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Abstract. We consider a simple model arising in the control of noise consisting of two coupled
hyperbolic equations of dimensions two and one respectively. The one dimensional equation is as-
sumed to be dissipative. We describe the asymptotic behavior of the eigenvalues and eigenfunctions
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decay of solutions or the compactness of the damping term, are also studied.

Key words. Eigenvalues, eigenfunctions, high frequency asymptotics, hyperbolic system, aero-
mechanic structure interaction.

AMS subject classifications. 35P20, 35L20, 73K70.

1. Introduction. Recently several works both in the mathematical and tech-
nical literature have dealt with the problem of the active control of noise generated
in acoustic cavities by means of the vibrations of their flexible walls. Such studies
were motivated, for instance by the development of a new class of turboprop engines
which are very fuel efficient but also very loud. In this context the low frequency high
magnitude acoustic fields produced by these engines cause vibrations in the fuselage
which in turn generate unwanted interior noise.

In this article we analyse the spectral properties of a linear two-dimensional hybrid
system arising in the development of these new technologies for noise reduction in the
interior of a cavity (plane, car, etc.) which was proposed in a series of works by Banks
et al. (see [3]).

Let us describe the system we study. We consider the two-dimensional square Ω =
(0, 1)× (0, 1) ⊂ IR2. We assume that Ω is filled with an elastic, inviscid, compressible

fluid whose velocity field
→
v is given by the potential φ = φ(x, y, t), (

→
v= ∇φ). By

linearization we assume that the potential φ satisfies the linear wave equation in
Ω× (0,∞).

The boundary Γ = ∂Ω of Ω is divided in two parts: Γ0 = {(x, 0) : x ∈ (0, 1)}
and Γ1 = Γ\Γ0. The subset Γ1 is assumed to be rigid and we impose zero normal
velocity of the fluid on it. The subset Γ0 is supposed to be flexible and occupied by
a flexible string that vibrates under the pressure of the fluid on the plane where Ω
lies. The displacement of Γ0, described by the scalar function W = W (x, t), obeys the
one-dimensional dissipative wave equation. On the other hand, on Γ0 we impose the
continuity of the normal velocities of the fluid and the string. The string is assumed
to satisfy Neumann boundary conditions on its extremes.

All deformations are supposed to be small enough so that linear theory applies.

Under natural initial conditions for φ and W the linear motion of this system is
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plutense, 28040 Madrid, Spain, (zuazua@sunma4.mat.ucm.es). Supported by grant PB93-1203 of the
DGICYT (Spain) and CHRX-CT94-0471 of the European Union.

1



2 S. MICU AND E. ZUAZUA

described by means of the following coupled wave equations:

φtt −∆φ = 0 in Ω× (0,∞)
∂φ
∂ν = 0 on Γ1 × (0,∞)
∂φ
∂y = −Wt on Γ0 × (0,∞)

Wtt −Wxx +Wt + φt = 0 on Γ0 × (0,∞)
Wx(0, t) = Wx(1, t) = 0 for t > 0
φ(0) = φ0, φt(0) = φ1 in Ω
W (0) = W 0,Wt(0) = W 1 on Γ0.

(1.1)

By ν we denote the unit outward normal to Ω.
In (1.1) we have chosen to take the various parameters of the system to be equal

to one. This restricts the generality of our analysis. The dependence of the most
interesting features of the spectrum with respect to the various parameters of the
system will be studied elsewhere.

We remark also that, in (1.1), two wave equations, of dimensions two and one
respectively and representing vibrations of different nature, are coupled. Therefore
we say that (1.1) is a two-dimensional hybrid system. For examples of hybrid systems
of dimension one, such as those coupling strings or beams with rigid bodies, see [10],
[7] and [18].

System (1.1) is a modified version of the one introduced by H.T. Banks et al. in [3].
In [3] the flexible part of the boundary Γ0 is assumed to be occupied by a flexible beam,
leading to a fourth order one-dimensional equation on Γ0. We have chosen to consider
a one-dimensional wave equation instead to simplify the exposition. However, most of
the relevant spectral properties remain unchanged considering a beam equation with
appropriate boundary conditions.

We also remark that we choose Neumann boundary conditions for the string. This
choice allows us to separate the variables and to obtain an explicit equation for the
eigenvalues. In the case of Dirichlet boundary conditions, which are considered in [3],
this is not longer possible. Nevertheless, using the information we get here about the
eigenfunctions of system (1.1), it can be proved that the uniform decay fails and also
that there exist solutions uniformly distributed in Ω with arbitrarily small decay (see
[14]).

System (1.1) is well-posed in the energy space

X = H1(Ω)× L2(Ω)×H1(Γ0)× L2(Γ0)

for the variables (φ, φt,W,Wt).
The energy

E(t) =
1

2

∫
Ω

[
| ∇φ |2 + | φt |2

]
dxdy +

1

2

∫
Γ0

[
|Wx |2 + |Wt |2

]
dx(1.2)

satisfies

dE

d t
(t) = −

∫
Γ0

|Wt |2 dx.(1.3)

Hence, the system (1.1) is dissipative, the damping term being localized in the
subset Γ0 of the boundary.

Some of the properties of this system like existence, uniqueness, asymptotic be-
havior and existence of periodic solutions were studied in previous works (see [12] and
[13]).
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Our aim here is to characterize the asymptotic behavior of the eigenvalues and
eigenfunctions of the differential operator corresponding to system (1.1) and to de-
scribe some interesting features of the model that are direct consequences of this
analysis. The study is made by using separation of variables. In this way the system
is reduced to an infinite number of one-dimensional systems depending on an integer
parameter k which represents the frequency of vibration in x-direction. This allows
us to obtain explicit equations for eigenvalues and to use Rouché’s Theorem for their
localization.

Let us describe briefly the most relevant results obtained in this paper:

a) Whenever the frequency of vibration in the x−direction is fixed the correspond-
ing one-dimensional system does not decay uniformly. Indeed, at high frequencies,
the real part of the one-parametric family of eigenvalues converges to zero. This is a
typical situation in one-dimensional hybrid systems (see [7], [10] and [18]).

b) The effect of the damping term on the global dynamics of the system is almost
negligible at high frequencies. Indeed, most of the eigenfunctions of the system (1.1)
have their energy uniformly distributed in Ω while the real part of the eigenvalues
converges to zero at high frequencies.

c) Among the two-parameter family of eigenvalues of the two-dimensional system
only a one-parameter family of them is effectively damped so that their real parts
remain uniformly away from zero. The corresponding eigenfunctions have their energy
exponentially concentrated on the string Γ0.

d) As a consequence of the previous property, the difference between the semi-
group generated by the damped and undamped systems is not compact. This is in
contrast with the results in [18] showing that the lack of uniform decay in damped
one-dimensional hybrid systems is typically due to the compactness of the damping
term. Thus, the non compactness result is genuinely two-dimensional.

Let us remark that the case we have addressed is not generic. Even in the case
of surfaces of revolution the cylindrical case is a degenerate one. This was exhibited
in the Thesis of B. Allibert in the frame of the classical wave equation with Dirichlet
boundary conditions (see [1]). Nevertheless, in [11] we show that, in the case of a
disk shaped cavity surrounded by a circular dissipative string the same phenomenon
is present although all rays of geometric optics meet the boundary where the losses
occur. This indicates that the same behavior can be expected for different kinds of
geometries or boundary conditions (see also [14]).

The rest of the paper is organized as follows.

In Section 2 we present in detail the main results of this paper and we discuss
some of their consequences. In Section 3 we localize the eigenvalues of the undamped
system corresponding to (1.1) and describe its eigenfunctions. In Section 4 we ob-
tain asymptotic estimates for the eigenvalues and eigenmodes of the damped system
(1.1). This section is divided in two parts. In Subsection 4.1 we distinguish three
types of eigenvalues which, at high frequencies, approach the imaginary axis. The
corresponding eigenfunctions have the property that the energy concentrated in the
string vanishes asymptotically. To complete the study, in Subsection 4.2 we prove
that there exists a sequence of eigenvalues, tending to infinity, with uniformly nega-
tive real parts. The corresponding eigenfunctions have the property that the energy
localized on the string does not vanish asymptotically. Moreover, as the frequency
increases the whole energy is concentrated on the string at an exponential rate. These
eigenfunctions span an infinite dimensional subspace of the energy space in which the
decay rate of solutions is exponential.
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In the last section we prove that the difference between the semigroup generated
by the differential operator associated to the undamped system and that associated
to the damped one is not compact as a consequence of the existence of an infinite-
dimensional subspace in which the damping term is effective, i.e. it produces an
exponential decay. We end up with an Appendix that contains some technical lemmas.

2. The main results: statements and discussion. As we said in the intro-
dution the aim of this paper is the study of the spectrum of (1.1). In this section we
state the main results concerning the eigenvalues and eigenfunctions of the system
and some of their consequences.

In order to analyze the spectrum of (1.1) we look for solutions in separated vari-
ables of the form (φ,W ) = (ψ(y, t), V (t)) cos(kπx).

We deduce that (ψ(y, t), V (t)) verifies the following one-dimensional system:
ψtt − ψyy + k2π2ψ = 0 in (0, 1)× (0,∞)
ψy(1) = 0 for t ∈ (0,∞)
ψy(0) = −Vt for t ∈ (0,∞)
Vtt + k2π2V + Vt + ψt(0) = 0 for t ∈ (0,∞).

(2.1)

Now if we look for solutions of (2.1) of the form (ψ(y, t), V (t)) = eλ t(ψ(y), V ),
with V ∈ IR, it follows that the eigenvalues λ of system (1.1) are the roots of the
equation:

e2
√
λ2+k2π2

= −λ
2 −
√
λ2 + k2π2(λ2 + λ+ k2π2)

λ2 +
√
λ2 + k2π2(λ2 + λ+ k2π2)

.(2.2)

The corresponding eigenfunctions are ϕλ = ψλ cos (kπx) where ψλ are the eigen-
functions of (2.1):

ψλ =



1

λ
cosh (

√
λ2 + k2π2(y − 1))

cosh (
√
λ2 + k2π2(y − 1))

√
λ2 + k2π2

λ2
sinh (

√
λ2 + k2π2)

√
λ2 + k2π2

λ
sinh (

√
λ2 + k2π2)


.(2.3)

We are interested in the asymptotic behavior of the eigenvalues λ when |λ| −→ ∞.
For each k ∈ IN we get a sequence of eigenvalues (λk,m)m∈ZZ∗ for the system (2.1) of
modulus greater than kπ (that will be analyzed in Subsection 4.1) and two eigenvalues
λ∗k and λ∗∗k with modulus less than kπ (that will be studied in Subsection 4.2). All
these are the eigenvalues of system (1.1). For each k, (λk,m)m∈IN∗ are ordered such
that |λk,m| increases as m does and λk,−m = λ̄k,m if m ∈ IN∗. The general result on
the existence of eigenvalues is given in the following theorem.

