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In this paper we study a non-homogeneous Neumann-type problem which involves a
nonlinearity satisfying a non-standard growth condition. By using a recent
variational principle of Ricceri, we establish the existence of at least two non-trivial
solutions in an appropriate Orlicz–Sobolev space.

1. Introduction and the main result

In this paper we consider the problem

− div(a(|∇u(x)|)∇u(x)) + a(|u(x)|)u(x) = λf(x, u(x)) for x ∈ Ω,

∂u

∂ν
(x) = 0 for x ∈ ∂Ω,

⎫⎬
⎭ (1.1)

where Ω is a bounded domain in RN , N � 3, with smooth boundary ∂Ω, ν is
the outer unit normal to ∂Ω, while f : Ω × R → R is a Carathéodory function,
and λ is a positive parameter. Throughout this paper we assume that the function
a : (0,∞) → R is such that the mapping φ : R → R defined by

φ(t) =

{
a(|t|)t for t �= 0,

0 for t = 0,
(1.2)

is an odd, strictly increasing homeomorphism from R onto R.
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Equation (1.1) has been widely studied in the homogeneous case when a(t) =
tp−2, p > 1, which corresponds to a problem involving the classical p-Laplacian
(see [4,6,11,31]). The purpose of this paper is to consider (1.1) in the aforementioned
general framework, when the nonlinear term f satisfies a non-standard growth
condition at infinity. To be more precise, we first introduce the functions

Φ(t) =
∫ t

0
φ(s) ds, Φ�(t) =

∫ t

0
φ−1(s) ds for all t ∈ R. (1.3)

We observe that Φ is a Young function, that is, Φ(0) = 0, Φ is convex and

lim
t→∞

Φ(t) = +∞.

Furthermore, since Φ(t) = 0 if and only if t = 0,

lim
t→0

Φ(t)
t

= 0 and lim
t→∞

Φ(t)
t

= +∞,

then Φ is called an N -function. The function Φ� is called the complementary func-
tion of Φ and it satisfies

Φ�(t) = sup{st − Φ(s); s � 0} for all t � 0.

We observe that Φ� is also an N -function and the following Young inequality holds:

st � Φ(s) + Φ�(t) for all s, t � 0.

Throughout this paper we assume that

1 < lim inf
t→∞

tφ(t)
Φ(t)

� sup
t>0

tφ(t)
Φ(t)

< ∞. (Φ0)

Due to assumption (Φ0), we may define the numbers

p0 := inf
t>0

tφ(t)
Φ(t)

and p0 := sup
t>0

tφ(t)
Φ(t)

.

Note that for a(t) = tp−2, p > 1, one has p0 = p0 = p.
On the nonlinearity f : Ω × R → R we will assume that

(f0) there exist c0 > 0 and 0 < s < p0 − 1 such that |f(x, t)| � c0(1 + |t|s) for
every (x, t) ∈ Ω × R,

(f1) there exists b ∈ R such that

BF =
∫

Ω

F (x, b) dx > 0,

where F (x, t) =
∫ t

0 f(x, w) dw, t ∈ R,

(f2) there exists δ > 0 such that f(x, t)t � 0 for every x ∈ Ω and t ∈ [−δ, δ].
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Roughly speaking, the growth of f(x, ·) is (p0 −1)-sublinear at infinity (see (f0)).
In this setting, the presence of the eigenvalue λ > 0 in (1.1) is indispensable.
Indeed, if we analyse even the simplest case a(t) = 1 that corresponds to the
Laplace equation and we assume that f(x, ·) is uniformly Lipschitz with Lipschitz
constant L > 0 (uniformly for x ∈ Ω), then (1.1) has only the trivial weak solution
whenever λ < L−1. Moreover, (f2) implies in particular that f(x, 0) = 0 for every
x ∈ Ω; thus, u = 0 can always be considered a solution of problem (1.1). However,
assuming finally that

N < p0 < lim inf
t→∞

log(Φ(t))
log(t)

, (Φ1)

we may prove the following multiplicity result.

Theorem 1.1. Assume that (Φ0) and (Φ1) hold and that the function [0,∞) �
t → Φ(

√
t) is convex. Let f : Ω ×R → R be a Carathéodory function which satisfies

(f0)–(f2).
Then there exist a non-empty open interval Λ ⊂ (0, 2Φ(b)|Ω|B−1

F ) and µ > 0 such
that for any λ ∈ Λ problem (1.1) has at least two non-trivial weak solutions whose
norms are less than µ.

