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We study the existence and non-existence of classical solutions to a general
Gierer–Meinhardt system with Dirichlet boundary condition. The main feature of
this paper is that we are concerned with a model in which both the activator and the
inhibitor have different sources given by general nonlinearities. Under some
additional hypotheses and in the case of pure powers in nonlinearities, regularity and
uniqueness of the solution in one dimension is also presented.

1. Introduction

The systems of nonlinear equations of Gierer–Meinhardt type have received consid-
erable attention over the last decade. These problems arise in the study of biological
pattern formation by auto- and cross-catalysis in connection with known biochem-
ical processes and cellular properties. The general model proposed by Gierer and
Meinhardt [8, 13] may be written as

ut = d1∆u − αu + cρ
up

vq
+ ρ0ρ in Ω × (0, T ),

vt = d2∆v − βv + c′ρ′ u
r

vs
in Ω × (0, T ),

⎫⎪⎪⎬
⎪⎪⎭ (1.1)

subject to Neumann boundary conditions. Here Ω ⊂ R
N , N � 1, is a bounded

domain, u and v represent the concentrations of the activator and inhibitor with the
source distributions ρ and ρ′ respectively. Also d1 and d2 are diffusion coefficients
with d1 � d2 and α, β, c, c′, ρ0 are positive constants. The exponents p, q, r, s � 0
verify the relation qr > (p− 1)(s+1) > 0. The system (1.1) is of reaction–diffusion
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type and involves the determination of an activator and an inhibitor concentration
field. In a biological context, the Gierer–Meinhardt system (1.1) has been used to
model several phenomena arising in morphogenesis and cellular differentiation.

The model presented by Gierer and Meinhardt [8] originates from Turing’s model
[18] for morphogenesis in the linear case and is based on the short range of activation
and on the long range of inhibition. The model introduced in [8] takes into account
the classification between the concentration of activators and inhibitors on the one
hand and the densities of their sources on the other. A complete description of the
entire dynamics of system (1.1) is given in [16], where it is shown that they exhibit
various interesting behaviours such as periodic solutions, unbounded oscillating
global solutions and finite-time blow-up solutions.

Many recent works have been devoted to the study of the steady-state solutions
of (1.1), that is, solutions of the stationary system

d1∆u − αu + cρ
up

vq
+ ρ0ρ = 0 in Ω,

d2∆v − βv + c′ρ′ u
r

vs
= 0 in Ω,

⎫⎪⎪⎬
⎪⎪⎭ (1.2)

subject to Neumann boundary conditions. Such systems are difficult to treat owing
to the lack of a variational structure or a priori estimates. In this case it is more
convenient to consider the shadow system associated to (1.2). More precisely, by
dividing the second equation of (1.2) by d2 and then letting d2 → ∞, we reduce the
system (1.2) to a single equation. The non-constant solutions of such an equation
present interior or boundary peaks or spikes, i.e. they exhibit a point concentration
phenomenon. Among the great number of works in this direction, we refer the reader
to [15,19–21]. For the study of instability of solutions to (1.2), we also mention here
the works of Miyamoto [14] and Yanagida [22].

In the case Ω = R
N , N = 1, 2, it has been shown in [3,4] that there exist ground

state solutions of (1.3) with single or multiple bumps in the activator which, after
a rescaling of u, tend to a universal profile.

Let Ω ⊂ R
N , N � 1, be a bounded domain with smooth boundary. In this paper

we consider the stationary Gierer–Meinhardt system for a wide class of nonlineari-
ties subject to homogeneous Dirichlet boundary conditions. More precisely, we are
concerned with the following elliptic system:

∆u − αu +
f(u)
g(v)

+ ρ(x) = 0, u > 0 in Ω,

∆v − βv +
h(u)
k(v)

= 0, v > 0 in Ω,

u = 0, v = 0 on ∂Ω,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(S)

where α, β > 0, ρ ∈ C0,γ(Ω), 0 < γ < 1, ρ � 0, ρ �≡ 0 and f, g, h, k ∈ C0,γ [0,∞)
are non-negative and non-decreasing functions such that g(0) = k(0) = 0. This
assumption on g and k, together with the Dirichlet conditions on ∂Ω, makes the
system singular at the boundary. Another difficulty is due to the non-cooperative
(i.e. non-quasi-monotone) character of our system.



A singular Gierer–Meinhardt system 1217

We are mainly interested in the case where the activator and inhibitor have
different source terms, that is, the mappings t �→ f(t)/h(t) and t �→ g(t)/k(t) are
not constant on (0,∞). Our study is motivated by some questions addressed by
Choi and McKenna [1, 2] and Kim [11, 12] concerning existence and non-existence
or even uniqueness of the classical solutions for the model system

∆u − αu +
up

vq
+ ρ(x) = 0 in Ω,

∆v − βv +
ur

vs
= 0 in Ω,

u = 0, v = 0 on ∂Ω.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.3)

In [1, 11] it is assumed that the activator and inhibitor have common sources and
the approach relies on Schauder’s fixed-point theorem. More precisely, when p = r
and q = s, we obtain a linear equation in w = u−v by subtracting the two equations
of (1.3). This is suitable to obtain a priori estimates in order to control the map
whose fixed points are solutions of (1.3).

Choi and McKenna [2] obtained the existence of radially symmetric solutions
of (1.3) in the cases when Ω = (0, 1) or Ω = B1 ⊂ R

2 and p = r > 1, q = 1,
s = 0; they obtained a priori bounds via sharp estimates of the associated Green
function.

