)G(u(x)) dx

� 1
2

∫
RN

|∇u(x)|2 dx − 1
2

∫
RN

V −(x)u2(x) dx −
∫

RN

a(x)G(u(x)) dx

� 1
2

∫
RN

|∇u(x)|2 dx − 1
2s

‖V −‖N/2‖u‖2
X − s(−q−1)/2‖a‖2∗/(2∗−(q+1))‖u‖q+1

X

�
(

1
2

− 1
2s

‖V −‖N/2

)
‖u‖2

X − s(−q−1)/2‖a‖2∗/(2∗−(q+1))‖u‖q+1
X .

Since 1 < q + 1 < 2, we deduce that I is bounded from below. The proof is
complete.

Next, we prove the geometric condition required by theorem 3.2.

Lemma 5.5. Assume that (A2), (V2), (G1), (G2) and (G3) are satisfied. Then, for
each k ∈ N there exists an Ak ∈ Γk such that supu∈Ak

I(u) < 0.
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Proof. By using conditions (G2) and (G3), the proof is similar to that of lemma 4.4.

Proof of theorem 2.2 concluded. The energy functional I is even and I(0) = 0. By
lemmas 5.3 and 5.4, theorem 3.2(1) is satisfied. In view of lemma 5.5, theorem 3.2(2)
is also satisfied. Thus, there exists a sequence (uk) such that ck = I(uk) is a critical
value of I, ck < 0, ck → 0 for all k � 0. This means that (uk) are weak solutions
of (2.1) and (uk) is a PS sequence of I. Then, by lemma 5.2, (uk) is bounded.

Remark 5.6. If g(x) = |x|q−1x, 0 < q < 1, then un → 0 in X. In fact, by (V2), we
have

0 =
1

q + 1
〈I ′(un), un〉 − I(un) =

(
1

q + 1
− 1

2

) ∫
RN

(|∇un|2 + V (x)|un|2) dx

�
(

1
q + 1

− 1
2

)(
1 −

‖V −‖N/2

s

) ∫
RN

|∇un|2(x) dx.

Since I ′(un) = 0 and limn→+∞ I(un) = 0, we deduce that un → 0 in X.

6. Proof of theorem 2.3

In this section we change the condition (V2) to (V1) and we suppose that a satisfies
(A3). Under the last conditions, if the functional I is not well defined on either X
or E, then we define it on the space Y . We first establish that (Y, 〈·〉) is a Hilbert
space and it is embedded into Lp(RN ) for 2 � p � 2∗. The proof of the following
result relies on standard arguments and we will omit it.

Lemma 6.1. Assume that (V1) holds. Then

u →
( ∫

RN

(|∇u(x)|2 + V +(x)u2(x)) dx

)1/2

defines a norm on Y , which is equivalent to the usual norm in H1(RN ),

‖u‖H1 = ‖∇u‖2 + ‖u‖2.

By using lemma 6.1, the proof of theorem 2.3, with slight modifications, is similar
to that of theorem 2.2.

Remark 6.2. If g(x) = |x|q−1x, 0 < q < 1, then un → 0 in Y .

Remark 6.3. In theorems 2.1, 2.2 and 2.3 we can suppose that u0 is a non-negative
solution of (2.1), since

I(u0) = I(|u0|) = c0.

In such a case, u0 is called a ground state for I.
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(1997), 365–413.

7 M. Balabane, J. Dolbeault and H. Ounaies. Nodal solutions for a sublinear elliptic equation.
Nonlin. Analysis 52 (2003), 219–237.

8 T. Bartsch, Z. Liu and T. Weth. Sign changing solutions for superlinear Schrödinger equa-
tions. Commun. PDEs 29 (2004), 25–42.

9 M. Benrhouma. Study of multiplicity and uniqueness of solutions for a class of nonhomo-
geneous sublinear elliptic equations. Nonlin. Analysis 74 (2011), 2682–2694.

10 M. Benrhouma and H. Ounaies. Existence and uniqueness of positive solution for nonho-
mogeneous sublinear elliptic equation. J. Math. Analysis Applic. 358 (2009), 307–319.

11 M. Benrhouma and H. Ounaies. Existence of solutions for a perturbation sublinear elliptic
equation in R

N . Nonlin. Diff. Eqns Applic. 5 (2010), 647–662.
12 H. Brezis and S. Kamin. Sublinear elliptic equations in R

n. Manuscr. Math. 74 (1992),
87–106.

13 H. Brezis and E. H. Lieb. A relation between pointwise convergence of functions and con-
vergence of functionals. Proc. Am. Math. Soc. 88 (1983), 486–490.

14 H. Brezis and L. Oswald. Remarks on sublinear elliptic equations. Nonlin. Analysis 10
(1986), 55–64.

15 J. Byeon and Z. Q. Wang. Standing waves with a critical frequency for nonlinear Schrödinger
equations. Arch. Ration. Mech. Analysis 165 (2002), 295–316.

16 J. Chabrowski and D. G. Costa. On a class of Schrödinger-type equations with indefinite
weight functions. Commun. PDEs 33 (2008), 1368–1394.

17 D. G. Costa and H. Tehrani. Existence of positive solutions for a class of indefinite elliptic
problems in R

N . Calc. Var. PDEs 13 (2001), 159–189.
18 D. G. Costa and H. Tehrani. Unbounded perturbations of resonant Schrödinger equations.

In Variational methods: open problems, recent progress, and numerical algorithms. Con-
temporary Mathematics, vol. 357, pp. 101–110 (Providence, RI: American Mathematical
Society, 2004).

19 D. G. Costa, H. Tehrani and M. Ramos. Non-zero solutions for a Schrödinger equation with
indefinite linear and nonlinear terms. Proc. R. Soc. Edinb. A134 (2004), 249–258.

20 C. Dellacherie and P. A. Meyer. Probabilités et potentiel (Paris: Hermann, 1983).
21 W. Dong and L. Mei. Multiple solutions for an indefinite superlinear elliptic problem on

R
N . Nonlin. Analysis 73 (2010), 2056–2070.

22 Y. Du. Multiplicity of positive solutions for an indefinite superlinear elliptic problem on
R
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