The precise notion of weak solutions for (1.1) will be given in § 2. This step
will be possible by introducing an Orlicz–Sobolev space setting, due to the fact
that the operator in the divergence form is non-homogeneous. In particular, in the
homogeneous (p-Laplace operator) case, theorem 1.1 extends known results (see,
for instance, [4, 6, 31]); moreover, we give an estimate for the interval Λ ⊂ (0,∞)
where problem (1.1) has at least two non-trivial weak solutions.

On the other hand, we point out that it is possible for the technical assumption,
i.e. the function [0,∞) � t → Φ(

√
t) is convex, not to be a necessary condition.

Actually, it will be used in the proof of theorem 1.1 in order to obtain a Clarkson-
type inequality for the function Φ, i.e.

1
2

[ ∫
Ω

Φ(|∇u|) dx +
∫

Ω

Φ(|∇v|) dx

]

�
∫

Ω

Φ

(∣∣∣∣∇u + ∇v

2

∣∣∣∣
)

dx +
∫

Ω

Φ

(∣∣∣∣∇u − ∇v

2

∣∣∣∣
)

dx (1.4)

for any u, v ∈ W 1LΦ(Ω), where W 1LΦ(Ω) is an Orlicz–Sobolev functional space
that will be defined in the next section. Obviously, inequality (1.4) extends the
classical Clarkson inequality, obtained for the homogeneous function Φ(t) = tp

with p � 2 (see [21] for more details). Unfortunately, at this stage we cannot say
firmly whether an inequality of type (1.4) can be stated for a class of functions
which do not satisfy the fact that t → Φ(

√
t) is convex. Since, for the moment, the

above quoted condition is the only one that we have found in the literature to yield
to inequalities of type (1.4), we have inserted it in the hypotheses of theorem 1.1
instead of the assumption that the function Φ satisfies inequality (1.4). The necessity
of the condition remains an open question.

The first general existence result using the theory of monotone operators in
Orlicz–Sobolev spaces was obtained by Donaldson [9] and Gossez [13, 14]. Other
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recent works that put the problem into this framework include [7,8,12,15,22,25–27].
In these papers, the existence results are obtained by means of variational tech-
niques, monotone operator methods or fixed-point and degree theory arguments.
Concerning the boundary-value problems with Neumann boundary condition, we
point out the existence and multiplicity results obtained by Halidias and Le [16].

In the next section we recall some basic facts on Orlicz–Sobolev spaces; we will
prove theorem 1.1 in the last section.

2. Orlicz–Sobolev setting

Let φ : R → R and Φ, Φ∗ be as in (1.2) and (1.3), respectively. The Orlicz space
LΦ(Ω) defined by the N -function Φ [1, 2, 7] is the space of measurable functions
u : Ω → R such that

‖u‖LΦ
:= sup

{ ∫
Ω

uv dx;
∫

Ω

Φ�(|v|) dx � 1
}

< ∞.

Then (LΦ(Ω), ‖ · ‖LΦ
) is a Banach space whose norm is equivalent to the Luxemburg

norm

‖u‖Φ := inf
{

k > 0;
∫

Ω

Φ

(
u(x)

k

)
dx � 1

}
.

For Orlicz spaces, Hölder’s inequality reads as follows (see [29, inequality (4), p. 79]):∫
Ω

uv dx � 2‖u‖LΦ
‖v‖LΦ� for all u ∈ LΦ(Ω) and v ∈ LΦ�(Ω).

We denote by W 1LΦ(Ω) the corresponding Orlicz–Sobolev space for problem
(1.1), defined by

W 1LΦ(Ω) =
{

u ∈ LΦ(Ω);
∂u

∂xi
∈ LΦ(Ω), i = 1, . . . , N

}
.