In § 2 we give a non-existence result for classical solutions to (S). To the best of
our knowledge, there are no results of this type in the literature. This matter relies
on asymptotic behaviour of classical solutions to single singular elliptic problems in
smooth bounded domains. Among the large number of works in this spirit, we refer
the reader to [7] for the study of classical and weak solutions to singular elliptic
problems. Special attention is paid to the case of pure powers in nonlinearities. In
this sense we obtain some relations between the exponents p, q, r and s for which
system (1.3) has no classical solutions.

In § 3 we give an existence result for classical solutions of (S) under the additional
hypothesis β � α. In fact, this assumption is quite natural if we look at the steady-
state system (1.2). We have only to divide the first equation by d1, the second one
by d2 and to take into account the fact that d1 � d2. The existence in our case is
obtained without assuming any growth condition on ρ near the boundary, since we
are able to provide more general bounds for the regularized system associated to (S).
In particular, we obtain that (1.3) has solutions provided that r − p = s − q � 0
and q > p − 1.

The uniqueness of the solution is a delicate matter. Actually, there is only one
result in the literature in this direction (see [1, theorem 1]) and which concerns the
one-dimensional case of system (1.3) with ρ ≡ 0 and p = q = r = s = 1. Using the
same idea as in [1], we are able to extend the uniqueness of the solution to (S) in one
dimension to the following range of exponents: 0 < q � p � 1 and r−p = s−q � 0.
It is worth pointing out here that the uniqueness of the solution for systems like (S)
seems to be a particular feature of the Dirichlet boundary conditions. As we can
see in the above-mentioned works, in the case of Neumann boundary conditions the
Gierer–Meinhardt system does not have a unique solution.
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2. A non-existence result

Several times in this paper we shall use the following result. We refer the reader
to [5, lemma 2.1] (see also [17, lemma 2.3]) for a complete proof.

Lemma 2.1. Let Ψ : Ω × (0,∞) → R be a Hölder continuous function such that the
mapping (0,∞) 	 t �→ Ψ(x, t)/t is strictly decreasing for each x ∈ Ω. Assume that
there exist v1, v2 ∈ C2(Ω) ∩ C(Ω̄) such that

(i) ∆v1 + Ψ(x, v1) � 0 � ∆v2 + Ψ(x, v2) in Ω,

(ii) v1, v2 > 0 in Ω and v1 � v2 on ∂Ω,

(iii) ∆v1 ∈ L1(Ω) or ∆v2 ∈ L1(Ω).

Then v1 � v2 in Ω.

Another useful tool is the following result, which is a direct consequence of the
maximum principle.

Lemma 2.2. Let k ∈ C(0,∞) be a positive non-decreasing function and let a1, a2 ∈
C(Ω) with 0 < a2 � a1 in Ω. Assume that there exist β > 0, v1, v2 ∈ C2(Ω)∩C(Ω̄)
such that v1, v2 > 0 in Ω, v1 � v2 on ∂Ω and

∆v1 − βv1 +
a1(x)
k(v1)

� 0 � ∆v2 − βv2 +
a2(x)
k(v2)

in Ω.

Then v1 � v2 in Ω.

Let Φ : [0, 1) → [0,∞) be defined by

Φ(t) =
∫ t

0

(
2

∫ 1

τ

1
k(θ)

dθ

)−1/2

dτ, 0 � t < 1.

Set a = limt↗1 Φ(t) and let Ψ : [0, a) → [0, 1) be the inverse of Φ. The main result
of this section is the following non-existence property.

Theorem 2.3. Assume that ∫ a

0

tf(mt)
g(MΨ(t))

dt = +∞, (2.1)

for all 0 < m < 1 < M . Then system (S) has no classical solutions.

Proof. Assume by contradiction that there exists a classical solution (u, v) of sys-
tem (S) and let ϕ1 be the normalized first eigenfunction of (−∆) in H1

0 (Ω). As
is well known, ϕ1 ∈ C2(Ω̄) and ϕ1 > 0 in Ω. Let ζ be the unique solution of the
problem

∆ζ − αζ + ρ(x) = 0 in Ω,

ζ = 0 on ∂Ω.

}
(2.2)

By standard elliptic arguments and strong maximum principle we deduce that ζ ∈
C2(Ω̄) and ζ > 0 in Ω.
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In view of Hopf’s maximum principle and taking into account the regularity of
the domain, there exist c1, c2 > 0 such that

c1d(x) � ϕ1, ζ � c2d(x) in Ω, (2.3)

where d(x) = dist(x, ∂Ω).
Since

∆(u − ζ) − α(u − ζ) � 0 in Ω,

u − ζ = 0 on ∂Ω,

by the weak maximum principle [9, corollary 3.2] we have u � ζ in Ω. Hence, by
(2.3) it follows that

u(x) � md(x) in Ω (2.4)

for some m > 0 small enough. Set C := maxx∈Ω̄ h(u(x)) > 0. Then v satisfies

∆v − βv +
C

k(v)
� 0 in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5)

Let c > 0 be such that
cϕ1 � min{a, d(x)} in Ω. (2.6)

We need the following auxiliary result.