Theorem 2.1. Let k ∈ IN be fixed. The spectrum of the differential operator
corresponding to system (2.1) consists of a sequence of eigenvalues (λk,m)m∈IN∗∪{λ∗k}
with positive imaginary part and another sequence of eigenvalues (λk,−m)m∈IN∗∪{λ∗∗k }
with the property that λk,−m = λ̄k,m if m > 0 and λ∗∗k = λ̄∗k. All these eigenvalues are
zeros of the equation (2.2). If k = 0 then λ∗k = λ∗∗k = 0.
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Remark 1. We remark that the notations λ∗k and λ∗∗k are used for the eigen-
values with the smallest modulus of the system. We make this distinction since the
properties of this wave numbers are different from the others, as we shall see in The-
orem 2.9. Actually, this eigenvalues correspond to the eigenfunctions whose energy is
concentrated on the string Γ0 and decaying uniformly as t→∞.

The asymptotic properties of the wave numbers and modes depend on the relation
between k and m. Therefore we divide our analysis in four cases. First, in Theorems
2.2, 2.4 and 2.6, we characterize the eigenvalues that approach the imaginary axis as
the wave number increases. These are the eigenvalues (λk,m)m∈ZZ∗ . Then, in Theorem
2.9, we study the eigenvalues λ∗k and λ∗∗k which have an uniformly negative real part.

Theorem 2.2. (Eigenvalues λk,m with |λk,m| ≥
√

2k π) Let k ∈ IN be fixed. The
eigenvalues λk,m of (2.1) with | λk,m |>

√
2π k approach the imaginary axis when

| m |→ ∞ and satisfy the following:

| λk,m −
√
k2 +m2 π i |≤ 24√

m2 + k2 π
if Imλk,m > 0, (m > k > 0),

| λk,m +
√
k2 +m2 π i |≤ 24√

m2 + k2 π
if Imλk,m < 0, (m < −k < 0).

(2.4)

Remark 2. Theorem 2.2 shows that, when we fix the frequency of vibration in
x-direction (k fixed) and we consider large frequencies in the y-direction (m large),
the system behaves like the wave equation in Ω with homogeneous Neumann boundary
conditions in all ∂Ω: {

Φtt −4Φ = 0 in Ω× (0,∞)
∂Φ
∂ν = 0 on ∂Ω× (0,∞).

(2.5)

Therefore, the influence of the vibrating string on Γ0 vanishes asymptotically.
Remark 3. Note that the existence of a sequence of eigenvalues (λk,m)m which

approach the imaginary axis when | m |→ ∞ implies that the decay rate of the energy
of solutions of (1.1) is not exponential. It is known that, for linear problems, this is
equivalent to a non uniform decay rate of solutions (see [9]).

In fact we obtain that, for each k ∈ IN , the system (2.1) does not have an ex-
ponential decay. This is not the case in the classical wave equation with boundary
dissipation: 

Φtt −4Φ = 0 in Ω× (0,∞)
∂Φ
∂ν = 0 on Γ1 × (0,∞)
∂Φ
∂ν + Φt = 0 on Γ0 × (0,∞).

(2.6)

In the context of (2.6), for k fixed, the corresponding one-dimensional systems
have exponential decay, but the decay rate vanishes as k →∞. This is due to the fact
that the region Γ0 in which the damping is concentrated does not satisfy the necessary
geometric control condition since there are rays of geometric optics that never intersect
Γ0 (see [5] and [17]). In our case the loss of uniform decay is even worse and it is due
to the hybrid structure of the system or, equivalently, to the type of boundary condition
we have imposed on Γ0 and not only to the support Γ0 of the damping term.

Moreover, as we mention in Remark 6, we can find a sequence of solutions of (1.1)
with the energy uniformly distributed in all Ω and with arbitrarily small exponential
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decay rate. This is not possible in the examples given in [5] and [17] where the energy
of the solutions with non uniform decay concentrates on rays of geometric optics.

Remark 4. The fact that the eigenvalues approach the imaginary axis is a con-
sequence not only of the localization of the dissipative region but also of the hybrid
structure of the system. In [11] we show that, in the case of a disk shaped cavity
surrounded by a circular dissipative string the same phenomenon is present although
all rays of geometric optics meet the boundary where the losses occur.

This indicates that the same behavior can be expected for different kinds of ge-
ometries or boundary conditions (see also [14]).

We can now analyze the eigenfunctions corresponding to the wave numbers λk,m
of Theorem 2.2. Remark 2 indicates that one can expect the first two components
of the eigenfunctions of (1.1) to behave like the eigenfunctions of (2.5). Therefore we
define the function:

ψk,m =


(−1)m+1i√
k2 +m2π

cos mπy cos kπx

(−1)m+1 cos mπy cos kπx

0
0

 .(2.7)

Observe that the eigenmodes of (2.5) are the first two components of ψk,m.

Theorem 2.3. The eigenfunctions ϕλ, corresponding to the eigenvalues λ = λk,m
satisfying (2.4) have the following property:

‖ ϕλ − ψk,m ‖X≤
c

m
(2.8)

where c is a constant which does not depend on m and k.

Remark 5. Theorem 2.5 indicates that the last two components of the eigenfunc-
tion ϕλ (which correspond to the string located in Γ0) vanish asymptotically when the
frequency increases. This implies that, at high frequencies (in the sense of (2.4)), the
string does not play an important role in the dynamics of the system.

Remark 6. The solutions of (1.1) corresponding to the eigenfunctions given by
Theorem 2.3 form a sequence of solutions with the energy uniformly distributed in
all Ω and with arbitrarily small exponential decay rate. This proves that the lack of
the uniform decay of our system is related not only to the support of the dissipative
mechanism but also to the nature of the boundary conditions or of the coupling between
the different components of the system.

The second range of frequencies is studied in the following theorem.

Theorem 2.4. (Eigenvalues λk,m with k π ≤ |λk,m| ≤
√

2k π, First part). For

k ∈ IN sufficiently large and m = ±1,±2, ...,±[ 3
√
k] , the eigenvalues λk,m of (1.1)

satisfy:∣∣∣∣∣∣λk,m −
√
k2 +

(
2m− 1

2

)2

π i

∣∣∣∣∣∣ ≤ 2π
3
√
k

if Imλk,m > 0, (1 ≤ m ≤ [
3
√
k]),

∣∣∣∣∣∣λk,m +

√
k2 +

(
2m+ 1

2

)2

π i

∣∣∣∣∣∣ ≤ 2π
3
√
k

if Imλk,m < 0, (−[
3
√
k] ≤ m < 0).

(2.9)
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Remark 7. Consider the following conservative wave equation:
Φtt −4Φ = 0 in Ω× (0,∞)
∂Φ
∂ν = 0 on Γ1 × (0,∞)
Φ = 0 on Γ0 × (0,∞).

(2.10)

Its eigenvalues are exactly

√
k2 +

(
2m+ 1

2

)2

π i. Theorem 2.4 shows that, when we

fix the frequency of vibration in the y-direction (m is fixed) and we consider large
frequencies in the x-direction (k large), the eigenvalues of (1.1) behave like those
of (2.10). The influence of the vibrating string on Γ0 vanishes asymptotically in this
range of eigenvalues. However, when comparing the behavior of these eigenvalues with
those of Theorem 2.2, we observe that the boundary conditions for Φ on Γ0 change.

Let us analyze the eigenfunctions corresponding to the eigenvalues studied in
Theorem 2.4. We consider first the function:

ψ̃k,m =



(−1)m+1 i√
k2 +

(
2m+ 1

2

)2

π

sin
2m+ 1

2
πy cos kπx

(−1)m+1 sin
2m+ 1

2
πy cos kπx

0
0


(2.11)

and we remark that the first two components of it correspond to eigenfunctions of
problem (2.10).

Theorem 2.5. The eigenfunctions ϕλ corresponding to the eigenvalues λ = λk,m
of Theorem 2.4 satisfy:

‖ ϕλ − ψ̃k,m ‖X≤
c
3
√
k

(2.12)

where c is a constant which does not depend on k and m.

Remark 8. Remark 5 applies in this case too.

The following theorem completes the study of the eigenvalues with real part tend-
ing to zero as the wave number increases.

Theorem 2.6. (Eigenvalues λk,m with k π ≤ |λk,m| ≤
√

2k π, Second part). For

all k ∈ IN sufficiently large the eigenvalues λk,m of (1.1) with [ 3
√
k] < |m| ≤ k satisfy

the following estimates:

∣∣∣λk,m −√π2 k2 + k2 ζ2
k,m i

∣∣∣ ≤ 1
5
√
k

if Imλk,m > 0, (k ≥ m > [
3
√
k]),∣∣∣λk,m +

√
π2 k2 + k2 ζ2

k,m i
∣∣∣ ≤ 1

5
√
k

if Im λk,m < 0, (−k ≤ m < −[
3
√
k]),

(2.13)
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where ζk,m ∈ IR+ is the positive root of the equation:

tan k ζ =
π2

k ζ3
,(2.14)

which belongs to

(
m

k
π,

2m+ 1

2k
π

)
.

Remark 9. When k remains bounded and m goes to infinity the roots ζk,m of

the equation (2.14) behave like
mπ

k
. This corresponds to the asymptotic behavior of

the eigenvalues λk,m studied in Theorem 2.2. On the other hand, when m remains

bounded and k goes to infinity, the zeros ζk,m of (2.14) behave like
(2m+ 1)π

2k
. This

agrees with the behavior of the eigenvalues λk,m studied in Theorem 2.4.
The eigenvalues λk,m of Theorem 2.6 make the transition from one zone to an-

other and still approach the imaginary axis at high frequencies.

The eigenfunctions corresponding to these eigenvalues have the same property as
those of Theorems 2.3 and 2.5, i.e. the last two components vanish asymptotically.

Theorem 2.7. The eigenfunctions ϕλ corresponding to the eigenvalues of Theo-
rem 2.6 satisfy:

lim
|λ|→∞

||ϕ3
λ||H1(Γ0)

||ϕλ||X
= 0, lim

|λ|→∞

||ϕ4
λ||L2(Γ0)

||ϕλ||X
= 0,(2.15)

where ϕ3
λ and ϕ4

λ are the third and the fourth components of ϕλ.

Until now we have obtained eigenvalues of system (1.1) approaching the imaginary
axis when their modulus tends to infinity. The following result exhibits a sequence of
eigenvalues with uniformly bounded negative real parts.

