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Zachary Franco, Christian Friesen, Ira M. Gessel, Jerrold R. Griggs, Jerrold Grossman,
Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard Pfiefer, Cecil C.
Rousseau, Leonard Smiley, John Henry Steelman, Kenneth Stolarsky, Richard Stong,
Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the inside front cover. Submitted solutions should arrive at
that address before May 31, 2007. Additional information, such as generaliza-
tions and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11271. Proposed by Iliya Bluskov, University of Northern British Columbia, Prince
George, BC, Canada. Let N be a positive even integer. A placement of queens on
an N × N chessboard is a set of N squares on the board such that none of these
squares lies on either long diagonal, and no two of these squares lie in a single row,
column, or diagonal (that is, the queens are non-attacking). A cover of an N × N
board is a set of N − 2 disjoint placements. (Thus on a 4 × 4 board, the placements
{(1, 3), (2, 1), (3, 4), (4, 2)} and {(1, 2), (2, 4), (3, 1), (4, 3)} form a cover.)
(a) Show that there exists a cover of the N × N board if N + 1 is prime.
(b) Give an example of an even N for which N + 1 is not prime and for which there
is no cover.
(c) Give an example of an even N , and a cover, for which N + 1 is not prime.

11272. Proposed by Vasile Mihai, Belleville, ON, Canada. Let ABC be an acute
nonequilateral triangle, and let H be its orthocenter, O its circumcenter, and K its
symmedian point (defined below). Let R be the circumradius of ABC . Let L be the
line through H and parallel to the line segment K O .
(a) Show that there are exactly two solution points V on L to the equations

|V A|
|BC | = |V B|

|C A| = |V C |
|AB| .

(b) For the solutions V1 and V2 in (a), show that |H V1| · |H V2| = 4R2.
(The symmedian point of a triangle is the point of concurrence of its three symme-
dian lines. The symmedian line through A is the reflection of the line through A and
the centroid of ABC across the line bisecting angle B AC , and the symmedian lines
through B and C are defined similarly. For more about the symmedian point, see Ross
Honsberger’s “Episodes in Nineteenth and Twentieth Century Euclidean Geometry,”
MAA, Washington, D.C., 1995.)

11273. Proposed by Marian Tetiva, Bı̂rlad, Romania. Let 〈an〉 be the sequence such
that an = n for n ≤ 6 and an = �(a1 + · · · + an−1)/2� for n > 6. Let rn be the number
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in {0, 1, 2} congruent to
∑n

k=1 ak modulo 3. Show that for n ≥ 6, {a1, . . . , an}\{rn}
may be partitioned into three subsets with equal sum. (For example, with n = 7,
{2, 3, 4, 5, 6, 10} = {2, 3, 5} ∪ {4, 6} ∪ {10}.)
11274. Proposed by Donald Knuth, Stanford, CA. Prove that for nonnegative integers
m and n,

m∑
k=0

2k

(
2m − k

m + n

)
= 4m −

n∑
j=1

(
2m + 1

m + j

)
.

11275. Proposed by Michael S. Becker, University of South Carolina at Sumter, Sumter,
SC. Find ∫ ∞

y=0

∫ ∞

x=y

(x − y)2 log((x + y)/(x − y))

xy sinh(x + y)
dx dy.

11276. Proposed by Eugene Herman, Grinnell College, Grinnell, IA. Let T1, . . . , Tn

be translations in R
3 with translation vectors t1, . . . , tn , and let R be a rotational linear

transformation on R
3 that rotates space through an angle of π/n about an axis parallel

to a vector r. Define a transformation C by C = (RTn · · · RT2 RT1)
2. Prove that C is

a translation, find an explicit formula for its translation vector in terms of r, n, and
t1, . . . , tn , and prove that there is a line � in R

3, independent of t1, . . . , tn , such that C
translates space parallel to �.