Lemma 2.4. There exists M > 1 large enough such that v̄ := MΨ(cϕ1) satisfies

∆v̄ − βv̄ +
C

k(v)
� 0 in Ω. (2.7)

Proof. Since Φ(Ψ(t)) = t for all 0 � t < a, we get Ψ(0) = 0 and Ψ ∈ C1(0, a) with

Ψ ′(t) =
(

2
∫ 1

Ψ(t)

1
k(τ)

dτ

)−1/2

for all 0 < t < a. (2.8)

This yields

−Ψ ′′(t) =
1

k(Ψ(t))
for all 0 < t < a,

Ψ ′(t), Ψ(t) > 0 for all 0 < t < a,

Ψ(0) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.9)

By Hopf’s maximum principle, there exist ω ⊂⊂ Ω and δ > 0 such that

|∇ϕ1| > δ in Ω \ ω and ϕ1 > δ in ω. (2.10)

Fix M > 1 large enough such that

M(cδ)2 > C and Mcλ1δΨ
′(c‖ϕ1‖∞) >

C

minx∈ω k(Ψ(cϕ1))
. (2.11)
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We have

−∆v̄ =
Mc2

k(Ψ(cϕ1))
|∇ϕ1|2 + Mcλ1ϕ1Ψ

′(cϕ1) in Ω.

By (2.10) and (2.11) we obtain

−∆v̄ � Mcλ1ϕ1Ψ
′(cϕ1) � Mcλ1δΨ

′(c‖ϕ1‖∞) � C

k(v̄)
in ω,

−∆v̄ � Mc2

k(Ψ(cϕ1))
|∇ϕ1|2 � C

k(Ψ(cϕ1))
� C

k(v̄)
in Ω \ ω.

The last two inequalities imply that v̄ satisfies (2.7). This finishes the proof of the
lemma.

By virtue of lemma 2.2, relations (2.5) and (2.7) yield v � v̄ in Ω. Using (2.4)
we find

f(u)
g(v)

� f(md(x))
g(MΨ(cϕ1))

in Ω.

Furthermore, u satisfies

∆u − αu +
f(md(x))

g(MΨ(cϕ1))
� 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

In order to avoid the singularities near the boundary, we consider the approximated
problem

∆w − αw +
f(md(x))

g(MΨ(cϕ1)) + ε
= 0 in Ω,

w = 0 on ∂Ω.

⎫⎬
⎭ (2.13)

Clearly, w̄ := u is a supersolution of (2.13) while w
¯

:= 0 is a subsolution. By
standard arguments, problem (2.13) has a unique solution wε ∈ C2(Ω̄) such that
wε � u in Ω. Moreover, the maximum principle yields wε > 0 in Ω.

In order to raise a contradiction, we multiply by ϕ1 in (2.13) and then we integrate
over Ω. We obtain

(α + λ1)
∫

Ω

wεϕ1 dx =
∫

Ω

ϕ1
f(md(x))

g(MΨ(cϕ1)) + ε
dx.

Since wε � u in Ω we deduce

(α + λ1)
∫

Ω

uϕ1 dx �
∫

ω

ϕ1
f(md(x))

g(MΨ(cϕ1)) + ε
dx for all ω ⊂⊂ Ω.

Let
C̃ = (α + λ1)

∫
Ω

uϕ1 dx.

Passing to the limit in the above inequality, we obtain∫
ω

ϕ1
f(md(x))

g(MΨ(cϕ1))
dx � C̃ < +∞ for all ω ⊂⊂ Ω.
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Hence, ∫
Ω

ϕ1
f(md(x))

g(MΨ(cϕ1))
dx � C̃ < +∞.

Let now Ω0 = {x ∈ Ω : d(x) < a}. The above inequality combined with (2.6)
produces ∫

Ω0

d(x)
f(md(x))

g(MΨ(d(x)))
dx < +∞,

but this clearly contradicts (2.1). Hence, system (S) has no positive classical solu-
tions. This ends the proof.

If k(t) = ts, s > 0, condition (2.1) can be written more explicitly by describing
the asymptotic behaviour of Ψ .

Corollary 2.5. Assume that k(t) = ts, s > 0, and one of the following conditions
holds:

(i) s > 1 and ∫ a

0

tf(mt)
g(Mt2/(1+s))

dt = +∞

for all 0 < m < 1 < M ;

(ii) s = 1 and ∫ min{a,1/2}

0

tf(mt)
g(Mt

√
− ln t)

dt = +∞

for all 0 < m < 1 < M ;

(iii) 0 < s < 1 and ∫ a

0

tf(mt)
g(Mt)

dt = +∞

for all 0 < m < 1 < M .

Then, system (S) has no positive classical solutions.

Proof. The main idea is to describe the asymptotic behaviour of Ψ near the origin.
In our setting, the mapping Ψ : [0, a) → [0, 1) satisfies

−Ψ ′′(t) = Ψ−s(t) for all 0 < t < a,

Ψ ′(t), Ψ(t) > 0 for all 0 < t < a,

Ψ(0) = 0.

⎫⎪⎬
⎪⎭ (2.14)

(i) If s > 1, then the mapping

[0, a) 	 t �→
[

(1 + s)2

2(1 − s)

]1/(1+s)

· t2/(s+1)

satisfies (2.14). Hence, there exist two positive constants c1, c2 > 0 such that

c1t
2/(s+1) � Ψ(t) � c2t

2/(s+1) for all 0 < t < a.

Now, (i) follows directly from the above inequality.
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(ii) Using the fact that Ψ is concave, we deduce that Ψ(t) > tΨ ′(t) for all 0 < t < a.
From (2.14) it follows that

−Ψ ′′(t) <
1

tΨ ′(t)
for all 0 < t < a.