This is a Banach space with respect to the norm

‖u‖1,Φ = ‖|∇u|‖Φ + ‖u‖Φ

(see [2, 7, 13]). The spaces LΦ(Ω) and W 1LΦ(Ω) are studied in depth in [1, 2, 19,
23,29]. These spaces generalize the usual spaces Lp(Ω) and W 1,p(Ω), in which the
role played by the convex mapping t 
→ |t|p is assumed by a more general con-
vex function Φ(t). One of the main features of Orlicz–Sobolev spaces is that they
fill a gap in the classical theory of Sobolev embeddings. Indeed, if kp = N and
p > 1, then W k,p(Ω) is continuously embedded into Lq(Ω) for any p � q < ∞,
but there is no smallest target Lq space for these embeddings, in the sense that
W k,p(Ω) � L∞(Ω). However, if the class of target spaces is enlarged to contain
Orlicz spaces, then, as shown in [32] (see also [17]), the best such target space
is LΦ(Ω), where Φ(t) = exp(|t|p/(p−1)) − 1. This inequality has been extended to
Lorentz spaces by Malý and Pick [24]. We also point out that many properties of
Sobolev spaces have been extended to Orlicz–Sobolev spaces by Donaldson and
Trudinger [10].
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We say that u ∈ W 1LΦ(Ω) is a weak solution for problem (1.1) if∫
Ω

a(|∇u|)∇u∇v dx+
∫

Ω

a(|u|)uv dx−λ

∫
Ω

f(x, u)v dx = 0 for all v ∈ W 1LΦ(Ω).

Hypothesis (Φ0) is equivalent with the fact that Φ and Φ� both satisfy the ∆2-
condition (at infinity) (see [2, p. 232] and [7]). In particular, both (Φ, Ω) and (Φ∗, Ω)
are ∆-regular (see [2, p. 232]). Consequently, the spaces LΦ(Ω) and W 1LΦ(Ω) are
separable, reflexive Banach spaces (see [2, pp. 241, 247]).

Remark 2.1. Using lemma D.2 of [7] it follows that W 1LΦ(Ω) is continuously
embedded in W 1,p0(Ω). On the other hand, since we assume that p0 > N , we deduce
that W 1,p0(Ω) is compactly embedded in C(Ω̄). Thus, we deduce that W 1LΦ(Ω) is
compactly embedded in C(Ω̄). Defining ‖u‖∞ = supx∈Ω̄ |u(x)|, we find a positive
constant c > 0 such that

‖u‖∞ � c‖u‖1,Φ for all u ∈ W 1LΦ(Ω).

We point out certain useful properties regarding the norms on Orlicz–Sobolev
spaces.

Lemma 2.2. On W 1LΦ(Ω) the norms

‖u‖1,Φ = ‖|∇u|‖Φ + ‖u‖Φ,

‖u‖2,Φ = max{‖|∇u|‖Φ, ‖u‖Φ},

‖u‖ = inf
{

µ > 0;
∫

Ω

[
Φ

(
|u(x)|

µ

)
+ Φ

(
|∇u(x)|

µ

)]
dx � 1

}

are equivalent. More precisely, for every u ∈ W 1LΦ(Ω) we have

‖u‖ � 2‖u‖2,Φ � 2‖u‖1,Φ � 4‖u‖.

Proof. First, we point out that ‖ · ‖1,Φ and ‖ · ‖2,Φ are equivalent, since

‖u‖2,Φ � ‖u‖1,Φ � 2‖u‖2,Φ for all u ∈ W 1LΦ(Ω). (2.1)

In the following, we assume that u �= 0. We remark that∫
Ω

Φ

(
|u(x)|
‖u‖Φ

)
dx � 1,

∫
Ω

Φ

(
|∇u(x)|
‖|∇u|‖Φ

)
dx � 1 (2.2)

and ∫
Ω

[
Φ

(
|u(x)|
‖u‖

)
+ Φ

(
|∇u(x)|

‖u‖

)]
dx � 1. (2.3)

By (2.3) we obtain∫
Ω

Φ

(
|u(x)|
‖u‖

)
dx � 1 and

∫
Ω

Φ

(
|∇u(x)|

‖u‖

)
dx � 1.

Taking into account the way in which ‖ · ‖Φ is defined, we find

‖u‖1,Φ = ‖|∇u|‖Φ + ‖u‖Φ � 2‖u‖ for all u ∈ W 1LΦ(Ω). (2.4)
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On the other hand, since

Φ(t) � tφ(t)
p0

for all t > 0,

with p0 > N , by [8, lemma C.4(ii)] we deduce in particular that

Φ(2t) � 2Φ(t) for all t > 0.