Theorem 2.8. (Eigenvalues λk with |λk| ≤ k π). The equation (2.2) has, for
sufficiently large k, two eigenvalues λ∗k and λ∗∗k with Imλ∗k > 0 and∣∣∣λ∗k −√k2(α1)2 − k2π2

∣∣∣ ≤ 1

k
and λ∗k = λ̄∗∗k ,(2.16)

where α1 is the root of

z2 − π2 + kz3 + z
√
z2 − π2 = 0(2.17)

with the following asymptotic behavior:

α1 =
3

√
π2

k
− 1

3
3

√
π

k2
i+ o

(
1

3
√
k2

)
, as k →∞.(2.18)

Therefore, λ∗k satisfies:

Re λ∗k −→ −
1

3
when k −→∞.(2.19)

Remark 10. In Theorem 2.8 we prove the existence of two eigenvalues λ∗k and
λ∗∗k with modulus less than kπ. These are, for k fixed, the eigenvalues with smallest
modulus and are the only ones uniformly dissipated by the system at large frequencies.
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The corresponding eigenfunctions λ∗k can be written as:

ϕλ∗
k

=



cosh (
√

(λ∗k)2 + k2π2(y − 1)) cos kπx√
(λ∗k)2 + k2π2 sinh (

√
(λ∗k)2 + k2π2)

−
λ∗k cosh (

√
(λ∗k)2 + k2π2(y − 1)) cos kπx√

(λ∗k)2 + k2π2 sinh (
√

(λ∗k)2 + k2π2)

− 1

λ∗k
cos kπx

cos kπx


and they have a different behavior.

Theorem 2.9. i) The sequence of eigenfunctions {ϕλ∗
k
}k converge weakly to zero

in X when k tends to infinity.
ii) The sequences {ϕjλ∗

k
}k do not converge strongly to zero for any j = 1, 2, 3, 4 in

the corresponding norms.

Remark 11. The eigenfunctions ϕλ∗
k

generate a subspace of the energy space
of infinite dimension in which, in view of (2.19), the decay rate of the energy of the
system is uniform. The energy of the solutions correponding to the eigenfunctions
of Theorem 2.9 is concentrated in the string. Indeed, the estimates of Theorem 2.9
allows us to prove that:∫ 1

0

∫ 1

ε

(
||ϕ1

λ∗
k
||2H1(Ω) + ||ϕ2

λ∗
k
||2L2(Ω)

)
dx dy ≤ Ce−2

3√
k2π2ε.

This indicates that the energy of the acoustic wave decays exponentially fast from Γ0

to the interior of the domain.

Figure 1 describes the behavior of the different families of eigenvalues for each k.

6
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3. The conservative system. In this section we analyze the spectral properties
of the conservative system corresponding to (1.1):

φtt −∆φ = 0 in Ω× (0,∞)
∂φ
∂ν = 0 on Γ1 × (0,∞)
∂φ
∂y = −Wt on Γ0 × (0,∞)

Wtt −Wxx + φt = 0 on Γ0 × (0,∞)
Wx(0, t) = Wx(1, t) = 0 for t > 0.

(3.1)

In (3.1) the dissipative term Wt of the equation of displacement of the string has
been dropped. The energy of this system is defined by (1.2) too, but in this case we

have that
dE

d t
(t) = 0. This means that (3.1) is an undamped system.

The eigenvalues of (3.1) are characterized in the following theorem:

Theorem 3.1. System (3.1) has a two-parameter sequence of purely imaginary
eigenvalues (νk,m)k∈IN,m∈ZZ∗ given by:

νk,m =
√
z2
k,m + k2π2 i if m > 0 and νk,m = −νk,−m if m < 0 ,(3.2)

where (zk,m)m∈IN∗ are the roots of the equation:

tan z =
z2 + k2π2

z3
.(3.3)

Moreover, there are another two eigenvalues of (3.1), ν∗k and ν∗∗k , with the modulus
less than k π, given by:

ν∗k =
√
k2π2 − (z∗k)2 i , ν∗∗k = ν̄∗k ,(3.4)

where z∗k is the unique positive root of the equation:

e2 z =
z3 − z2 + k2π2

z3 + z2 − k2π2
.(3.5)

In the last case, ν∗k = ν∗∗k = 0 when k = 0
Proof: In order to study the spectrum of (3.1) we look for solutions of this system

in separated variables: (φ,W ) = eνt(ψ, V ) cos (nπx) where ψ = ψ(y) and V ∈ IR. It
follows that the eigenvalues ν satisfy the following transcendental equation:

e2
√
ν2+k2π2

= −ν
2 −
√
ν2 + k2π2(ν2 + k2π2)

ν2 +
√
ν2 + k2π2(ν2 + k2π2)

.(3.6)

Considering the change of variable ν =
√
ζ2 − k2π2 equation (3.6) becomes:

e2ζ =
ζ3 − ζ2 + k2π2

ζ3 + ζ2 − k2π2
.(3.7)

Since the differential operator corresponding to (3.1) is conservative its eigenvalues
will be all purely imaginary. Hence, we have to look only for those roots of (3.7) which
are purely imaginary or real. It follows that the imaginary roots of (3.7) are the roots
of the equation (3.3) and the real ones are roots of (3.5). 2
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We analyze now the eigenfunctions. By separation of variables, it is easy to see
that the eigenfunctions have the following form:

ξν =



−i√
z2 + k2π2

cos z(y − 1) cos kπx

−cos z(y − 1) cos kπx

− z

z2 + k2π2
sin z cos kπx

z i√
z2 + k2π2

sin z cos kπx


.(3.8)

Theorem 3.2. The eigenfunctions ξν defined by (3.8) corresponding to the eigen-
values ν given by (3.3) have the following property:

lim
|ν|→∞

||ξ3
ν ||H1(0,1)

||ξν ||X
= 0, lim

|ν|→∞

||ξ4
ν ||L2(0,1)

||ξν ||X
= 0

where ξjν is the j-th component of ξν .
Proof: If ν is one of the eigenvalues of (3.1) with |ν| > k π it follows that

ζ =
√
ν2 + k2π2 is a purely imaginary number. Therefore ζ = z i where z ∈ IR is a

solution of the equation (3.3).
Taking into account that z satisfies (3.3), a simple calculation gives us that:

||ξ1
ν ||2H1 + ||ξ2

ν ||2L2 =
1

2
+

1

4(z2 + k2π2)
+

(1 + 2k2π2) sin 2z

8z(z2 + k2π2)
=

=
1

2
+

1

4(z2 + k2π2)
+

2z3(z2 + k2π2)

4(z6 + (z2 + k2π2)2)
,

||ξ3
ν ||2H1 =

z2(1 + k2π2) sin 2z

2(z2 + k2π2)2
=

z2(1 + k2π2)

2(z6 + (z2 + k2π2)2)
,

||ξ4
ν ||2L2 =

z2 sin 2z

2(z2 + k2π2)
=

z2(z2 + k2)

2(z6 + (z2 + k2π2)2)
.

We observe that if k remains bounded when |ν| → ∞ then, necessarily, |z| → ∞.
This remark allows us to conclude that

||ξ1
ν ||2H1 + ||ξ2

ν ||2L2 −→
1

2
and ||ξ3

ν ||2H1 + ||ξ4
ν ||2L2 −→ 0, when ν −→∞.

2

Remark 12. One can also see that ν∗k does not have this property, i.e.:

lim inf
|ν∗

k
|→∞

||ξ3
ν∗
k
||H1(0,1)

||ξν∗
k
||X

6= 0 and lim inf
|ν|→∞

||ξ4
ν∗
k
||L2(0,1)

||ξν∗
k
||X

6= 0.

The proof of this fact is similar to that of Theorem 2.9 below.
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4. The dissipative case. In this section we give the proofs of Theorems 2.1,
2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 and 2.9 which characterize the asymptotic behavior of
the eigenvalues and the eigenfunctions of (1.1).

We begin with the proof of Theorem 2.1.

Proof of Theorem 2.1: Suppose first that k 6= 0. It is easy to see that the
differential operator corresponding to (2.1) has compact resolvent (see [11]). There-
fore, the spectrum of (2.1) consists of a sequence of complex eigenvalues (λk,m)m∈IN ∪
(λ̄k,m)m∈IN with the property that lim

m→∞
|λk,m| =∞ and λk,m 6= 0 for all m ∈ ZZ.

If k = 0, the operator has the same properties but the first two eigenvalues λ0,0

and λ̄0,0 are equal to zero.
Moreover, since all the elements of the spectrum are eigenvalues of the operator

it follows that they are roots of equation (2.2). 2

With the change of variable

√(
λ

k

)2

+ π2 = z equation (2.2) is reduced to

e2k z = −z
2 − π2 − kz3 − z

√
z2 − π2

z2 − π2 + kz3 + z
√
z2 − π2

.(4.1)

We present now four technical lemmas which give us the information we need
about the poles of the function in the right hand side of (4.1). The proofs of these
lemmas will be presented in an appendix at the end of this paper.

Lemma 4.1. If α is a root of the equation:

z2 − π2 + kz3 + z
√
z2 − π2 = 0(4.2)

then, for k large enough, we have:

π

2 3
√
k
<| α |< 2π

3
√
k
.(4.3)

Lemma 4.2. For k large enough, the equation (4.2) has three roots αi , i = 1, 2, 3
with the property that: ∣∣∣∣∣αi − 3

√
π2

k
ωi

∣∣∣∣∣ ≤ 10
3
√
k2
,(4.4)

where ωi , i = 1, 2, 3 are the three cubic roots of unity.
Lemma 4.3. The root α1 of (4.2) satisfies:

α1 =
3

√
π2

k
− 1

3
3

√
π

k2
i+ o

(
1

3
√
k2

)
, as k →∞.(4.5)

Lemma 4.4. For k large enough, the equation

z2 − π2 − kz3 − z
√
z2 − π2 = 0(4.6)

has three roots βi , i = 1, 2, 3 with the property that:∣∣∣∣∣βi − 3

√
π2

k
ω̃i

∣∣∣∣∣ ≤ 10
3
√
k2
,(4.7)
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where ω̃i = −ωi , i = 1, 2, 3.
We can pass now to prove Theorems 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 and 2.9 . In the

first subsection we analyze the case of the eigenvalues with real parts tending to zero,
as the frequency increases (Theorems 2.2, 2.3, 2.4, 2.5, 2.6 and 2.7). In the second
subsection we prove the existence of eigenvalues with uniformly negative real parts
(Theorems 2.8 and 2.9).

4.1. Eigenvalues with real parts tending to zero.

Proof of Theorem 2.2: If we note
√
λ2 + k2π2 = µ we obtain that µ satisfies

the following equation:

e2µ = −µ
2 − k2π2 − µ(µ2 +

√
µ2 − k2π2)

µ2 − k2π2 + µ(µ2 +
√
µ2 − k2π2)

.(4.8)

We put the equation (4.8) in the form:

e2µ − 1 = − 2(µ2 − k2π2)

µ2 − k2π2 + µ(µ2 +
√
µ2 − k2π2)

(4.9)

and we localize its roots applying Rouché ’s Theorem.
In order to do this we consider the functions:

f(z) = e2z − 1 and g(z) = − 2(z2 − k2π2)

z2 − k2π2 + z(z2 +
√
z2 − k2π2)

.