We multiply by Ψ ′ in the last inequality and then we integrate over [t, b], 0 < b < a.
We get

(Ψ ′)2(t) − (Ψ ′)2(b) � 2(ln b − ln t) for all 0 < t � b < a.

Hence, there exist c1 > 0 and δ1 ∈ (0, b) such that Ψ ′(t) � c1
√

− ln t for all 0 < t �
δ1. Integrating over [0, t], we obtain

Ψ(t) � c1

∫ t

0

√
− ln τ dτ = c1t

√
− ln t + 1

2c1

∫ t

0

1√
− ln τ

dτ for all 0 < t � δ1.

(2.15)
Since the last integral in (2.15) is finite, there exist c2 > 0 and δ2 ∈ (0, δ1) such
that

Ψ(t) � c2t
√

− ln t for all 0 < t � δ2. (2.16)

From (2.14) and (2.16) we deduce

−Ψ ′′(t) =
1

Ψ(t)
� 1

c2

1
t
√

− ln t

for all 0 < t � δ2.
An integration over [t, δ2] in the last inequality yields

Ψ ′(t) � 2
c2

(
√

− ln t −
√

−δ2) for all 0 < t � δ2.

Therefore, there exist c3 > 0 and δ3 ∈ (0, δ2) such that Ψ ′(t) � c3
√

− ln t for all
0 < t � δ3. Proceeding in the same manner as above, there exist c4 > 0 and
δ4 ∈ (0, δ3) such that

Ψ(t) � c4t
√

− ln t for all 0 < t � δ4. (2.17)

From (2.16) and (2.17) we get

c3t
√

− ln t � Ψ(t) � c4t
√

− ln t for all 0 < t � δ4.

Now, (ii) follows from the above estimates.

(iii) By (2.8) we have

Ψ ′(t) =
(

2
∫ 1

Ψ(t)
τ−s dτ

)−1/2

=
(

2
1 − s

(1 − Ψ1−s(t))
)−1/2

for all 0 < t < a.

Hence, 0 < Ψ ′(0) =
√

2/(1 − s) < +∞, which implies that Ψ ∈ C1[0, a) and
c1t � Ψ(t) � c2t in (0, a) for some c1, c2 > 0. This proves (iii).

In the case of pure powers in the nonlinearities, we have the following non-
existence result for (1.3).
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Corollary 2.6. Let p, q, r, s > 0 be such that one of the following conditions hold:

(i) s > 1 and 2q � (s + 1)(p + 2);

(ii) s = 1 and q > p + 2;

(iii) 0 < s < 1 and q � p + 2.

Then, the system (1.3) has no positive classical solutions.

Proof. The proofs of (i) and (iii) are simple exercises of calculus. For (ii), by corol-
lary 2.5 we have that (1.3) has no classical solutions, provided that s = 1, and

∫ 1/2

0
t1+p−q(− ln t)−q/2 dt = +∞. (2.18)

On the other hand, for a, b ∈ R we have∫ 1/2

0
ta(− ln t)b dt < +∞

if and only if a > −1 or a = −1 and b < −1. Now condition (2.18) reads q > p + 2.
This concludes the proof.

3. Existence results

For all t1, t2 > 0 we define

A(t1, t2) =
f(t1)
h(t1)

− g(t2)
k(t2)

.

In this section it is assumed that A satisfies the following.

(A1) A(t1, t2) � 0 for all t1 � t2 > 0.

(A2) k ∈ C1(0,∞) is non-negative and non-decreasing function such that

lim
t→+∞

K(t)
h(t + c)

= +∞ for all c > 0,

where K(t) =
∫ t

0 k(τ) dτ .

Below there are some examples of nonlinearities that fulfil (A1) and (A2):

(i) f(t) = tp, g(t) = tq, h(t) = tr, k(t) = ts, t � 0, p, q, r, s > 0, r − p = s − q � 0
and p − q < 1;

(ii) f(t) = ln(1 + tp), g(t) = etq − 1, h(t) = tp and k(t) = tq, t � 0, p, q > 0,
p − q < 1;

(iii) f(t) = log(1 + at), g(t) = log(1 + t), h(t) = at and k(t) = t, t � 0, a � 1.
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In the following we supply a general method to construct nonlinearities f , g,
h, k that verify hypotheses (A1) and (A2). Let f, g, h, k : [0,∞) → [0,∞) be
non-decreasing functions such that k and h verify (A2) and one of the following
assumptions holds:

(a) fk = gh and the mapping (0,∞) 	 t �→ f(t)/h(t) is non-increasing;

(b) there exists m > 0 such that f(t)/h(t) � m � g(t)/k(t), for all t > 0.

Then the mapping A verifies (A1).
For instance, the mappings given in example (i) satisfy condition (a), while the

mappings given in example (ii) verify condition (b).
The first result of this section concerns the existence of classical solutions for the

general system (S).

Theorem 3.1. Assume that α � β and the hypotheses (A1) and (A2) are fulfilled.
Then system (S) has at least one classical solution.