Thus, we deduce that, for all u ∈ W 1LΦ(Ω), x ∈ Ω,

2Φ

(
|u(x)|

2‖u‖2,Φ

)
� Φ

(
|u(x)|
‖u‖2,Φ

)
and 2Φ

(
|∇u(x)|
2‖u‖2,Φ

)
� Φ

(
|∇u(x)|
‖u‖2,Φ

)
.

It follows that∫
Ω

[
Φ

(
|u(x)|

2‖u‖2,Φ

)
+Φ

(
|∇u(x)|
2‖u‖2,Φ

)]
dx � 1

2

{ ∫
Ω

[
Φ

(
|u(x)|
‖u‖2,Φ

)
+Φ

(
|∇u(x)|
‖u‖2,Φ

)]
dx

}
.

(2.5)
But, since

‖u‖2,Φ � ‖u‖Φ and ‖u‖2,Φ � ‖|∇u|‖Φ for all u ∈ W 1LΦ(Ω),

we get

|u(x)|
‖u‖Φ

� |u(x)|
‖u‖2,Φ

and
|∇u(x)|
‖|∇u|‖Φ

� |∇u(x)|
‖u‖2,Φ

for all u ∈ W 1LΦ(Ω), x ∈ Ω. (2.6)

Taking into account the fact that Φ is increasing on [0,∞), by (2.5), (2.6) and (2.2),
we get∫

Ω

[
Φ

(
|u(x)|

2‖u‖2,Φ

)
+ Φ

(
|∇u(x)|
2‖u‖2,Φ

)]
dx � 1

2

{ ∫
Ω

[
Φ

(
|u(x)|
‖u‖Φ

)
+ Φ

(
|∇u(x)|
‖|∇u|‖Φ

)]
dx

}
� 1,

for all u ∈ W 1LΦ(Ω). Thus, we conclude that

‖u‖ � 2‖u‖2,Φ for all u ∈ W 1LΦ(Ω). (2.7)

By relations (2.1), (2.4) and (2.7) we deduce that lemma 2.2 holds.

Lemma 2.3. The following relations hold:∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx � ‖u‖p0 for all u ∈ W 1LΦ(Ω) with ‖u‖ > 1,

∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx � ‖u‖p0
for all u ∈ W 1LΦ(Ω) with ‖u‖ < 1.

Proof. First, assume that ‖u‖ > 1. Let β ∈ (1, ‖u‖). By [8, lemma C.4(ii)] we have∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx � βp0

∫
Ω

[
Φ

(
|u(x)|

β

)
+ Φ

(
|∇u(x)|

β

)]
dx � βp0 .
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Letting β ↗ ‖u‖, we find∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx � ‖u‖p0 for all u ∈ W 1LΦ(Ω) with ‖u‖ > 1.

Next, assume that ‖u‖ < 1. Let ξ ∈ (0, ‖u‖). By the definition of p0, it is easy to
prove that

Φ(t) � τp0
Φ(t/τ) for all t > 0, τ ∈ (0, 1).

Using the above relation we have
∫

Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx � ξp0
∫

Ω

[
Φ

(
|u(x)|

ξ

)
+ Φ

(
|∇u(x)|

ξ

)]
dx. (2.8)

Defining v(x) = u(x)/ξ for all x ∈ Ω, we have ‖v‖ = ‖u‖/ξ > 1. Using the first
inequality of this lemma we find∫

Ω

[Φ(|v(x)|) + Φ(|∇v(x)|)] dx � ‖v‖p0 > 1. (2.9)

Relations (2.8) and (2.9) show that∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx � ξp0
.

Letting ξ ↗ ‖u‖ in the above inequality, we obtain∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx � ‖u‖p0
for all u ∈ W 1LΦ(Ω) with ‖u‖ < 1.

The proof of lemma 2.3 is complete.

3. Proof of theorem 1.1

The key argument in the proof of our main result is a three-critical-point theorem
due to Ricceri [30]. This result is widely applied to solve various elliptic problems;
we refer the reader to [4–6, 20, 31]. Ricceri’s result goes back to an elementary
property established by Pucci and Serrin (see [30, theorem 3]) which asserts that
if a functional of class C1 defined on a real Banach space has two local minima,
then it has a third critical point. This is an auxiliary result related to a problem
of Rabinowitz [28], who raised the question whether critical points of mountain-
pass type must necessarily be saddle points. To the best of our knowledge, the
first three-critical-point property was found by Krasnoselskii [18]; he showed that
if f is a coercive C1 functional defined on a finite-dimensional space having a non-
degenerate critical point x0 (that is, the topological index ind f ′(x0)(0) is non-zero)
which is not a global minimum, then f admits a third critical point. This result
was extended to infinite-dimensional Banach spaces by Amann [3].
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We recall in what follows a sharper version of Ricceri’s theorem, which is due to
Bonanno (see [5, theorem 2.1]).