We remark that the equation f(z) = 0 has the roots (αm)m∈ZZ with αm = mπ i.
For each m ∈ ZZ \ {0} we define the square γ1

m of center αm and side 2εm and
the rectangle γ2

m defined by the lines Re z = ±δm and Imz = mπ ± 3π
4 . Moreover,

we consider the square γ0 of center 0 and side 2Mk (see Fig. 2).
The constants εm, δm and Mk will be chosen in such a way that:

| f(z) |>| g(z) | for all z ∈ γ1
m ∪ γ2

m ∪ γ0.(4.10)

First of all we have that, for all z ∈ CI:

| f(z) |2=| e2z − 1 |2= (e2Re z − cos 2 Imz)2 + ( sin 2 Imz)2 ≥
≥ max {| e2Re z − 1 |, | sin 2 Imz |}.(4.11)

In order to estimate g we consider the region G1 of the complex plane defined by:

G1 = {z ∈ CI :| z |> max {k π, 4}}(4.12)

where g(z) is analytic in view of Lemma 4.2. We deduce that, for all z ∈ G1:

| g(z) |=

∣∣∣∣∣ 2(z2 − k2π2)

z2 − k2π2 + z(z2 +
√
z2 − k2π2)

∣∣∣∣∣ ≤ 2

| z |
∣∣∣ z2+

√
z2−k2π2

z2−k2π2

∣∣∣− 1
≤

≤ 2

| z | |z|
2−|
√
z2−k2π2|

|z|2+k2π2 − 1
≤ 2

| z | |z|
2−
√

2|z|
|z|2+k2π2 − 1

≤ 2
|z|
4 − 1

≤ 8

| z | −4
.(4.13)
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O

γ0

γ2
m

γ1
m

kπ + 3π
4

We are now in conditions to determine the constants εm, δm and Mk such that
(4.10) be satisfied.

If z ∈ γ1
m ∩G1 we obtain that | f(z) |> εm >| g(z) | if

16

2mπ − 9
< εm <

1

2
.

Applying Rouché’s Theorem it turns out that there exists a unique root of the
equation (4.8) in each square γ1

m if m ≥ k + 1. We denote those roots by µk,m.
If z ∈ γ2

m ∩G1 we obtain that | f(z) |> 1
2 >| g(z) | if δm > 1

2 .
Since we did not impose any upper bound for δm we can apply again Rouché’s

Theorem and we obtain that, for each m ≥ k + 1 in the regions |Imz −mπ| ≤ 3π

4
the equation (4.8) has the same number of roots as f(z) = 0 does. This implies that
the only roots of (4.8) in G1 are those we found on i).

Finally, if we choose Mk = k π + 3π
4 we obtain, like above, that, if z ∈ γ0 ∩ G1,

then | f(z) |> 1/2 >| g(z) | .
Applying Rouché’s Theorem we deduce that the number of roots of (4.8) in γ0 is

equal to 2k + 2.
In order to obtain the roots of (2.2) we return to the variable λ.
First of all we remark that if λ solves (2.2) then λ̄ is a solution too. Hence, it is

sufficient to look for those λ with Imλ > 0, the other eigenvalues being conjugates of
these. On the other hand, when we pass from µ to λ we are interested in those values
which have the property that Re λ < 0, since the energy of the system decreases as t
increases (see (1.2) and (1.3) above and [11] for a detailed discussion on this). Those
remarks indicate that we can establish a bijective correspondence between the zeros
of the equation (4.8) and those of the equation (2.2).
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Since the previous analysis gives us the roots µ of (4.8) with the property that

| µ |> max {k π, 4}, we obtain all the roots λ =
√
µ2 − k2π2 of (2.2) with the

property that | λ |>
√

2k π. For those eigenvalues λ with Imλ > 0 we have:

| λ−
√
m2 + k2 π i |=|

√
µ2 − k2π2 −

√
m2 + k2 π i |=

=
| µ−mπ i | | µ+mπ i |√

| Im
√
µ2 − k2π2 +

√
m2 + k2π |2 + | Re

√
µ2 − k2π2 |2

≤

≤ εm | µ+mπ i |
Im
√
µ2 − k2π2 +

√
m2 + k2π

≤ εm(εm + 2mπ)√
k2 +m2π

≤ 3m√
k2 +m2

εm.

It turns out that, for m > k + 1, the eigenvalues λk,m with Imλk,m > 0 satisfy
(2.4). The corresponding result for the case λk,m with Imλk,m < 0 can be obtained
in the same way. 2

Remark 13. Theorem 2.2 tells us that, for each k ∈ IN , and for each eigenvalue
(λk,m)m∈ZZ∗ with |m| ≥ k+1 the index m is given by the nearest value ±

√
k2 +m2 π i.

The other eigenvalues, which belong to the circle centered in 0 and of radius
√

2 k π,
are ordered in the increasing way with respect to the modulus: λ∗k, λ∗∗k , λk,±1, λk,±2,...,
λk,±k (see Theorems 2.4, 2.6 and 2.8). Hence, for k fixed, λ∗k and λ∗∗k are the eigen-
values with the smallest modulus, while the modulus of λk,±k approaches

√
2kπ when

m increases.

We prove now Theorem 2.3.

Proof of Theorem 2.3: From (2.4) we deduce that
√
λ2 + k2π2 = µ = mπ i+

α(m) with |α(m)| ≤ 1
m .

The eigenfunction ϕλ can be decomposed as follows:

ϕλ =



1

λ
cosh

√
λ2 + k2π2(y − 1) cos kπx

−cosh
√
λ2 + k2π2(y − 1) cos kπx

−
√
λ2 + k2π2

λ2
sinh (

√
λ2 + k2π2) cos kπx

√
λ2 + k2π2

λ
sinh (

√
λ2 + k2π2) cos kπx


=

=



(−1)m+1 i

λ
cosh α(m)(y − 1) cos mπy cos kπx

(−1)m i cosh α(m)(y − 1) cos mπy cos kπx

0

0


+
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+



(−1)m
1

λ
sinh α(m)(y − 1) sin mπy cos kπx

(−1)m+1 sinh α(m)(y − 1) sin mπy cos kπx

(−1)m+1

√
λ2 + k2π2

λ2
sinh α(m) cos kπx

(−1)m
√
λ2 + k2π2

λ
sinh α(m) cos kπx


.

We denote by ϕ1 and ϕ2 the two vector valued functions above.
We estimate first the norm of ϕ2 in X :

‖ϕ2‖2X =

∫ 1

0

∫ 1

0

{(∣∣∣∣ 1λ cos kπx

∣∣∣∣2 +

∣∣∣∣kπλ sin kπx

∣∣∣∣2
)
| sinh α(m)(y − 1) sin mπy|2 +

+

∣∣∣∣(α(m)

λ
coshα(m)(y − 1) sinmπy +

mπ

λ
sinhα(m)(y − 1) cosmπy

)
cos kπx

∣∣∣∣2
}

+

+

∫ 1

0

∫ 1

0

| sinh α(m)(y − 1) sin mπy cos kπx|2 dx dy+

+

∫ 1

0


∣∣∣∣∣
√
λ2 + k2π2

λ2
sinhα(m) cos kπx

∣∣∣∣∣
2

+

∣∣∣∣∣kπ
√
λ2 + k2π2

λ2
sinhα(m) sin kπx

∣∣∣∣∣
2
 dx+

+

∫ 1

0

∣∣∣∣∣
√
λ2 + k2π2

λ
sinh α(m) cos kπx

∣∣∣∣∣
2

dx ≤
∫ 1

0

{∣∣∣∣ 1λ sinh α(m)(y − 1)

∣∣∣∣2 +

∣∣∣∣α(m)

λ
cosh α(m)(y − 1)

∣∣∣∣2 +

(
(k2 +m2)π2

|λ|2
+ 1

)
| sinh α(m)(y − 1)|2

}
dy+

+

∣∣∣∣∣
√
λ2 + k2π2

λ2

∣∣∣∣∣
2

+

∣∣∣∣∣kπ
√
λ2 + k2π2

λ2

∣∣∣∣∣
2

+

∣∣∣∣∣
√
λ2 + k2π2

λ

∣∣∣∣∣ |2
 | sinh α(m)|2 ≤

≤ 4
| α(m) |2

|λ|2
+ 4|α(m)|2 + 5

| α(m) |2

|λ|2
+ 4

(k2 +m2)π2 | α(m) |2

|λ|2
+

+4|α(m)|2
∣∣∣∣λ2 + k2π2

λ4

∣∣∣∣2 ∣∣1 + k2π2 + λ2
∣∣2 ≤ 33|α(m)|2 ≤ c′

m2
.
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where we take into account that | sinh α(m)| ≤ 2|α(m)| and | cosh α(m)| ≤ 2.
In this way we obtain that:

‖ϕ2‖X ≤
c′

m
.(4.14)

We estimate now

‖ ϕ1 − ψk,m ‖X=

∫ 1

0

∫ 1

0

{∣∣∣∣ i√
m2 + k2π

+
1

λ
coshα(m)(y − 1)

∣∣∣∣2 | cosmπy cos kπx|2+

+

∣∣∣∣ i√
m2 + k2π

+
1

λ
cosh α(m)(y − 1)

∣∣∣∣2 |kπ cos mπy sin kπx|2+

+

∣∣∣∣ i√
m2 + k2π

+
1

λ
coshα(m)(y − 1)

∣∣∣∣2 |mπ sinmπy cos kπx|2+

+

(∣∣∣∣α(m)

λ
sinhα(m)(y − 1)

∣∣∣∣2 + |1− coshα(m)(y − 1)|2
)
|cosmπy cos kπx|2

}
dxdy ≤

≤
∫ 1

0

{∣∣∣∣ i√
m2 + k2π

+
1

λ
cosh α(m)(y − 1)

∣∣∣∣2 +

+

∣∣∣∣ i(k2 +m2)π2

√
m2 + k2π

+
(k2 +m2)π2

λ
cosh α(m)(y − 1)

∣∣∣∣2 +

+

∣∣∣∣α(m)

λ
sinh α(m)(y − 1)

∣∣∣∣2 + |1− cosh α(m)(y − 1)|2
}
dy ≤

≤
∣∣∣∣ i√
m2 + k2π

+
1

λ

∣∣∣∣2 +

∫ 1

0

∣∣∣∣ 1λ (1− cosh α(m)(y − 1))

∣∣∣∣2 dy+

+(k2+m2)π2

∣∣∣∣ i√
m2 + k2π

+
1

λ

∣∣∣∣2 +(m2+k2)π2

∫ 1

0

∣∣∣∣ 1λ (1− cosh α(m)(y − 1))

∣∣∣∣2 dy+

+

∫ 1

0

∣∣∣∣α(m)

λ
sinh α(m)(y − 1)

∣∣∣∣2 dy +

∫ 1

0

|1− cosh α(m)(y − 1)|2 dy ≤

≤ c′′

m2
+ 4|α(m)|2 + 2

c′′

m2
+ 8|α(m)|2 + 4|α(m)|2 + 4|α(m)|2 ≤ c′′′

m2

where we take into account that |1− cosh α(m)| ≤ 2 | α(m) | .
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We obtain that:

‖ ϕ1 − ψk,m ‖X≤
c′′′

m
.(4.15)

From estimates (4.14) and (4.15) we deduce that (2.8) holds. 2

Next we prove Theorem 2.4 which gives estimations for the eigenvalues λk,±1,

λk,±2, ...,λk,±q for q = q(k) ≤ [ 3
√
k]. By [ · ] we denote the integer part function.