SOLUTIONS

Exponential Growth of a Solution

11137 [2005, 181]. Proposed by Vicenţiu Rădulescu, University of Craiova, Romania.
Let φ be a continuous positive function on the open interval (A, ∞), and assume that
f is a C2-function on (A, ∞) satisfying the differential equation

f ′′(t) = (1 + φ(t)( f 2(t) − 1)) f (t).

(a) Given that there exists a ∈ (A, ∞) such that f (a) ≥ 1 and f ′(a) ≥ 0, prove that
there is a positive constant K such that f (x) ≥ K ex whenever x ≥ a.
(b) Given instead that there exists a ∈ (A, ∞) such that f ′(a) < 0 and f (x) > 1 if
x > a, prove that there exists a positive constant K such that f (x) ≥ K ex whenever
x ≥ a.
(c) Given that f is bounded on (A, ∞) and that there exists α > 0 such that φ(x) =
O(e−(1+α)x), prove that limx→∞ ex f (x) exists and is finite.

Solution by Richard Stong, Rice University, Houston, TX.
(a) Let b = inf{t ≥ a : f (t) < 1 or f ′(t) < 0}. If b < ∞, then f (b) ≥ 1 and f ′(b) ≥
0. Hence the differential equation yields f ′′(b) ≥ 1. It follows that f ′(t) > 0 on some
interval [b, b + ε) and hence that f (t) ≥ 1 on this interval. This contradicts the defini-
tion of b. Hence b = ∞; i.e., f (t) ≥ 1 and f ′(t) ≥ 0 for all t ≥ a. Thus the differential
equation gives f ′′(t) ≥ f (t) for all t ≥ a. Now note that using the weaker inequality
f ′′(t) ≥ 1 and integrating twice gives f (t) ≥ 1 + (t − a)2/2; hence f is unbounded.
From the full inequality we get 2 f ′(t) f ′′(t) ≥ 2 f (t) f ′(t), and integrating gives(

f ′(t)
)2 − (

f ′(a)
)2 ≥ f 2(t) − f 2(a).
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Hence in particular ( f ′(t))2 ≥ f 2(t) − f 2(a) for t ≥ a. Rewriting this in the form
f ′(t)/

√
f 2(t) − f 2(a) ≥ 1 and integrating over [a, x] gives cosh−1( f (x)/ f (a)) ≥

x − a, or f (x) ≥ f (a) cosh(x − a) ≥ ex f (a)/(2ea) for t ≥ a. Hence f satisfies the
required inequality with K = f (a)/(2ea).
(b) We prove a stronger result, assuming only that f (x) ≥ 1 for x ≥ a. That is, we
allow equality and do not require that f ′(a) < 0. Since f (x) ≥ 1 for all x ≥ a, the
differential equation gives f ′′(t) ≥ 1. Integrating over [a, c] gives f ′(c) ≥ c − a +
f ′(a). Hence we can choose c > a with f ′(c) ≥ 0. Applying part (a) to x ≥ c shows
that there is a constant K1 > 0 such that f (x) ≥ K1ex for x ≥ c. Continuity and posi-
tivity of f on [a, c] shows there is a constant K2 > 0 such that f (x) ≥ K2ex on [a, c]
and hence K = min(K1, K2) suffices for [a, ∞).
(c) Applying part (a) and our version of (b) to f and − f shows that if f is bounded,
then | f | cannot cross from smaller than 1 to at least 1, and cannot remain forever
at least 1. Thus there is some d with | f (x)| < 1 for x ≥ d. Choosing d larger, if
necessary, we may assume φ(x) < 1 for x ≥ d.

Now if f is eventually zero, we are done, so assume not. For r > d we claim: if
f (r) > 0, then f ′(r) < 0 (and similarly if f (r) < 0 then f ′(r) > 0).