Theorem 3.1. Let E be a separable and reflexive real Banach space and let J, I :
E → R be two continuously Gâteaux differentiable functionals. Assume that there
exists u0 ∈ E such that J(u0) = I(u0) = 0 and J(u) � 0 for every u ∈ E and that
there exists u1 ∈ E, r > 0 such that

(i) r < J(u1),

(ii) supJ(u)<r I(u) < r(I(u1)/J(u1)).

Furthermore, set

ā =
ζr

r(I(u1)/J(u1)) − supJ(u)<r I(u)
,

with ζ > 1, and assume that the functional J − λI is sequentially weakly lower
semicontinuous, satisfies the Palais–Smale condition and

(iii) lim‖u‖→+∞(J(u) − λI(u)) = +∞ for every λ ∈ [0, ā].

Then, there exist a non-empty open interval Λ ⊂ [0, ā] and a number µ > 0 such
that, for each λ ∈ Λ, the equation J ′(u)−λI ′(u) = 0 admits at least three solutions
in E having the norm less than µ.

From now on, we assume that the hypotheses of theorem 1.1 are satisfied. Let E =
W 1LΦ(Ω) be the Orlicz–Sobolev space from § 2. We further define the functionals
J, I : E → R by

J(u) =
∫

Ω

(Φ(|∇u|) + Φ(|u|)) dx and I(u) =
∫

Ω

F (x, u(x)) dx.

Similar arguments as those used in [12, lemma 3.4] and [7, lemma 2.1] imply that
J, I ∈ C1(E, R) with the derivatives given by

〈J ′(u), v〉 =
∫

Ω

a(|∇u|)∇u∇v dx +
∫

Ω

a(|u|)uv dx,

〈I ′(u), v〉 =
∫

Ω

f(x, u)v dx

for any u, v ∈ E. Let us observe that u ∈ E is a weak solution of equation (1.1) if
there exists λ > 0 such that u is a critical point of the functional J −λI. Therefore,
we can seek for weak solutions of problem (1.1) by applying theorem 3.1. In the
following, we will verify all the hypotheses of theorem 3.1. In order to do this, we
first prove the following lemma.

Lemma 3.2. J ′ : E → E� has a continuous inverse operator on E�.

Proof. We will use [33, theorem 26.A(d)]; namely, it is sufficient to verify that J ′

is coercive, hemicntinuous and uniformly monotone.
Indeed, since Φ is convex it follows that J is also convex. Thus, we have

J(u) � 〈J ′(u), u〉 for all u ∈ E.
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By lemma 2.3 it is clear that for any u ∈ E with ‖u‖ > 1 we have

〈J ′(u), u〉
‖u‖ � J(u)

‖u‖ � ‖u‖p0−1.

Thus,

lim
‖u‖→∞

〈J ′(u), u〉
‖u‖ = ∞,

i.e. J ′ is coercive.
The fact that J ′ is hemicontinuous can be verified using standard arguments.
Finally, we show that J ′ is uniformly monotone. Indeed, since Φ is convex, we

have

Φ(|∇u(x)|) � Φ

(∣∣∣∣∇u(x) + ∇v(x)
2

∣∣∣∣
)

+ a(|∇u(x)|)∇u(x) · ∇u(x) − ∇v(x)
2

and

Φ(|∇v(x)|) � Φ

(∣∣∣∣∇u(x) + ∇v(x)
2

∣∣∣∣
)

+ a(|∇v(x)|)∇v(x) · ∇v(x) − ∇u(x)
2

for every u, v ∈ E and x ∈ Ω. Adding the above two relations and integrating over
Ω we find

1
2

∫
Ω

(a(|∇u|)∇u − a(|∇v|)∇v) · (∇u − ∇v) dx

�
∫

Ω

Φ(|∇u|) dx +
∫

Ω

Φ(|∇v|) dx − 2
∫

Ω

Φ

(∣∣∣∣∇u + ∇v

2

∣∣∣∣
)

dx (3.1)

for any u, v ∈ E.
On the other hand, since Φ : [0,∞) → R is an increasing, continuous function

with Φ(0) = 0, and t 
→ Φ(
√

t) is convex, we deduce by [21] that

1
2

[ ∫
Ω

Φ(|∇u|) dx +
∫

Ω

Φ(|∇v|) dx

]