The existence of a solution to (S) is obtained by considering the regularized
system

∆u − αu +
f(u + ε)
g(v + ε)

+ ρ(x) = 0 in Ω,

∆v − βv +
h(u + ε)
k(v + ε)

= 0 in Ω,

u = 0, v = 0 on ∂Ω.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(S)ε

Lemma 3.2. Let (uε, vε) with uε, vε ∈ C2(Ω)∩C(Ω̄) be a positive solution of (S)ε.
Then, there exists M > 0 which is independent of ε such that

max{‖uε‖∞, ‖vε‖∞} � M. (3.1)

Proof. Let wε := uε − vε and ω = {x ∈ Ω : wε > 0}. In order to prove the
estimate (3.1), it suffices to provide a uniform upper bound for vε and wε. From
(S)ε we have

∆wε − αwε + ρ(x) = (α − β)vε − f(uε + ε)
g(vε + ε)

+
h(uε + ε)
k(vε + ε)

= (α − β)vε − h(uε + ε)
g(vε + ε)

A(uε + ε, vε + ε) in Ω.

Let us note that A(uε + ε, vε + ε) � 0 in ω and wε = 0 on ∂ω. This yields

∆wε − αwε + ρ(x) � 0 in ω.

Let ζ ∈ C2(Ω̄) be the unique solution of (2.2). Then

∆(wε − ζ) − α(wε − ζ) � 0 in ω,

wε − ζ � 0 on ∂ω.

Furthermore, by the weak maximum principle [9, corollary 3.2] we have wε � ζ
in ω. Since wε � 0 in Ω \ ω, it follows that

wε � ζ in Ω. (3.2)
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We multiply by k(vε) in the second equation of (S)ε and we obtain

k(vε)∆vε − βvεk(vε) +
k(vε)

k(vε + ε)
h(uε + ε) = 0 in Ω. (3.3)

Note that
k(vε)∆vε = ∆K(vε) − k′(vε)|∇vε|2 in Ω. (3.4)

Since k is non-decreasing, we have

K(vε) =
∫ vε

0
k(t) dt � vεk(vε) in Ω. (3.5)

Using (3.3)–(3.5), we deduce

∆K(vε) − k′(vε)|∇vε|2 − βK(vε) +
k(vε)

k(vε + ε)
h(uε + ε) � 0 in Ω.

Hence,
∆K(vε) − βK(vε) + h(uε + ε) � 0 in Ω. (3.6)

By [9, theorem 3.7], there exists a positive constant C > 1 depending only on Ω
such that

sup
Ω̄

K(vε) � C sup
Ω̄

h(uε + ε) � C sup
Ω̄

h(vε + ‖ζ‖∞ + 1).

Using assumption (A2) we deduce that (vε)ε is uniformly bounded, i.e. ‖vε‖∞ � m
for some m > 0 independent on ε. This yields uε = vε + wε � m + ‖ζ‖∞ in Ω and
the proof of lemma 3.2 is now complete.

Lemma 3.3. For all 0 < ε < 1 there exists a solution (uε, vε) ∈ C2(Ω̄) × C2(Ω̄) of
the system (S)ε.

Proof. We employ topological degree arguments. Consider the set

U := {(u, v) ∈ C2(Ω̄) × C2(Ω̄) : ‖u‖∞, ‖v‖∞ � M + 1,

u, v � 0 in Ω, u |∂Ω= v |∂Ω= 0},

where M > 0 is the constant in (3.1). Define

Φt : U → U , Φt(u, v) = (Φ1
t (u, v), Φ2

t (u, v)),

by

Φ1
t (u, v) = u − t(−∆ + α)−1

(
f(u + ε)
g(v + ε)

+ ρ

)
,

Φ2
t (u, v) = v − t(−∆ + β)−1

(
h(u + ε)
k(v + ε)

)
.

Using lemma 3.2 we have Φt(u, v) �= (0, 0) on ∂U , for all 0 � t � 1. Therefore, by
the invariance at homotopy of the topological degree it follows that

deg(Φ1,U , (0, 0)) = deg(Φ0,U , (0, 0)) = 1.
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Hence, there exists (u, v) ∈ U such that Φ1(u, v) = (0, 0). This means that the
system (S)ε has at least one classical solution.

Proof of theorem 3.1. Let (uε, vε) ∈ C2(Ω̄) × C2(Ω̄) be a solution of (S)ε. Then

∆(uε − ζ) − α(uε − ζ) � 0 in Ω,

uε − ζ = 0 on ∂Ω,

where ζ is the unique solution of (2.2). Hence, ζ � uε in Ω. By (3.2) it follows that

wε � ζ � uε in Ω. (3.7)

Let ξ ∈ C2(Ω̄) be the unique positive solution of the boundary-value problem

∆ξ − βξ +
h(ζ)

k(ξ + 1)
= 0 in Ω,

ξ = 0 on ∂Ω.

⎫⎬
⎭ (3.8)

In view of lemma 2.2 we have ξ � vε in Ω, so that, by lemma 3.2, the following
estimates hold:

ζ(x) � uε(x) � M in Ω,

ξ(x) � vε(x) � M in Ω.