Indeed, suppose there is r > d with f (r) > 0 and f ′(r) ≥ 0. Let s = inf{t ≥
r : f (t) < 0 or f ′(t) < 0}. If s < ∞, then f (s) ≥ f (r) > 0 and f ′(s) = 0. The dif-
ferential equation then gives f ′′(s) ≥ (1 − φ(s)) f (s) > 0, so f ′(t) ≥ 0 on some in-
terval [s, s + ε). Also f (t) ≥ 0 on this interval, which contradicts the definition of s.
Therefore s = ∞, i.e., f (t) ≥ 0 and f ′(t) ≥ 0 for all t ≥ r . It follows from the differ-
ential equation that f ′′(t) ≥ 0, and hence that f and f ′ are nondecreasing on [r, ∞).
It follows that f , f ′, and f ′′ are strictly positive on (r, ∞) and hence f is unbounded,
a contradiction.

Thus f and f ′ always have opposite signs. Since f is not eventually zero, and f
can never leave zero, f is never zero.

Without loss of generality, we may assume f (t) > 0 and f ′(t) < 0 on [d, ∞).
It follows that f ′′(t) > 0 on [d, ∞), and hence f ′ is increasing. Thus limt→∞ f ′(t)
exists; since f is bounded, the limit must be zero. Similarly, limt→∞ f ′′(t) exists (it
equals limt→∞ f (t)); since f ′ is bounded, this limit must be zero.

The differential equation gives f ′′(t) = f (t) − φ(t) f (t)(1 − f 2(t)) < f (t).
Hence (since f ′ < 0) we have 2 f ′(t) f ′′(t) > 2 f (t) f ′(t). Integrating over [x, ∞)

gives ( f ′(x))2 < f 2(x) or 0 > f ′(x) > − f (x). Hence (ex f (x))′ = ex( f ′(x) +
f (x)) > 0. Thus ex f (x) is an increasing function of x .

Let K be a constant with φ(t) < K e−(1+α)t . Since f ′′(t) > (1 − φ(t)) f (t),
2 f ′(t) f ′′(t) < 2(1 − φ(t)) f (t) f ′(t) < 2

(
1 − K e−(1+α)t

)
f (t) f ′(t). Hence

(
f ′(x)

)2 = −
∫ ∞

x
2 f ′(t) f ′′(t) dt > −

∫ ∞

x
2

(
1 − K e−(1+α)t

)
f (t) f ′(t) dt

≥ − (
1 − K e−(1+α)t

) ∫ ∞

x
2 f (t) f ′(t) dt = (

1 − K e−(1+α)t
)

f 2(x).

If 0 < B < 1, then
√

1 − B > 1 − B, so this gives

f ′(x) < − f (x) + K e−(1+α)x f (x) < − f (x) + K e−(1+α)x .

Thus 0 < (ex f (x))′ = ex( f ′(x) + f (x)) < K e−αx . Since the upper bound is inte-
grable, we see that ex f (x) is bounded above. Combined with the result of the previous
paragraph, this shows that limx→∞ ex f (x) exists and is finite.

Also solved by P. Bracken & N. Nadeau, and the proposer.
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A Quadrature on a Sphere

11159 [2005, 567]. Proposed by George Lamb, Tucson, AZ. For |a| < π/2, evaluate
in closed form

I (a) =
∫ π/2

0

∫ π/2

0

cos ψ dψ dϕ

cos(a cos ψ cos ϕ)
.

Solution by J. A. Grzesik, Northrop Grumman Space Technology, Redondo Beach, CA.
The answer may be written in these two equivalent forms:

I (a) = π

2a
log

{
tan

(a

2
+ π

4

)}
= π

2a
log

{
1 + tan(a/2)

1 − tan(a/2)

}
.