�
∫

Ω

Φ

(∣∣∣∣∇u + ∇v

2

∣∣∣∣
)

dx +
∫

Ω

Φ

(∣∣∣∣∇u − ∇v

2

∣∣∣∣
)

dx (3.2)

for any u, v ∈ E.
By (3.1) and (3.2) it follows that
∫

Ω

(a(|∇u|)∇u − a(|∇v|)∇v) · (∇u − ∇v) dx

� 4
∫

Ω

Φ

(∣∣∣∣∇u − ∇v

2

∣∣∣∣
)

dx for all u, v ∈ E. (3.3)

Similarly,∫
Ω

(a(|u|)u − a(|v|)v)(u − v) dx � 4
∫

Ω

Φ

(∣∣∣∣u − v

2

∣∣∣∣
)

dx for all u, v ∈ E. (3.4)
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Relations (3.3) and (3.4) yield

〈J ′(u) − J ′(v), u − v〉 � 4J

(
u − v

2

)
.

Define the function α : [0,∞) → [0,∞) by

α(t) =
1

2p0−2

{
tp

0−1 for t � 1,

tp0−1 for t � 1.

It is easy to check that α is an increasing function with α(0) = 0 and limt→∞ α(t) =
∞. Taking into account the above information and lemma 2.3, we deduce that

〈J ′(u) − J ′(v), u − v〉 � α(‖u − v‖)‖u − v‖ for all u, v ∈ E,

i.e. J ′ is uniformly monotone, which concludes our proof.

Now, we will verify the hypotheses of theorem 3.1 in three steps.

Step 1. For every λ > 0, the functional J − λI is coercive, i.e. (iii) is verified.
Indeed, by lemma 2.3 we deduce that for any u ∈ E with ‖u‖ > 1 we have

J(u) � ‖u‖p0 . On the other hand, by (f0), there exists c1 > 0 such that∫
Ω

F (x, u(x)) dx � c1

∫
Ω

(|u| + |u|s+1) dx � c1|Ω|(‖u‖∞ + ‖u‖s+1
∞ ) for all u ∈ E.

Since E is compactly embedded into C(Ω̄) (see remark 2.1), due to lemma 2.2, it
follows that there exists c2 > 0 such that

J(u) − λI(u) � ‖u‖p0 − λc2|Ω|(‖u‖ + ‖u‖s+1) for all u ∈ E.

Since 1 < s + 1 < p0, it follows that

lim
‖u‖→∞

(J(u) − λI(u)) = ∞ for all λ > 0;

thus (iii) is verified.

Step 2. For every λ > 0, the functional J − λI is sequentially weakly lower semi-
continuous and satisfies the Palais–Smale condition.

The fact that E is compactly embedded into C(Ω̄) implies that the operator
I ′ : E → E� is compact. Consequently, the functional I : X → R is sequentially
weakly continuous (see [34, corollary 41.9]). On the other hand, the convexity of
J : X → R implies the sequentially weak lower semicontinuity of J . This proves
the first part.

Combining step 1, lemma 3.2 and the fact that I ′ : E → E� is compact, we obtain
that J − λI satisfies the Palais–Smale condition (see [34, example 38.25]).

Step 3. Let 0 < r < min{1, (δ/2c)p0
, Φ(b)|Ω|} and u1(x) = b ∈ E. Then (i) and

(ii) are verified.
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First, we observe that b �= 0 (which appears in (f1)). Therefore, Φ(b) = Φ(−b) > 0,
i.e. one may choose r > 0 as above. Now, we have

J(u1) =
∫

Ω

(Φ(|∇u1|) + Φ(|u1|)) dx =
∫

Ω

Φ(|b|) = Φ(b)|Ω| > r,

i.e. (i) is verified.
Now, let J(u) < r. Then, by lemma 2.3 (and r < 1), we have ‖u‖p0 � J(u) < r.