Proof of Theorem 2.4: If we consider the change of variable λ =
√
k2z2 − k2π2

the equation (2.2) is transformed in:

e2k z = −z
2 − π2 − kz3 − z

√
z2 − π2

z2 − π2 + kz3 + z
√
z2 − π2

.(4.16)

Let k ∈ IN be sufficiently large so that Lemma 4.1 holds. We define the functions:

f(z) = e2kz + 1, g(z) =
2(kz3 + z

√
z2 − π2)

z2 − π2 + kz3 + z
√
z2 − π2

.

For each integer m with 0 ≤ |m| ≤ [ 3
√
k] let γ1

k,m be the square of center
2m− 1

2k
π i

and sides
3π

2k 3
√
k

. For all z ∈ γ1
k,m, we have

| f(z) |=| e2kz + 1 |≥ max {| e2kRe z − 1 |, | sin 2k Imz |}

and since |ex − 1| > |x|
2

and | sin x| > |x|
2

, for small x, we deduce that:

| f(z) |≥ 3π

4 3
√
k
, ∀z ∈ γk,m.(4.17)

We now estimate g in the region G2 =

{
z ∈ CI :| z |≤ π

3
√
k2

}
.

Lemma 4.1 implies that g is analytic in G2.
For all z ∈ G2 we have |z| 3

√
k ≤ π. Therefore we obtain that

lim
k→∞

kz2 = lim
k→∞

z2 = lim
k→∞

kz3 = 0.

Hence, for all z ∈ G2,

lim
k→∞

∣∣∣∣∣ kz2 +
√
z2 − π2

z2 − π2 + kz3 + z
√
z2 − π2

∣∣∣∣∣ =
1

π
,

which implies that, for k sufficiently large:∣∣∣∣∣ kz2 −
√
z2 − π2

z2 − π2 + kz3 − z
√
z2 − π2

∣∣∣∣∣ ≤ 1, ∀z ∈ G2.

This result allows us to estimate the function g in G2:

| g(z) |= 2 | z |

∣∣∣∣∣ kz2 +
√
z2 − π2

z2 − π2 + kz3 + z
√
z2 − π2

∣∣∣∣∣ ≤ 2|z| ≤ 2π
3
√
k2
.
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Finally, we obtain that |f(z)| > |g(z)| for all z ∈ γ1
k,m if k is sufficiently large and

γ1
k,m ⊂ G2. Remark that γ1

k,m ⊂ G2 if |m| ≤ [ 3
√
k].

Applying Rouché’s Theorem we deduce that the equation (4.16) has a root zk,m
in each square γ1

k,m if |m| ≤ [ 3
√
k]. This root satisfies:

| zk,m+1 −
1

2k
(2m+ 1)π i |≤ 3

√
2π

4k 3
√
k
≤ 2π

k 3
√
k

if m ≥ 0,

| zk,m +
1

2k
(2m+ 1)π i |≤ 3

√
2π

4k 3
√
k
≤ 2π

k 3
√
k

if m < 0.

We deduce that the eigenvalues λk,m =
√
k2z2

k,m − k2π2 with 0 < |m| ≤ [
3
√
k]

satisfy (2.9). 2

Proof of Theorem 2.5: Estimates (2.9) imply that√
λ2 + k2π2 = µ =

2m+ 1

2
π i+ α(k) with |α(k)| ≤ 2π

3
√
k
.

We write the eigenfunction ϕλ in the following form:

ϕλ =



1

λ
cosh (

√
λ2 + k2π2(y − 1)) cos kπx

−cosh (
√
λ2 + k2π2(y − 1)) cos kπx

−
√
λ2 + k2π2

λ2
sinh (

√
λ2 + k2π2) cos kπx

√
λ2 + k2π2

λ
sinh (

√
λ2 + k2π2) cos kπx


=

=



(−1)m
1

λ
cosh α(k)(y − 1) sin

2m+ 1

2
πy cos kπx

(−1)m+1cosh α(k)(y − 1) sin
2m+ 1

2
πy cos kπx

0

0


+

+



(−1)m+1 i

λ
sinh α(k)(y − 1) cos

2m+ 1

2
πy cos kπx

(−1)mi sinh α(k)(y − 1) cos
2m+ 1

2
πy cos kπx

(−1)m+1i

√
λ2 + k2π2

λ2
cosh α(k) cos kπx

(−1)mi

√
λ2 + k2π2

λ
cosh α(k) cos kπx


.
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Let ϕ1 and ϕ2 be the vector valued functions appearing in the decomposition of
ϕλ above.

We evaluate first the norm of ϕ2 in X :

‖ϕ2‖2X =

∫ 1

0

∫ 1

0

∣∣∣∣ 1λ cos kπx

∣∣∣∣2 sinh α(k)(y − 1) cos
2m+ 1

2
πy+

+

∫ 1

0

∫ 1

0

{∣∣∣∣kπλ sinh α(k)(y − 1) cos
2m+ 1

2
πy sin kπx

∣∣∣∣2 +

+

∣∣∣∣α(k)

λ
cosh α(k)(y − 1) cos

2m+ 1

2
πy cos kπx +

(2m+ 1)π

2λ
sinh α(k)(y − 1)×

× sin
2m+ 1

2
πy cos kπx

∣∣∣∣2
}

+

∫ 1

0

∫ 1

0

∣∣∣∣ sinh α(k)(y − 1) cos
2m+ 1

2
πy cos kπx

∣∣∣∣2 +

+

∫ 1

0


∣∣∣∣∣
√
λ2 + k2π2

λ2
coshα(k) cos kπx

∣∣∣∣∣
2

+

∣∣∣∣∣kπ
√
λ2 + k2π2

λ2
coshα(k) sin kπx

∣∣∣∣∣
2
+

+

∫ 1

0

∣∣∣∣∣
√
λ2 + k2π2

λ
cosh α(k) cos kπx

∣∣∣∣∣
2

≤
∫ 1

0

{∣∣∣∣ 1λ sinh α(k)(y − 1)

∣∣∣∣2 +

+

∣∣∣∣α(k)

λ
coshα(k)(y − 1)

∣∣∣∣2 +

((
k2 +

(
2m+ 1

2

)2
)

π2

|λ|2
+ 1

)
|sinhα(k)(y − 1)|2

}
+

+

∣∣∣∣∣
√
λ2 + k2π2

λ2
coshα(k)

∣∣∣∣∣
2

+

∣∣∣∣∣kπ
√
λ2 + k2π2

λ2
coshα(k)

∣∣∣∣∣
2

+

∣∣∣∣∣
√
λ2 + k2π2

λ
coshα(k)

∣∣∣∣∣
2

≤

≤ 4
|α(k)|2

|λ|2
+ 5
|α(k)|2

|λ|2
+

(
k2 +

(
2m+ 1

2

)2
)
|α(k)|2π2

|λ|2
+ 4|α(k)|2+

5(k2π2 + 1)

∣∣∣∣∣
√
λ2 + k2π2

λ2

∣∣∣∣∣
2

+ 5

∣∣∣∣∣
√
λ2 + k2π2

λ

∣∣∣∣∣
2

≤ 14|α(k)|2 + 60|α(k)|2 ≤ c′

3
√
k
,

where we take into account that, for k large enough,∣∣∣∣∣
√
λ2 + k2π2

λ

∣∣∣∣∣ ≤ 2|α(k)|, | sinh α(k)| ≤ 2|α(k)| and | cosh α(k)| ≤ 5.
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We obtain that:

‖ϕ2‖X ≤
c′

3
√
k
.(4.18)

We compute now:

‖ ϕ1 − ψ̃k,m ‖2X=

∫ 1

0

∫ 1

0

∣∣∣∣∣∣ i√(
2m+1

2

)2
+ k2π

+
1

λ
cosh α(k)(y − 1)

∣∣∣∣∣∣
2 ∣∣∣∣ sin

2m+ 1

2
πy cos kπx

∣∣∣∣2 +

∫ 1

0

∫ 1

0


∣∣∣∣∣∣ i√(

2m+1
2

)2
+ k2π

+
1

λ
cosh α(k)(y − 1)

∣∣∣∣∣∣
2

|kπ sin
2m+ 1

2
πy sin kπx|2 +

+

∣∣∣∣∣α(k)

λ
sinh α(k)(y − 1) sin

2m+ 1

2
πy cos kπx

∣∣∣∣2 +

+

∣∣∣∣∣∣
 i√(

2m+1
2

)2
+ k2π

+
1

λ
coshα(k)(y − 1)

 2m+ 1

2
π cos

2m+ 1

2
πy cos kπx

∣∣∣∣∣∣
2

+

+

∣∣∣∣(1− cosh α(k)(y − 1)) sin
2m+ 1

2
πy cos kπx

∣∣∣∣2
}
dxdy ≤

≤
∫ 1

0

((
(2m+ 1)π

2

)2

+ k2π2 + 1

)∣∣∣∣∣∣ i√(
2m+1

2

)2
+ k2π

+
1

λ
cosh α(k)(y − 1)

∣∣∣∣∣∣
2

+

+

∫ 1

0

∣∣∣∣α(m)

λ
sinh α(m)(y − 1)

∣∣∣∣2 + |1− cosh α(k)(y − 1)|2 ≤

≤

((
(2m+ 1)π

2

)2

+ k2π2 + 1

)∣∣∣∣∣∣∣∣
i√(

(2m+1)
2

)2

+ k2π

+
1

λ

∣∣∣∣∣∣∣∣
2

+

+

((
2m+ 1

2

)2

π2 + k2π2 + 1

)∫ 1

0

∣∣∣∣ 1λ (1− cosh α(k)(y − 1))

∣∣∣∣2 +
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+

∫ 1

0

∣∣∣∣α(k)

λ
sinh α(k)(y − 1)

∣∣∣∣2 +

∫ 1

0

|1− cosh α(m)(y − 1)|2 ≤

≤ 2π
3
√
k

+ 4|α(k)|2 + 2
2π
3
√
k

+ 8|α(m)|2 + 4|α(k)|2 + 4|α(k)|2 ≤ c′′

3
√
k

since, for k large enough (k > (2π)3), |1− cosh α(k)| ≤ 2 | α(k) | .
We obtain that:

‖ ϕ1 − ψ̃k,m ‖X≤
c′′′

3
√
k
.(4.19)

The estimates (4.18) and (4.19) imply that (2.12) holds. 2

We pass now to the analysis of the roots of (2.2) λk,±(q+1), λk,±(q+2), ..., λk,±k,

with q = [ 3
√
k], which make the transition from the eigenvalues studied in Theorem

2.2 to those studied in Theorem 2.4. First we prove the following Lemma:
Lemma 4.5. For each k ∈ IN∗, the equation

e2k z =
π2 + kz3

−π2 + kz3
(4.20)

has a sequence of roots ±ζk,m i, m ∈ IN∗, where ζk,m ∈ IR+ is the positive root of the

equation (2.14) which belongs to

(
m

k
π,

2m+ 1

2k
π

)
.