Begin with the change of variables ψ = π/2 − θ ; then

I (a) =
∫ π/2

0

∫ π/2

0

sin θ dθ dϕ

cos(a sin θ cos ϕ)
,

which is an integration over the positive octant of the unit sphere, with angle θ mea-
sured from the z-axis, and then sin θ cos ϕ in the argument of the denominator is the
projection on the x-axis of the vector that traces out the given octant of the unit sphere.
If we consider instead the polar axis to be the x-axis and θ the angle from the x-axis,
then writing μ = cos θ yields I (a) = π

2

∫ 1
0 dμ/cos(aμ). The two logarithmic answers

then come from two standard quadratures of the secant.

Editorial comment. Eugene A. Herman (Grinnell College) and M. L. Glasser (Clarkson
University), independently, noted the generalization: If f is integrable on [0, 1], then∫ π/2

0

∫ π/2

0
f (cos ψ cos ϕ) cos ψ dψ dϕ = π

2

∫ 1

0
f (t) dt.

Also solved by R. Bagby, D. Beckwith, B. Bradie, R. Chapman (U. K.), W. Chu (Italy), P. Deiermann, Y. Du-
mont (France), O. Furdui, T. Jager, M. L. Glasser, G. C. Greubel, J. Grivaux (France), E. A. Herman, K. D.
Lathrop, O. P. Lossers (Netherlands), P. Magli (Italy), K. McInturff, R. Richberg (Germany), O. G. Ruehr,
V. Schindler (Germany), T. P. Schonbek, H.-J. Seiffert (Germany), J. Singh (India), A. Stadler (Switzerland),
R. Stong, N. Thornber, D. B. Tyler, GCHQ Problem Solving Group (U. K.), Microsoft Problem Solving Group,
and the proposer.

Series with Sines

11162 [2005, 567]. Proposed by Paolo Perfetti, University “Tor Vergata”, Rome, Italy.
(a) Show that if c is a real number less than 2 then

∑∞
k=1 k−c−sin k diverges.

(b) Determine whether
∑∞

k=1 k−1−| sin k| converges.

Solution by Microsoft Research Problems Group, Redmond, WA.
(a) If c ≤ 0, then the series diverges by comparison with the harmonic series. If 0 <

c < 2, then let α, β be such that sin α = sin β = 1 − c and π/2 < α < β < 5π/2.
Note that sin x < 1 − c for all x with α < x < β. Define

S = {k ∈ N : sin k < 1 − c} = N ∩
⋃
j∈Z

(
2π j + α, 2π j + β

)
.

Since π is irrational, the sequence n/(2π) mod 1 is dense in [0, 1], so S �= ∅ and there
exist positive integers a, A, b, B with

0 < a − 2π A <
β − α

2
and − β − α

2
< b − 2π B < 0.
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Let C = max(a, b). Given k ∈ S, we claim that there exists m ∈ S with k < m ≤ k +
C . Indeed, there exists j ∈ Z with α < k − 2π j < β. Compare k − 2π j to (α + β)/2.
If α < k − 2π j ≤ (α + β)/2, then α < (k + a) − 2π( j + A) < β, so we can use
m = k + a. On the other hand, if (α + β)/2 < k − 2π j < β, then α < (k + b) −
2π( j + B) < β, so we can use m = k + b.

Thus S is infinite. Index it in increasing order, k1 < k2 < · · · . Now k j ≤ k1 +
C( j − 1), so

kn∑
k=1

k−c−sin k ≥
∑

1≤k≤kn
k∈S

k−c−sin k ≥
∑

1≤k≤kn
k∈S

1

k
=

n∑
j=1

1

k j
≥

n∑
j=1

1

k1 + C( j − 1)
,

which diverges as n → ∞ by the integral test.
(b) This series also diverges. For positive integer n, define

An = [0, 2n) ∩ {
k ∈ N : | sin k| < 1

n

}
, Bn = [2n−1, 2n) ∩ An.