Therefore, ‖u‖ � δ/2c. By remark 2.1 and lemma 2.2, we have

|u(x)| � ‖u‖∞ � c‖u‖1,Φ � 2c‖u‖ � δ for all x ∈ Ω. (3.5)

On the other hand, by (f2), we have that

F (x, t) = F (x, t) − F (x, 0) = f(x, θt)t =
1
θ
f(x, θt)θt � 0 (with θ ∈ (0, 1))

for every x ∈ Ω and t ∈ [−δ, δ]. Consequently, for every u ∈ E, complying with
J(u) < r, we have

I(u) =
∫

Ω

F (x, u(x)) dx � 0

(see (3.5)); thus,
sup

J(u)<r

I(u) � 0. (3.6)

But, by (f1), we have

r
I(u1)
J(u1)

=
rBF

Φ(b)|Ω| > 0,

which proves (ii).

Proof of theorem 1.1. It is clear that I(0) = J(0) = 0 and J(u) � 0 for every
u ∈ E. Choosing u0 = 0 and taking into account steps 1–3, all the hypotheses of
theorem 3.1 are verified. Setting

ā =
2r

r(I(u1)/J(u1)) − supJ(u)<r I(u)
,

there exist a non-empty open interval Λ ⊂ [0, ā] and a number µ > 0 such that, for
each λ ∈ Λ, the equation J ′(u) − λI ′(u) = 0 admits at least three solutions in E
(thus, at least two non-trivial weak solutions for (1.1)) having the norm less than
µ. Moreover, due to (3.6), we have

ā � 2r

r(I(u1)/J(u1))
=

2J(u1)
I(u1)

=
2Φ(b)|Ω|

BF
,

which completes the proof of theorem 1.1.

Example 3.3. Let us consider the problem

− div
(

|∇u|p−2∇u

log(1 + |∇u|)

)
+

|u|p−2u

log(1 + |u|) = λ ln(1 + (u − 1)uq(x)
+ ) for x ∈ Ω,

∂u

∂ν
= 0 for x ∈ ∂Ω,

⎫⎪⎪⎬
⎪⎪⎭
(3.7)
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where p is a real number such that p > N+1 and q ∈ C(Ω̄) satisfies 2 < q(x) < p−1
for any x ∈ Ω̄ and u+ = max(u, 0).

We define

φ(t) =
|t|p−2

log(1 + |t|) t for t �= 0 and φ(0) = 0

and

Φ(t) =
∫ t

0
φ(s) ds.

An easy computation shows that the function [0,∞) � t 
→ Φ(
√

t) is convex. More-
over, by [8, example 3, p. 243] we have

p0 = p − 1 < p0 = p = lim inf
t→∞

log(Φ(t))
log(t)

.

Thus, conditions (Φ0) and (Φ1) are verified.
Now we define the function f : Ω × R → R by

f(x, t) = ln(1 + (t − 1)tq(x)
+ ) for all x ∈ Ω and t ∈ R.

Then F : Ω × R → R is given by

F (x, t) = t ln(1 + (t − 1)tq(x)
+ ) − (q(x) + 1)t+

+
∫ t+

0

q(x) + 1 − sq(x)

1 + sq(x)+1 − sq(x) ds for all x ∈ Ω and t ∈ R.

Clearly, f is a Carathéodory function and (f0) is satisfied by choosing s = 1. More-
over, for sufficiently large b > 0, (f1) is also verified. Finally, (f2) is verified for
δ = 1. Consequently, we can apply theorem 1.1, and hence problem (3.7) has at
least two non-trivial solutions for certain eigenvalues λ > 0.
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12 M. Garciá-Huidobro, V. K. Le, R. Manásevich and K. Schmitt. On principal eigenvalues
for quasilinear elliptic differential operators: an Orlicz–Sobolev space setting. Nonlin. Diff.
Eqns Applic. 6 (1999), 207–225.

13 J. P. Gossez. Nonlinear elliptic boundary value problems for equations with rapidly (or
slowly) increasing coefficients. Trans. Am. Math. Soc. 190 (1974), 163–205.

14 J. P. Gossez. A strongly nonlinear elliptic problem in Orlicz–Sobolev spaces, Proceedings
of Symposia in Pure Mathematics, vol. 45, pp. 455–462 (Providence, RI: American Math-
ematical Society, 1986).
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26 M. Mihăilescu and V. Rădulescu. Existence and multiplicity of solutions for quasilinear
nonhomogeneous problems: an Orlicz–Sobolev space setting. J. Math. Analysis Applic.
330 (2007), 416–432.
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