}
(3.9)

Now, standard Hölder and Schauder estimates can be employed in order to deduce
that {(uε, vε)}0<ε<1 converges (up to a subsequence) in C2

loc(Ω)×C2
loc(Ω) to (u, v) ∈

C2(Ω) × C2(Ω). It remains only to obtain an upper bound near ∂Ω for (uε, vε),
which leads us to the continuity up to the boundary of the solution (u, v). This will
be done by combining standard arguments with the estimate (3.7). First, by (3.6)
we have

∆K(vε) + h(M + 1) � 0 in Ω. (3.10)

Fix x0 ∈ ∂Ω. Since ∂Ω is smooth, there exist y ∈ R
N \ Ω and R > 0 such that

Ω̄ ∩ B̄(y, R) = ∂Ω ∩ B̄(y, R) = {x0}.
Let δ(x) := |x − y| − R and Ω0 := {x ∈ Ω : 4(N − 1)δ(x) < R}.
Consider ψ ∈ C2(0,∞) such that ψ′ > 0 and ψ′′ < 0 on (0,∞) and set φ(x) =

ψ(δ(x)), x ∈ Ω0. Then

∆φ(x) = ψ′(δ(x))∆δ(x) + ψ′′(δ(x))|∇δ(x)|2

=
N − 1
|x − y|ψ

′(δ(x)) + ψ′′(δ(x))

� N − 1
R

ψ′(δ(x)) + ψ′′(δ(x)) in Ω0.

Let us now choose ψ(t) := C
√

t, t > 0, where C > 0. Therefore,

∆φ(x) � 1
4Cδ−3/2(x)

[
2(N − 1)δ(x)

R
− 1

]
� − 1

8Cδ−3/2(x) < 0 in Ω0.

We choose C > 0 large enough such that

∆φ � −h(M + 1) in Ω0 (3.11)
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and
φ |∂Ω0\∂Ω> K(M) � sup

Ω̄0

K(vε). (3.12)

Furthermore, by (3.10)–(3.12) we obtain

∆(φ − K(vε)) � 0 in Ω0,

φ − K(vε) � 0 on ∂Ω0.

This implies φ(x) � K(vε) in Ω0, that is,

0 � vε(x) � K−1(φ(x)) in Ω0.

Passing to the limit with ε → 0 in the last inequality we have 0 � v(x) � K−1(φ(x))
in Ω0. Hence,

0 � lim
x→x0

v(x) � lim
x→x0

K(φ(x)) = 0.

Since x0 ∈ ∂Ω was arbitrarily chosen, it follows that v ∈ C(Ω̄). Using the fact that
uε = wε + vε � ζ + vε in Ω, in the same manner we conclude that u ∈ C(Ω̄). This
finishes the proof of theorem 3.1.

The next result concerns the following system:

∆u − αu +
up

vq
+ ρ(x) = 0 in Ω,

∆v − βv +
up+σ

vq+σ
= 0 in Ω,

u = v = 0 on ∂Ω,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.13)

where σ � 0 is a non-negative real number.

Theorem 3.4. Assume that p, q � 0 satisfy p − q < 1.

(i) The system (3.13) has solutions for all σ � 0.

(ii) For any solution (u, v) of (3.13), there exist c1, c2 > 0 such that

c1d(x) � u, v � c2d(x) in Ω. (3.14)

Moreover, the following properties hold:

(a) if −1 < p − q < 0, then u, v ∈ C2(Ω) ∩ C1,1+p−q(Ω̄);

(b) if 0 � p − q < 1, then u, v ∈ C2(Ω̄).

Proof. Existence follows directly from theorem 3.1 since conditions (A1) and (A2)
are satisfied.

(ii) Recall that from (2.3) we have u � ζ � c̄ϕ1 in Ω. From the second equation
in (3.13) we deduce that

∆v − βv + c̄p+σ ϕp+σ
1

vq+σ
� 0 in Ω.
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Since p − q < 1, we also get that v
¯

= c
¯
ϕ1 satisfies

∆v
¯

− βv
¯

+ c̄p+σ ϕp+σ
1

v
¯

q+σ
� 0 in Ω,

provided that c
¯

> 0 is sufficiently small. Therefore, by virtue of lemma 2.2, we
obtain v � c

¯
ϕ1 in Ω.

Let us now prove the second inequality in (3.14). To this aim, set w = u − v.
With the same idea as in lemma 3.2 we obtain ∆w − αw + ρ(x) � 0 in the set
{x ∈ Ω : w(x) > 0}. Hence,

w � ζ � cϕ1 in Ω. (3.15)

Let w+ = max{w, 0}. Then v satisfies

∆v − βv +
(w+ + v)p+σ

vq+σ
� 0 in Ω,

v = 0 on ∂Ω.

Consider the problem

∆z − βz + 2p+σzp−q = 0 in Ω,

z > 0 in Ω,

z = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (3.16)

The existence of a classical solution to (3.16) follows from [17, lemma 2.4]. Moreover,
if 0 � p − q < 1, then z ∈ C2(Ω̄) and with the same arguments as in [10, theorem
1.1] we have z ∈ C2(Ω) ∩ C1,1+p−q(Ω̄) in the case −1 < p − q < 0. Furthermore,
z � mϕ1 in Ω for some m > 0. On the other hand, c̃ϕ1 is a subsolution of (3.16)
provided c̃ > 0 is small enough. Therefore, by lemma 2.1, we get z � c̃ϕ1 in Ω.
This last inequality together with (3.15) allows us to choose M > 1 large enough
such that Mz � w+ in Ω. Hence,

∆(Mz) − β(Mz) +
(w+ + Mz)p+σ

(Mz)q+σ
� ∆(Mz) − β(Mz) + 2p+σ(Mz)p−q

= M(∆z − βz + 2p+σzp−q) = 0 in Ω.

This means that v̄ := Mz verifies

∆v̄ − βv̄ +
(w+ + v̄)p+σ

v̄q+σ
� 0 in Ω and v̄ = 0 on ∂Ω.