If k ∈ Bn , then k−1−| sin k| > (2n)−1−1/n = 2−n−1. If n > 1, then An is contained in the
disjoint union of An−1 and Bn , so |Bn| ≥ |An| − |An−1|. To estimate |An|, partition the
unit circle into 7n arcs, each with angle 2π/(7n). Of the values eik for 0 ≤ k < 2n , at
least 2n/(7n) lie in the same arc by the Pigeonhole Principle. If eik1 and eik2 lie in the
same arc, then

| sin(k1 − k2)| ≤ ∣∣ei(k1−k2) − 1
∣∣ = ∣∣eik1 − eik2

∣∣ <
2π

7n
<

1

n

and |k1 − k2| ∈ An. Subtracting the smallest k from the others (and itself), we find that
|An| ≥ 2n/(7n). Now if N ≥ 2, then

2N −1∑
k=2

k−1−| sin k| =
N∑

n=2

2n−1∑
k=2n−1

k−1−| sin k| ≥
N∑

n=2

∑
k∈Bn

k−1−| sin k| ≥
N∑

n=2

|Bn|
2n+1

≥
N∑

n=2

|An| − |An−1|
2n+1

=
N∑

n=2

(( |An|
2n+2

− |An−1|
2n+1

)
+ |An|

2n+2

)

= AN

2N+2
− |A1|

8
+

N∑
n=2

|An|
2n+2

≥ −|A1|
8

+
N∑

n=2

2n/(7n)

2n+2
= −|A1|

8
+

N∑
n=2

1

28n
.

This grows without bound as N → ∞.

Also solved by M. R. Avidon, P. Budney, Y. Dumont (France), J. H. Lindsey II, A. Stadler (Switzerland),
R. Stong, GCHQ Problem Solving Group (U. K.), and the proposer.

Ginzburg–Landau Energy

11167 [2005, 654]. Proposed by Vicenţiu Rădulescu, University of Craiova,Craiova,
Romania. Let � be the set of all complex numbers z satisfying 0 < |z| < 1. Fix a
positive integer n and, for all distinct elements z1, . . . , zn in �, define the function

f (z1, . . . , zn) = ∏n
j=1 |z j |2(1 − |z j |2) · ∏

1≤ j<k≤n |z j | · |zk | · |z j − zk |2·∏
1≤ j<k≤n |z j | · |zk | · [|z j − zk |2 + (1 − |z j |2)(1 − |zk |2)

]
.
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(a) Prove that if n = 2 then the maximum of f is attained for a unique configuration
(up to a rotation) that consists of two points symmetric with respect to the origin.
(b) Prove that if n = 3 then the maximal configuration for f is also unique (up to a
rotation) and consists of three points arranged as the vertices of an equilateral triangle
centered at the origin.

Solution by Microsoft Research Problems Group, Redmond, WA. Observe |z j − zk |2 +
(1 − |z j |2)(1 − |zk |2) = 1 − z j zk − zk z j + |z j |2|zk |2 = |1 − z j zk |2. We can rewrite

f (z1, . . . , zn) =
n∏

j=1

|z j |2n
(
1 − |z j |2

) ·
∏

1≤ j<k≤n

|z j − zk |2 |1 − z j zk |2.

Write r j = |z j | for 1 ≤ j ≤ n and R =
√

(r 2
1 + · · · + r 2

n )/n. Then 0 < r j < 1 and
0 < R < 1. By the arithmetic-geometric mean inequality, we have r1 · · · rn ≤ Rn and∏n

j=1(1 − r 2
j ) ≤ (1 − R2)n. Equality holds only if r1 = r2 = · · · = rn = R. Also

∑
1≤ j<k≤n

|z j − zk |2 =
∑

1≤ j<k≤n

(r 2
j + r 2

k − z j zk − z j zk)

= n
(
r 2

1 + · · · + r 2
n

) − ∣∣z1 + · · · + zn

∣∣2 ≤ n2 R2.