Proof: We look for roots of (4.20) of the form z = ζ i. Hence, ζ is a root of the
equation:

e2k ζ i =
π2 − k ζ3 i

−π2 − k ζ3 i
.(4.21)

Consequently, z is a root of (4.20) if ζ satisfies:

−π2 cos kζ + kζ3 sin kζ = 0(4.22)

which is equivalent to (2.14).

It is easy to see that (4.22) has a zero in each interval

(
m

k
π,

2m+ 1

2k
π

)
that we

denote by ζk,m. 2

We pass now to study the eigenvalues λk,±([
3√
k]+1), λk,±([

3√
k]+2), ..., λk,±k.

Proof of Theorem 2.6: We saw that the change of variables λ =
√
k2z2 − k2π2

transforms (2.2) in (4.16).
We define the region of the complex plane

G3 =

{
z ∈ CI :

π

2
3
√
k2
≤ |z| ≤ 2π, |Re z| ≤ 1

k
, Imz > 0

}
and we prove that (4.16) has a set of zeros zk,m in G3 satisfying the estimate

|zk,m − ζk,m i| ≤
1

k 5
√
k
, m ∈ {[ 3

√
k] + 1, ..., k},(4.23)
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where ζk,m are the zeros of (2.14).

We remark that, if m ∈ {[ 3
√
k] + 1, ..., k}, then ζk,m belongs to G3.

We write (4.16) in the following form:

e2k z − π2 + kz3

−π2 + kz3
= − 2z(kz4 + π2

√
z2 − π2)

(−π2 + kz3)(z2 − π2 + kz3 + z
√
z2 − π2)

,

and applying Rouché’s Theorem we prove that the zeros of (4.16) approach to those
of (4.20).

We consider first the function:

g(z) = − 2z(kz4 + π2
√
z2 − π2)

(−π2 + kz3)(z2 − π2 + kz3 + z
√
z2 − π2)

and we obtain an upper bound for g in G3.
To do this we evaluate first the denominator of g:

|2z(kz4 + π2
√
z2 − π2)| ≤ 2k|z|5 + 2π2|z|2 + 4π3|z|.

We obtain that:

|2z(kz4 + π2
√
z2 − π2)| ≤


6k|z|5, if

π

2
3
√
k2
≤ |z| ≤ π

4
√
k
,

6π3|z|, if
π
4
√
k
≤ |z| ≤ 2π

We estimate now the numerator of g:

|(−π2 + kz3)(z2 − π2 + kz3 + z
√
z2 − π2)| ≥

≥ | − π2 + kz3| (| − π2 + kz3| − |z|(|z|+
√
|z|2 + π2)) ≥

≥ | − π2 + kz3|2 − 5π|z| | − π2 + kz3|.

If
π

2
3
√
k2
≤ |z| ≤ π

4
√
k

and |Re z| ≤ 1
k we have that, for k sufficiently large:

| − π2 + kz3| ≥ Re (−π2 + kz3) ≥ π

2
.

If
π
4
√
k
≤ |z| ≤ 2π we have that:

| − π2 + kz3| (| − π2 + kz3| − |z|(|z|+
√
|z|2 + π2)) ≥

√
kk|z|4(

√
k|z|2 − 2π√

k
).

From the last two inequalities, we deduce that, for k sufficiently large, the follow-
ing estimate holds:

|(−π2 + kz3)(z2 − π2 + kz3 + z
√
z2 − π2)| ≥


c1, if

π

2
3
√
k2
≤ |z| ≤ π

4
√
k
,

c2
√
k k |z|4, if

π
4
√
k
≤ |z| ≤ 2π
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where c1 and c2 are two positive constants which do not depend on k.
Going back to the function g we obtain that, for k sufficiently large,

|g(z)| ≤ c
4
√
k
, for all z in G3,

where c is a positive constant which does not depend on k.
We study now the function:

f(z) = e2k z − π2 + kz3

−π2 + kz3
.

For each m ∈ IN∗ we consider the circle γ2
k,m of center ζk,m i and radius rk,m =

1

k 5
√
k

and the circle γ̂2
k,m with the same center but with radius Rk,m =

1

k
.

In G3 the function f is analytic. Applying Taylor’s formula at ζk,m i we obtain
that:

f(z) = f(ζk,m i) + (z − ζk,m i)f ′(ζk,m i)

+
(z − ζk,m i)2

2π i

∫
γ̂2
k,m

f(ζ) dζ

(ζ − ζk,m i)2(ζ − z)
.

(4.24)

We look for an upper bound for the error term on the circumference γ2
k,m. We

have∣∣∣∣∣ (z − ζk,m i)2

2π i

∫
γ̂2
k,m

f(ζ) dζ

(ζ − ζk,m i)2(ζ − z)

∣∣∣∣∣ ≤ r2
k,m

2π

2πRk,mM

R2
k,m(Rk,m − rk,m)

=
M

5
√
k( 5
√
k − 1)

where M is an upper bound for f on the circumference γ̂2
k,m.

On the other hand

|f(z)| =
∣∣∣∣e2k z − π2 + kz3

−π2 + kz3

∣∣∣∣ ≤ |e2k z|+
∣∣∣∣ π2 + kz3

−π2 + kz3

∣∣∣∣ ≤ e2k |Re z| + 1 +
2π2

|π2 − k z3|
.

Since |Re z| < 1

k
in G3, we obtain that |π2 − k z3| > 1 and |f(z)| < M =

e2 + 1 + 2π2. Therefore the error term in Taylor’s formula on γ2
k,m satisfies:∣∣∣∣∣ (z − ζk,m i)2

2π i

∫
γ̂2
k,m

f(ζ) dζ

(ζ − ζk,m i)2(ζ − z)

∣∣∣∣∣ ≤ M
5
√
k( 5
√
k − 1)

.

On the other hand,

|(z − ζk,m i)f ′(ζk,m i)| = rk,m

∣∣∣∣∣2k π2 − kζ3
k,m i

−π2 − k ζ3
k,m i

−
6π2kζ2

k,m

(−π2 − k ζ3
k,m i)

2

∣∣∣∣∣ ≥ 2krk,m.

Going back to Taylor’s formula (4.24), we deduce that, if z belongs to the cir-
cumference γ2

k,m, then:

|f(z)| ≥ |(z − ζk,m i)f ′(ζk,m i)| −

∣∣∣∣∣ (z − ζk,m i)2

2π i

∫
γ̂2
k,m

f(ζ) dζ

(ζ − ζk,m i)2(ζ − z)

∣∣∣∣∣ ≥
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≥ 2krk,m −
20

5
√
k( 5
√
k − 1)

≥ C
5
√
k
.

Finally, we obtain that |f(z)| > |g(z)| for all z in γ2
k,m.

Applying Rouché’s Theorem we deduce that the equation (4.16) has a unique zero
zk,m which satisfies (4.23) in each circle γ2

k,m.

Taking into account that λ =
√
k2π2 + k2z2 we deduce immediately the desired

result. 2

Proof of Theorem 2.7: The eigenvalues λk,m studied in Theorem 2.6 approach

to
√
π2 k2 + k2 ζ2

k,m i, where ζk,m are the roots of the equation:

tan k ζ =
π2

k ζ3
.(4.25)

By a similar method one can prove that λk,m satisfy the estimates∣∣∣λk,m −√π2 k2 + k2 %2
k,m i

∣∣∣ ≤ 1
5
√
k

if Imλk,m > 0, (k ≥ m > [
3
√
k]),∣∣∣λk,m +

√
π2 k2 + k2 %2

k,m i
∣∣∣ ≤ 1

5
√
k

if Imλk,m < 0, (−k ≤ m < −[
3
√
k]),

(4.26)

where %k,m is the root of the equation:

tan k % =
π2 + %2

k%3
(4.27)

which belongs to the interval

(
m

k
π,

2m+ 1

2k
π

)
.

Taking into account the estimates of Theorem 3.1 for the eigenvalues νk,m of the
conservative problem, we deduce that, for the eigenvalues λk,m studied in Theorem
2.6, we have:

|λk,m − νk,m| ≤
1
5
√
k

for [
3
√
k] < |m| ≤ k.(4.28)

Since the eigenfunctions ϕλk,m
and ξνk,m

have the same form, we deduce that:

||ϕλk,m
− ξνk,m

||X ≤
1
5
√
k
.

The properties of the eigenfunctions ϕλk,m
are obtained from the corresponding

properties of ξνk,m
(see Theorem 3.2). 2

4.2. Eigenvalues with uniform negative real parts. The eigenvalues ob-
tained in Theorems 2.2, 2.4 y 2.6 have in common the fact that their real parts tend
to zero when the modulus increases. On the other hand, the last two components of
the corresponding eigenfunctions vanish asymptotically.

Next we prove that there exists a sequence of eigenvalues (λ∗k)k of modulus less
than kπ with completely different properties.

Proof of Theorem 2.8: We consider again equation (4.16) and we look for the
roots with real part going to infinity.
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In the circle δ1 of center
3

√
π2

k
and radius

10
3
√
k2

the function h(z) = z2 − π2 −

kz3 − z
√
z2 − π2 does not vanish (the three roots of this function are

3

√
π2

k
ω̃i, where

ω̃i are the cubic roots of −1 as we saw in Lemma 4.3).
We write the equation (4.16) in the form:

e−2k z = −z
2 − π2 + kz3 + z

√
z2 − π2

z2 − π2 − kz3 − z
√
z2 − π2

.(4.29)

If z belongs to the circle δ1 we have that Re z > π

2 3
√
k

and hence:

∣∣e−2kz
∣∣ = e−2kRe z ≤ e

−2k
π

2 3
√
k = e−π

3√
k2 .

We consider now the circle C′ centered in α1 and of radius
1

k2
(see Fig. 3).