Since p − q < 1, we can easily check that the mapping

Ψ(x, t) = −βt +
(w+(x) + t)p+σ

tq+σ
, (x, t) ∈ Ω̄ × (0,∞),

satisfies the hypotheses in lemma 2.1. Moreover, we have

∆v̄ + Ψ(x, v̄) � 0 � ∆v + Ψ(x, v) in Ω,

v̄, v > 0 in Ω, v̄ = v = 0 on ∂Ω, ∆v̄ ∈ L1(Ω).
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Hence, by lemma 2.1 we obtain

v � v̄ � c̃ϕ1 in Ω. (3.17)

Combining (3.15) and (3.17), we deduce u = w + v � Cϕ1 in Ω, for some C > 0.
This completes the proof of (ii). As a consequence, there exists M > 1 such that

0 � up

vq
,
up+σ

vq+σ
� Mϕp−q

1 in Ω.

If 0 � p − q < 1, then by classical regularity arguments we have u, v ∈ C2(Ω̄). If
−1 < p − q < 0, then the same method as in [10, theorem 1.1] can be employed in
order to obtain u, v ∈ C2(Ω) ∩ C1,1+p−q(Ω̄).

This finishes the proof of theorem 3.4.

4. Uniqueness of the solution in one dimension

In this section we are concerned with the uniqueness of the solution associated to
the one-dimensional system

u′′ − αu +
up

vq
+ ρ(x) = 0 in (0, 1),

v′′ − βv +
up+σ

vq+σ
= 0 in (0, 1),

u(0) = u(1) = 0, v(0) = v(1) = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.1)

Our approach is inspired by the methods developed in [1], where a C2-regularity of
the solution up to the boundary is needed. We shall restrict our attention to the case
when 0 < q � p � 1. Thus, by virtue of theorem 3.4, any solution of (4.1) belongs
to C2[0, 1] × C2[0, 1]. By Hopf’s maximum principle we also have that u′(0) > 0,
v′(0) > 0, u′(1) < 0 and v′(1) < 0 for any solution (u, v) of system (4.1).

The main result of this section is the following.

Theorem 4.1. Assume that 0 < q � p � 1, σ � 0. Then system (4.1) has a unique
solution (u, v) ∈ C2(Ω̄) × C2(Ω̄).

Proof of theorem 4.1. Existence follows from theorem 3.4. We prove here only the
uniqueness. Suppose that there exist (u1, v1), (u2, v2) ∈ C2[0, 1] × C2[0, 1] two dis-
tinct solutions of (4.1).

First we claim that we cannot have u2 � u1 or v2 � v1 in [0, 1]. Indeed, let us
assume that u2 � u1 in [0, 1]. Then

v′′
2 − βv2 +

up+σ
2

vq+σ
2

= 0 = v′′
1 − βv1 +

up+σ
1

vq+σ
1

in (0, 1)

and, by lemma 2.2, we deduce that v2 � v1 in [0, 1]. On the other hand,

u′′
1 − αu1 +

up
1

vq
2

+ ρ(x) � 0 = u′′
2 − αu2 +

up
2

vq
2

+ ρ(x) in (0, 1). (4.2)

Note that the mapping Ψ(x, t) := −αt + tp/v2(x)q + ρ(x), (x, t) ∈ (0, 1) × (0,∞)
satisfies the hypotheses in lemma 2.1 since p � 1. Hence, u2 � u1 in [0, 1], that is
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u1 ≡ u2. This also implies v1 ≡ v2, which is a contradiction. Replacing u1 by u2
and v1 by v2, we find that the situation u1 � u2 or v1 � v2 in [0, 1] is not possible.

Set U := u2 − u1 and V := v2 − v1. From the above arguments, both U and V
change sign in (0, 1). The key result in the approach is the following.

Proposition 4.2. U and V vanish only at finitely many points in the interval [0, 1].

Proof. We write the system (4.1) as

W ′′(x) + A(x)W (x) = 0 in (0, 1),
W (0) = W (1) = 0,

where W = (U, V ) and A(x) = (Aij(x))1�i,j�2 is a 2 × 2 matrix defined as

A11(x) = −α +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
vq
2(x)

· up
2(x) − up

1(x)
u2(x) − u1(x)

, u1(x) �= u2(x),

p
up−1

1 (x)
vq
1(x)

, u1(x) = u2(x),

A12(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− up
1(x)

vq
1(x)vq

2(x)
· vq

2(x) − vq
1(x)

v2(x) − v1(x)
, v1(x) �= v2(x),

−q
up

1(x)
vq+1
1 (x)

, v1(x) = v2(x),

A21(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
vq+σ
2 (x)

· up+σ
2 (x) − up+σ

1 (x)
u2(x) − u1(x)

, u1(x) �= u2(x),

(p + σ)
up+σ−1

1 (x)
vq+σ
1 (x)

, u1(x) = u2(x),

A22(x) = −β −

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

up+σ
1 (x)

vq+σ
1 (x)vq+σ

2 (x)
· vq+σ

2 (x) − vq+σ
1 (x)

v2(x) − v1(x)
, v1(x) �= v2(x),

(q + σ)
up+σ

1 (x)
vq+σ+1
1 (x)

, v1(x) = v2(x).

Therefore, A ∈ C(0, 1) and A12(x) �= 0, A21(x) �= 0 for all x ∈ (0, 1). Moreover,
xA(x), (1−x)A(x) are bounded in L∞(0, 1). Indeed, let us note first that, by (3.14)
in theorem 3.4, there exist c1, c2 > 0 such that

c1 � ui

min{x, 1 − x} ,
vi

min{x, 1 − x} � c2, i = 1, 2 in (0, 1).