Equality holds only if z1 + · · · + zn = 0. Again applying the arithmetic-geometric
mean inequality, we get

∏
1≤ j<k≤n

|z j − zk |2 ≤
(

n2 R2

n(n − 1)/2

)n(n−1)/2

=
(

2n R2

n − 1

)n(n−1)/2

.

Equality holds only if all |z j − zk |2 for j < k are equal. Similarly,

∑
1≤ j<k≤n

∣∣1 − z j zk

∣∣2 =
∑

1≤ j<k≤n

(
1 + r 2

j r
2
k − z j zk − z j zk

)

= n(n − 1)

2
+

∑
1≤ j<k≤n

r 2
j r

2
k +

n∑
j=1

r 2
j − ∣∣z1 + · · · + zn

∣∣2

≤ n(n − 1)

2
+ n R2 +

∑
1≤ j<k≤n

(
r 2

j r
2
k + (r 2

j − r 2
k )2

2n

)

= n(n − 1)

2
+ n R2 + n − 1

2n
(r 2

1 + · · · + r 2
n )2

= n(n − 1)

2

(
1 + 2R2

n − 1
+ R4

)

and

∏
1≤ j<k≤n

|1 − z j zk |2 ≤
(

1 + 2R2

n − 1
+ R4

)n(n−1)/2

.
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Combining all these bounds, we get

f (z1, · · · , zn) ≤ (Rn)2n(1 − R2)n

(
2n R2

n − 1

)n(n−1)/2 (
1 + 2R2

n − 1
+ R4

)n(n−1)/2

=
((

2n

n − 1

)(n−1)/2

R3n−1(1 − R2)

(
1 + 2R2

n − 1
+ R4

)(n−1)/2
)n

.

Equality can occur only if r1 = · · · = rn = R, z1 + · · · + zn = 0, and all |z j − zk |2 for
j �= k are equal.

For (a), where n = 2, the bound simplifies to

f (z1, z2)
1/2 ≤ 2R5(1 − R2)(1 + 2R2 + R4)1/2 = 2R5(1 − R4).

The right side attains its maximum at R = Rmax := (5/9)1/4. Equality implies r1 =
r2 = Rmax and z1 + z2 = 0. The maximum value 2655/2/39 of f is achieved when
|z1| = Rmax and z2 = −z1.

For (b), where n = 3, the bound simplifies to

f (z1, z2, z3)
1/3 ≤ 3R8(1 − R2)(1 + R2 + R4) = 3R8(1 − R6).

The right side attains its maximum at R = Rmax = (4/7)1/6. The maximum value
2836/77 of f is achieved when z1, z2, z3 form an equilateral triangle of side Rmax

√
3

centered at the origin—such a triple is in the domain of f . Any maximum requires
z1 + z2 + z3 = 0, so these are the only maxima.

Editorial comment. The proposer notes that W (z1, · · · , zn) = −π log f (z1, · · · , zn)

is the renormalized Ginzburg–Landau energy corresponding to the open set � = {z ∈
C : 0 < |z| < 1}. See F. Bethuel, H. Brezis, F. Hélein, Ginzburg–Landau Vortices,
Birkhäuser, Boston, 1994.

Also solved by D. R. Bridges, L. Zhou, and the proposer.

A Functional Equation with Exponential Solutions

11180 [2005, 839]. Proposed by Suat Namli, Louisiana State University, Baton Rouge,
LA. Find all real-valued functions f defined on some interval I about the origin by a
power series having all coefficients nonzero and possessing the property that for all
real s and t there exist constants As,t , Bs,t , and Cs,t such that whenever sx , t x , and
(s + t)x lie in I ,

f (sx) f (t x) = As,t f (sx) + Bs,t f (t x) + Cs,t f ((s + t)x).

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The
Netherlands. We use only the assumptions that f has a power series around x = 0,
f (0) �= 0, f ′(0) �= 0 and that the functional equation holds when s = t = 1:

f 2(x) = a f (x) + b f (2x).