6

-

@
@
@R

3

√
π2

k

@
@I

α1

C′
p q&%

'$
i

Fig. 3

O

δ1

Since the circle C′ is contained in δ1 we have that:

∣∣e−2kz
∣∣ =≤ e

−2k
π

2 3
√
k = e−π

3√
k2 , ∀z ∈ C′.(4.30)

In C′ the function u(z) = z2−π2 +kz3 +z
√
z2 − π2 is analytic and it has a unique

zero α1.
Since

|u′(α1)| ≥ |3kα2
1| −

(∣∣∣∣√α2
1 − π2

∣∣∣∣+ |α1|

∣∣∣∣∣2 +
α1√
α2

1 − π2

∣∣∣∣∣
)
>

> 3k
π2

4
3
√
k2
−

(
|α1|+ π + |α1|

∣∣∣∣∣2 +
α1√
α2

1 − π2

∣∣∣∣∣
)
>

4
√
k,
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for k sufficiently large, applying Taylor’s Theorem we obtain

|u(z)− u′(α1)(z − α1)| ≤ a|z − α1|2

where a is a constant depending on k.
Nevertheless, we have that |a| ≤ sup {|u′′(z)| : z ∈ C′ } < k.
We obtain that, if z belongs to the circumference of C′,

|u(z)| ≥ |u′(α1)||z − α1| − a|z − α1|2 >
1

k2
.

Hence:∣∣∣∣∣−z2 − π2 + kz3 + z
√
z2 − π2

z2 − π2 − kz3 − z
√
z2 − π2

∣∣∣∣∣ ≥ |u(z)|
| kz3 + π2 | +|z||z −

√
z2 − π2|

≥ 1

k3
.

Thus, for k sufficiently large and z on the circumference of C′, we have:

∣∣e−2k z
∣∣ < ∣∣∣∣∣z2 − π2 + kz3 + z

√
z2 − π2

z2 − π2 − kz3 − z
√
z2 − π2

∣∣∣∣∣ .
Applying Rouché’s Theorem we deduce that the equation (4.29) has a unique root

z∗k in C′. Remark that, if z∗k is a root of (4.29), then z∗∗k = z̄∗k, −z∗k and −z∗∗k are roots
of this equation too.

Since z∗k ∈ C′ it follows that z∗k = α1 +O
(

1

k2

)
. Hence, Lemma 4.3 ensures that:

z∗k =
3

√
π2

k
− 1

3
3

√
π

k2
i+ o

(
1

3
√
k2

)
.(4.31)

We go back to the equation (2.2) and we obtain two roots λ∗k and λ∗∗k setting
λ∗k =

√
k2(z∗k)2 − k2π2 and λ∗∗k =

√
k2(z∗∗k )2 − k2π2.

We have:∣∣∣λ∗k −√k2(α1)2 − k2π2
∣∣∣ =

∣∣(λ∗k)2 − (k2(α1)2 − k2π2)
∣∣∣∣∣λ∗k +

√
k2(α1)2 − k2π2

∣∣∣ =

∣∣k2(z∗k)2 − k2(α1)2)
∣∣∣∣∣λ∗k +

√
k2(α1)2 − k2π2

∣∣∣ =

=
k2 |(z∗k − α1)(z∗k + α1)|∣∣∣λ∗k +

√
k2(α1)2 − k2π2

∣∣∣ ≤ |z∗k + α1|

k
∣∣∣√(z∗k)2 − π2 +

√
(α1)2 − π2

∣∣∣ ≤ 1

|k|
.

A similar result is obtained for λ∗∗k .
We now prove (2.19). Remark first that if ζ =

√
a+ b i, a, b ∈ IR then (Re ζ)2 =

1
2 (a+

√
a2 + b2). We deduce that:

(Re λ∗k)2 =
1

2

(
−k2π2 + k2((Re z∗k)2 − (Imz∗k)2)+

+

√
(−k2π2 + k2((Re z∗k)2 − (Imz∗k)2))

2
+ (2k2Re z∗k Imz∗k)

2

)
.

(4.32)

Since z∗k satisfies (4.31) we deduce from the relation (4.32) that:

(Re λ∗k)2 =
1

2

(
−k2π2 + k2((Re z∗k)2 − (Imz∗k)2)+



28 S. MICU AND E. ZUAZUA

+

√
(−k2π2 + k2((Re z∗k)2 − (Imz∗k)2))

2
+ (2k2Re z∗k Imz∗k)

2

)
=

= 2k4(Re z∗k Imz∗k)2

[
k2π2 − k2((Re z∗k)2 − (Imz∗k)2)+

+

√
(−k2π2 + k2((Re z∗k)2 − (Imz∗k)2))

2
+ (2k2Re z∗k Imz∗k)

2

]−1

.

Finally, taking into account the asymptotic expression for z∗k, (4.31), we obtain
that (2.19) holds. 2

Proof of Theorem 2.9: i) The weak convergence of {ϕλ∗
k
}k is a direct conse-

quence of the equation they satisfy.
ii) We prove first that {ϕ3

λ∗
k
}k does not tend strongly to zero in H1(0, 1). We

have:

||ϕ3
λ∗
k
||H1(0,1) =

1

|λ∗k|2

(∫ 1

0

| cos kπx|2 +

∫ 1

0

|kπ sin kπx|2
)

=
1 + k2π2

2|λ∗k|2
.

Since (λ∗k)2 = −k2π2 + k2α1 + O(k) = −k2π2 + O(k) we obtain that ϕ3
λ∗
k

does

not tend to zero in H1(0, 1). Evidently, ϕ4
λ∗
k

does not tend to zero in L2(0, 1).

We pass now to the study of ϕ1
λ∗
k
. We evaluate first the expression:

|ak|2 =

∣∣∣∣∣ 1√
(λ∗k)2 + k2π2 sinh (

√
(λ∗k)2 + k2π2)

∣∣∣∣∣
2

=

=
1

|(λ∗k)2 + k2π2|
(
| sinh Re

√
(λ∗k)2 + k2π2|2 + | sin Im

√
(λ∗k)2 + k2π2|2

) .
Now,

|| cosh (
√

(λ∗k)2 + k2π2(y − 1)) cos kπx||2H1(Ω) =

=
1

2

∫ 1

0

(
| cosh (

√
(λ∗k)2 + k2π2(y − 1))|2 + k2π2| cosh (

√
(λ∗k)2 + k2π2(y − 1))|2+

+ ((λ∗k)2 + k2π2)| sinh (
√

(λ∗k)2 + k2π2(y − 1))|2
)

=

=
1

4

∫ 1

0

(
(−|(λ∗k)2 + k2π2|+ k2π2 + 1) cos (Im

√
(λ∗k)2 + k2π2(y − 1))+

+(|(λ∗k)2 + k2π2|+ k2π2 + 1) sinh (2Re
√

(λ∗k)2 + k2π2(y − 1))

)
=
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(−|(λ∗k)2 + k2π2|+ k2π2 + 1) sin 2Im
√

(λ∗k)2 + k2π2

8Im
√

(λ∗k)2 + k2π2
+

+
(|(λ∗k)2 + k2π2|+ k2π2 + 1) sinh 2Re

√
(λ∗k)2 + k2π2

8Re
√

(λ∗k)2 + k2π2
.

Taking into account that
√

(λ∗k)2 + k2π2 = kz∗k =
3
√
k2π2 − 1

3
3
√
kπ i + o( 3

√
k) we

obtain that

||ϕ1
λ∗
k
||2H1(Ω) −→

3
√
π2

4
.

Similarly it turns out that ||ϕ2
λ∗
k
||L2(Ω) does not tend to zero. 2

5. A non compactness result. The following result is a direct application
of the existence of a sequence of eigenvalues with modulus tending to infinity and
uniformly negative real parts.

It is well known that, in the context of one-dimensional hybrid systems, the
dissipative term is often a compact perturbation of the differential operator associated
to the corresponding conservative system. This argument was used to prove that the
decay rate of the energy of those systems is not uniform (see [18]). Nevertheless, in
our case, this kind of arguments can not be used since the dissipative term (0, 0, 0,Wt)
is, at least apparently, a bounded but not compact perturbation of the conservative
operator. It is natural to study whether this term produces a compact perturbation
of the underlying conservative system.

A way to do this consists in analyzing whether the difference between the semi-
group generated by the conservative operator and the semigroup generated by the
dissipative one is compact or not. The existence of the sequence (λ∗k)k of eigenvalues
implies that the answer is negative.

Theorem 5.1. Let {SD(t)}t≥0 be the semigroup generated by the dissipative
operator and let {SC(t)}t≥0 be the semigroup generated by the conservative system.
Then, for all t > 0, the difference (SD − SC)(t) is not a compact operator in X .

Proof: Suppose that there exists t0 > 0 such that (SD−SC)(t0) is compact. The-
orem 2.9 implies that there exists a sequence of eigenfunctions {ϕλ∗

k
}k, corresponding

to the eigenvalues λ∗k, which converges weakly to zero in X . So:

||(SC(t0)− SD(t0))ϕλ∗
k
||X −→ 0 when k −→∞.

Since ϕλ∗
k

is an eigenfunction of the dissipative problem we have that:

SD(t0)ϕλ∗
k

= eλ
∗
k t0ϕλ∗

k
.

Hence,

||SC(t0)ϕλ∗
k
− eλ

∗
k t0ϕλ∗

k
||X −→ 0 when k −→∞.(5.1)

Since the conservative operator generates a group of isometries we get that

||SC(t0)ϕλ∗
k
||X = ||ϕλ∗

k
||X ,
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and therefore

||ϕλ∗
k
||X = ||SC(t0)ϕλ∗

k
||X ≤ ||SC(t0)ϕλ∗

k
− eλ

∗
k t0ϕλ∗

k
||X +

∣∣∣eλ∗
k t0
∣∣∣ ||ϕλ∗

k
||X .(5.2)

In view of Theorem 2.8 we have that the sequence (λ∗k)k has the property that

Re λ∗k → −
1

3
, when k → ∞ and hence, there exists k1 ∈ IN such that Re λ∗k < −

1

4
for all k > k1.

We deduce that, for all t > 0, there exists a constant ε, depending on t but
independent of k, such that: ∣∣∣eλ∗

k t
∣∣∣ = eRe λ

∗
k t < 1− ε.

Let us take t = t0 in the last equality. Going back to (5.2), we obtain:

ε||ϕλ∗
k
||X ≤ ||SC(t0)ϕλ∗

k
− eλ

∗
k t0ϕλ∗

k
||X .(5.3)

Remark that (5.1) and (5.3) imply that ||ϕλ∗
k
||X goes to zero when k → ∞ and

this is a contradiction with the result of Theorem 2.9.
Finally, we obtain that (SD − SC)(t) is not a compact operator fot any t > 0.