Then, by the mean-value theorem, we have

x|A12(x)| � qx
up

1(x)
vq
1(x)vq

2(x)
max{vq−1

1 (x), vq−1
2 (x)}

� qxp−q

(
u1(x)

x

)p

max
{(

x

v1(x)

)q+1

,

(
x

v2(x)

)q+1}
� cxp−q for all 0 < x � 1

2 .



A singular Gierer–Meinhardt system 1231

We obtain similar estimates for xA11, xA21 and xA22. This allows us to employ [1,
lemmas 7 and 8]. Note that condition xA(x) ∈ L∞(0, 1) suffices in order to obtain
the same conclusion as in [1, lemma 8]. In particular, we get that U and V vanish
only at finitely many points in any compact interval [a, b] ⊂ (0, 1).

It remains to show that U and V cannot have infinitely many zeros in the neigh-
bourhood of x = 0 and x = 1. We shall consider only the case where U and V have
infinitely many zeros near x = 0, the case where this situation occurs near x = 1
being similar.

Without loss of generality, we may assume that U has infinitely many zeros in
a neighbourhood of x = 0. Since U ∈ C2[0, 1], Rolle’s theorem implies that both
U ′ and U ′′ have infinitely many zeros near x = 0. As a consequence, we obtain
U ′(0) = 0, that is, u′

1(0) = u′
2(0).

If V ′(0) = 0, then W (0) = W ′(0) = 0 and by [1, lemma 8] we deduce W ≡ 0
in [0, 1

2 ], which is a contradiction. Hence, V ′(0) �= 0. Subtracting the first equation
in (4.1) corresponding to u1 and u2, we have

U ′′(x) = αU(x) +
up

1(x)
vq
1(x)

− up
2(x)

vq
2(x)

= xp−q

{
α

U(x)
xp−q

+
(

u1(x)
x

)p(
x

v1(x)

)q

−
(

u2(x)
x

)p(
x

v2(x)

)q}
.

Since 0 � p − q < 1, u′
1(0) = u′

2(0) and v′
1(0) �= v′

2(0) we find

lim
x↘0

{
α

U(x)
xp−q

+
(

u1(x)
x

)p(
x

v1(x)

)q

−
(

u2(x)
x

)p(
x

v2(x)

)q}

= u′p
1 (0)

(
1

v′q
1 (0)

− 1
v′q
1 (0)

)
�= 0.

Therefore, U ′′ has constant sign in a small neighbourhood of x = 0, which contra-
dicts our assumption. The proof of proposition 4.2 is now complete.

Set

I+ = {x ∈ [0, 1] : U(x) � 0}, I− = {x ∈ [0, 1] : U(x) � 0},

J + = {x ∈ [0, 1] : V (x) � 0}, J − = {x ∈ [0, 1] : V (x) � 0}.

According to proposition 4.2, the above sets consist of finitely many disjoint closed
intervals. Therefore, I+ =

⋃m
i=1 I+

i . For simplicity, let I+ denote any interval I+
i

and we use similar notations for I−, J+ and J−.

Lemma 4.3. For any intervals I+, I−, J+ and J− defined above, the following
situations cannot occur:

(i) I+ ⊂ J+;

(ii) I− ⊂ J−;

(iii) J+ ⊂ I−;

(iv) J− ⊂ I+.
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Figure 1. The solution (u, v) of system (S)ε with
α = 1, β = 0.5, p = q = 1, ε = 10−2, σ = 0 and ρ(x) = sin(πx).
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Figure 2. The solution (u, v) of system (S)ε with
α = 1, β = 0.5, p = q = 1, ε = 10−2, σ = 2 and ρ(x) = sin(πx).

Proof. (i) Assume that I+ ⊂ J+. Since v2 � v1 in I+ we deduce that the inequality
(4.2) holds in I+. Using the fact that u2 = u1 on ∂I+, by virtue of lemma 2.1 we
obtain u2 � u1 in I+. Hence, u2 ≡ u1 in I+, which contradicts proposition 4.2.
Similarly, we can prove (ii).

(iii) Assume that J+ ⊂ I−. Then up+σ
1 /vq+σ

1 � up+σ
2 /vq+σ

2 in J+. Note that V =
v2 − v1 verifies

V ′′ − βV =
up+σ

1

vq+σ
1

− up+σ
2

vq+σ
2

� 0 in J+,

V = 0 on ∂J+.
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By the maximum principle, it follows that V � 0 in J+, i.e. v2 � v1 in J+. This
yields v2 ≡ v1 in J+ which again contradicts proposition 4.2. The proof of (iv)
follows in the same manner.

From now on, the proof of theorem 4.1 is the same as in [1, theorem 6].

Remark 4.4. As a consequence of theorem 3.1, the unique solution (u, v) of sys-
tem (3.13) can be approximated by the solutions of (S)ε. Furthermore, the shooting
method, combined with the Broyden method in order to avoid the derivatives, is
appropriate to numerical approximation of the solution of (3.13). We have consid-
ered α = 1, β = 0.5, p = q = 1, ε = 10−2 and ρ(x) = ϕ1(x) = sin(πx). The solution
(u, v) of (S)ε is plotted for σ = 0 (figure 1) and σ = 2 (figure 2), respectively.

Some of the results obtained in this paper have been communicated in [6].
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