Now b �= 0, for otherwise f would be a constant function. Taking x = 0, we have
f (0)

(
f (0) − a − b

) = 0, so f (0) = a + b. Differentiating and setting x = 0, we
get f ′(0) (2 f (0) − a − 2b) = 0, so a = 0 and f (0) = b. The functional equation is
f 2(x) = b f (2x). Let h(x) = log

(
f (x)/b

)
. Since f (0) = b, also h has a power se-

ries expansion around x = 0, and it satisfies 2h(x) = h(2x). From the power series
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it follows that 2h(n)(0) = 2nh(n)(0) for all n. Therefore h(n)(0) = 0 for all n �= 1, so
h(x) = ux for some constant u. Therefore f (x) = b exp(ux).

Editorial comment. Stephen Gagola proved a variant: If the functional equation holds
only for all real nonzero s and t satisfying s �= t , then we can have solutions of the
form f (x) = C(1 − kx)−1 as well as solutions of the form f (x) = Cekx .

Also solved by D. Beckwith, M. Bello-Hernandez & M. Benito (Spain), R. Chapman (U. K.), K. Dale (Nor-
way), S. Gagola, E. Herman, T. L. McCoy (Taiwan), R. Stong, X. Wang, Szeged Problem Solving Group
“Fejéntaláltuka” (Hungary), Microsoft Research Problems Group, and the proposer.

Apply Hölder

11202 [2006, 179]. Proposed by Grahame Bennett, Indiana University, Bloomington,
IN. Prove that if 〈an〉 is a sequence of positive numbers with

∑∞
n=1 an < ∞, then for

all p in (0, 1)

lim
n→∞ n1−1/p

(
a p

1 + · · · + a p
n

)1/p = 0.

Solution by Eugene A. Herman, Grinnell College, Grinnell, IA. Define 〈xn〉 by xn =
(1/n)1−p(a p

1 + · · · + a p
n ). Since

n1−1/p(a p
1 + · · · + a p

n )1/p = ((1/n)1−p(a p
1 + · · · + a p

n ))1/p = x1/p
n ,

it suffices to show that xn → 0. The Hölder inequality will be applied as follows:

∑
k

(
1

n

)1−p

a p
k ≤

(∑
k

1

n

)1−p (∑
k

ak

)p

.

Given any ε > 0, choose N such that
∑∞

n=N an < (ε/2)1/p. For any n larger than both
N and ((a p

1 + · · · + a p
N )2/ε)1/(1−p), we have

xn =
(

1

n

)1−p

(a p
1 + · · · + a p

N ) +
(

1

n

)1−p n∑
k=N+1

a p
k

<
ε

2
+

(
n∑

k=N+1

1

n

)1−p (
n∑

k=N+1

ak

)p

= ε

2
+

(
n − N

n

)1−p
(

n∑
k=N+1

ak

)p

<
ε

2
+ ε

2
= ε.

Editorial comment. The sequence {1/n} can be replaced by any sequence {bn} of pos-
itive numbers such that {nbn} is bounded; the same proof applies.

Also solved by A. Alt, S. Amghibech (Canada), R. Bagby, D. Borwein, P. Budney, R. Chapman (U. K.), P. P.
Dályay (Hungary), P. J. Fitzsimmons, J. Hagood, C. S. Holroyd, R. B. Israel (Canada), Y.-J. Kuo (Japan), J. H.
Lindsey II , R. Mortini (France), G. Nika & H. To, I. Olkin, P. Perfetti (Italy), R. C. Raimundo (Australia),
J. Rooin & A. Karam-Shafie (Iran), B. Schmuland (Canada), A. Stenger, A. Tissier (France), S. Vagi, E. I.
Verriest, L. Zhou, Szeged Problem Solving Group “Fejéntaláltuka” (Hungary), GCHQ Problem Solving Group
(U. K.), Microsoft Research Problems Group, and the proposer.
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