2

Remark 14. In order to compare the noncompactness result of Theorem 5.1 for
our 2-d case with analoguous 1-d models we consider the following problem (see [18]): utt − uxx = 0, x ∈ (0, 1), t > 0,

u(t, 0) = 0, t > 0,
utt(t, 1) + ut(t, 1) = −ux(t, 1), t > 0.

(5.4)

This is a “string-mass” model since it couples the vibrations of a string with a
rigid body at the end x = 1 (see [9] and [18]).

The natural energy space corresponding to (5.4) is

Z = V × L2(0, 1)× IR,

where V =
{
v ∈ H1(0, 1) : v(0) = 0

}
.

Observe that, if we define the energy of a solution u of (5.4) by

E(t) =
1

2

∫ 1

0

(
|ut|2 + |ux|2

)
dx +

1

2
|ut(t, 1)|2,(5.5)

we obtain that

dE

dt
(t) = −(ut(t, 1))2 ≤ 0.(5.6)

Therefore we are dealing with a dissipative hybrid system, ut(t, 1), in the last
relation of (5.4), being the damping term.

Let us now consider the vector valued unknown U = (u, ut, u(· , 1)) and write
equation (5.4) in the following abstract form:{

Ut +AD(U) = 0, t > 0,
U(0) = U0.

(5.7)
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The operator AD in (5.7) is an unbounded operator in Z defined by

D := D(AD) = {U ∈ Z : AD(U) ∈ Z} =
=
{
U = (u, v, p) ∈ H2(0, 1) ∩ V × V × IR : u(1) = p

}
,

AD(u, v, p) = (−v,−uxx, v(1) + ux(1)).

It is easy to show that (D, AD) is a maximal monotone operator in Z.
Let us now consider the projection operator

B : Z → Z, B(u, v, p) = (0, 0, p).

Observe that B is a compact operator in Z and AC = AD−B is the conservative
operator corresponding to (5.4).

Let {TD(t)}t≥0 be the strongly continuous semigroup generated by the dissipative
operator AD and let {TC(t)}t≥0 be the strongly continuous semigroup generated by the
conservative operator AC .

For (5.4) all the eigenvalues of the operator AD approach the imaginary axis when
the frequency increases. This is one of the consequences of the fact that AD is obtained
from AC by a compact perturbation B. In the case of our system (1.1) this is not the
case; the perturbation term is only bounded in the energy space. This is one of the
major differences between one and two-dimensional hybrid systems.

Moreover, since B is a compact operator, it can be shown that, for all t ≥ 0, the
difference (TD − TC)(t) is a compact operator in Z.

6. Comments. Our results indicate that the interaction between the fluid and
structure in this type of models is very weak at high frequencies. As a consequence of
this, if we try to change the dynamics of the system acting only on the string located
on Γ0, we have to impose very restrictive conditions on the data of the system. This
explains the results obtained in the context of the controllability of these systems and
concerning the existence of periodic solutions (see [12] and [13]).

The weak interaction of the string and the fluid is a consequence of both the
hybrid structure of the system and of the localization of the string in a relatively
small part of the boundary of Ω.

In [11] we analyze a slightly different model in which the domain Ω is a ball of
IR2 and the dissipation acts on the whole boundary. We prove that the energy does
not decay uniformly. This clearly shows that the very weak interaction between fluid
and structure at high frecuencies is due to the hybrid structure of the system.

From our study the property of completeness of the eigenfuncions of the differ-
ential operator associated to (1.1) is easy to prove. The question of whether these
eigenfunctions form a Riesz basis is open (for the notions of completness and Riesz
basis see [6]). For the one-dimensional systems, obtained by separation of variables
fixing the number of oscillations in the x-variable, we can prove that the eigenfunc-
tions do form a Riesz basis. However our estimates are not enough to give an answer
to this question in the context of the two-dimensional problem.

We also remark that we have been able to obtain very precise informations about
the eigenvalues because we had the explicit equation they satisfy. We got this equation
by separation of variables, which was possible since we considered Neumann boundary
conditions for the string. The analysis in the case of Dirichlet boundary conditions
for the string is much more difficult. Partial results, like the non uniform decay of the
energy of the system, were obtained in [11] (see also [14]).
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The analysis of the rate of decay of low frequencies is a relevant problem for
applications. Obviously, the techniques developed in this paper do not allow to answer
to this question. This problem requires different approaches.

Acknowledgments: The first author wishes to thank all organizers of the Project
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7. Appendix. We present here the proofs of Lemmas 4.1, 4.2, 4.3 and 4.4.

Proof of Lemma 4.1: If α is a root of (4.2), then:

| k || α |3=| α2 − π2 + α
√
α2 − π2 |≤ 2 | α |2 +π | α | +π2 ≤ max {4 | α |2, 4π2}.

We obtain that:

| α |≤ max {4

k
,

3

√
4π2

k
} < 2π

3
√
k

for all k ≥ 1.(7.1)
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On the other hand we have:

| k || α |3=| α2 − π2 + α
√
α2 − π2 |= π2 | α2 − π2 |

| α2 − π2 − α
√
α2 − π2 |

≥

≥ π2 | α2 − π2 |
| α |2 +π2+ | α |

√
| α |2 +π2

|≥ π2(π2− | α |2)

| α |2 +π2+ | α | (| α | +π)
.

In view of (7.1) we obtain that, if k > 8π3, then:

k | α |3> π2(π2 − 1)

2 + π2 + π
>
π3

8
.

2

Proof of Lemma 4.2: We study the relation between the roots of (4.2) and
those of the equation:

kz3 − π2 = 0.(7.2)

The last equation has three roots ai =
3

√
π2

k
ωi , i = 1, 2, 3, where ωi are the three

cubic roots of unity.
We consider the functions u(z) = kz3 − π2 and v(z) = z

√
z2 − π2 + z2 defined in

the circle δ0 of center 0 and radius
2π
3
√
k

, where both are analytic.

In the circle δ0 we have:

| v(z) |=| z
√
z2 − π2 + z2 |≤| z | (

√
| z |2 +π2+ | z |) ≤ 10π2

3
√
k

and hence

| v(z) |< 10π2

3
√
k

if | z |≤ 2π
3
√
k
.(7.3)

On the other hand,

| u(z) |=| kz3 − π2 |= k | z − 3

√
π2

k
ω1 || z −

3

√
π2

k
ω2 || z −

3

√
π2

k
ω3 | .

If z belongs to the circumference δ0 we have that

| z − 3

√
π2

k
ωi |≥ |z| − |

3

√
π2

k
ωi| =

2π
3
√
k
− 3

√
π2

k
>

3

√
π3

k
, i = 1, 2, 3.

Hence

| u(z) |> π3 if | z |= 2π
3
√
k
.(7.4)

The inequalities (7.3) and (7.4) imply that | u(z) |>| v(z) |, for all z on the
circumference δ0.
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Applying Rouché’s Theorem we obtain that (4.2) has the same number of roots
as (7.2) in the circle δ0. It follows that (4.2) has three roots which satisfy (4.3). The
inequality (7.3) is still valid in δi, i = 1, 2, 3. On the other hand, for all z on the
circumference δi:

| u(z) |=| kz3 − π2 |= k | z − 3

√
π2

k
ω1 | | z −

3

√
π2

k
ω2 | | z −

3

√
π2

k
ω3 |>

> k
10
3
√
k2

(
π
3
√
k

)2

=
10π2

3
√
k
.

Applying Rouché’s Theorem we deduce that the roots of (4.2) are located in the
circles δi and the estimate (4.5) holds. 2

Proof of Lemma 4.3: Step 1: We prove first that the equation:

−π2 + kz3 + πz i = 0(7.5)

has a unique solution pk in the circle δ1 of center
3

√
π2

k
and radius

10
3
√
k2

and hence:

pk =
3

√
π2

k
− 1

3
3

√
π

k2
i+ o

(
1

3
√
k2

)
.

The existence of the root pk in δ1 follows applying the estimates obtained in
Lemma 4.2 to the functions u(z) = −π2 + kz3 and v(z) = πz i.

We define now rk = pk −
3

√
π2

k
and we deduce that rk satisfies:

kr3
k + 3kr2

k
3

√
π2

k
+ 3krk

3

√
π4

k2
+ πrk i+ π

3

√
π2

k
i = 0.

Multiplying the last equation by 3
√
k we deduce that:

3
√
k

(
3krk

3

√
π4

k2
+ π

3

√
π2

k
i

)
=

3
√
k

(
−kr3

k − 3kr2
k

3

√
π2

k
− πrk i

)
.

Since |rk| =

∣∣∣∣∣pk − 3

√
π2

k

∣∣∣∣∣ ≤ 10
3
√
k2

we have that rk = −1

3
3

√
π

k2
i+ o

(
1

3
√
k2

)
.

Hence, pk =
3

√
π2

k
− 1

3
3

√
π

k2
i+ o

(
1

3
√
k2

)
.

Step 2: We prove now that the root α1 of (4.2) belongs to the circle C centered

in pk and of radius sk =
1

4
√
k3

(see Fig. 4). This implies immediately that α1 satisfies

(4.5).
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We use again Rouché’s Theorem considering the functions:

u(z) = −π2 + kz3 + πz i, v(z) = −z2 − z
√
z2 − π2 + πz i.

For z in δ1 we have:

|v(z)| = |z|2
∣∣∣∣−1− z√

z2 − π2 + π i

∣∣∣∣ ≤ 2|z|2 ≤ 100
3
√
k2
.

On the other hand, applying Taylor’s formula in the point pk, we get

u(z) = u′(pk)(z − pk)− (z − pk)2

2π i

∫
γ̂

u(ζ) dζ

(ζ − pk)2(ζ − z)
,

where γ̂ is the circle of center pk and radius Sk =
1
3
√
k

.

We estimate first the quantity∣∣∣∣ (z − pk)2

2π i

∫
γ̂

u(ζ)d ζ

(ζ − pk)2(ζ − z)

∣∣∣∣ ≤ s2
k

2π

M

S2
k(Sk − sk)

2πSk ≤ 2M
12

√
1

k10
,

where M is an upper bound for u in γ̂.
On the other hand

|z − pk| |u′(pk)| = sk|3kp2
k + π i| ≥ sk (3k|pk|2 − π) ≥ 1

4
√
k3

(3k
3

√
π4

k2
− π) ≥ 1

2
12

√
1

k5
.

We obtain that, for k sufficiently large and z on the circumference C:

|u(z)| > |z − pk| |u′(pk)| − 2M
12

√
1

k10
≥ 1

2
12

√
1

k5
− 2M

12

√
1

k10
>

1

4
12
√
k5

>
100
3
√
k2
.

It results that, for k sufficiently large, |u(z)| > |v(z)| on the circumference of C.
Applying Rouché’s Theorem we deduce that α1 satisfies (4.5). 2

Proof of Lemma 4.4: We simply remark that, making z = −s, the equation
(4.6) is transformed into (4.2). 2


