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Abstract. This paper studies the internal controllability and stabilizability
of a family of Boussinesq systems recently proposed by J. L. Bona, M. Chen
and J.-C. Saut to describe the two-way propagation of small amplitude gravity
waves on the surface of water in a canal. The space of the controllable data for
the associated linear system is determined for all values of the four parameters.
As an application of this newly established exact controllability, some simple
feedback controls are constructed such that the resulting closed-loop systems
are exponentially stable. When the parameters are all different from zero, the
local exact controllability and stabilizability of the nonlinear system are also
established.

1. Introduction. Considered in this paper is a family of Boussinesq systems




ηt + wx + (ηw)x + awxxx − bηtxx = 0,

wt + ηx + wwx + cηxxx − dwtxx = 0,
(1.1)
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which were recently proposed by Bona, Chen and Saut [5, 6] to describe the two-way
propagation of small amplitude gravity waves on the surface of water in a canal.
The systems may also arise, for example, when modeling the propagation of long-
crested waves on large lakes or on the oceans. Contrary to the classical Korteweg-de
Vries equation which assumes that the waves travel only in one direction, system
(1.1) is free of the presumption of unidirectionality and may have a wider range of
applicability.

In (1.1), η is the elevation from the equilibrium position and w = wθ is the
horizontal velocity in the flow at height θh, where h is the undisturbed depth of the
liquid. The parameters a, b, c and d in (1.1) are not completely independent. They
are, in fact, required to fulfill the relations

a+ b =
1

2

(
θ2 − 1

3

)
, c+ d =

1

2

(
1 − θ2

)
≥ 0, (1.2)

where θ ∈ [0, 1] specifies which horizontal velocity the variable w represents (cf.
[5]). Consequently,

a+ b+ c+ d =
1

3
.

A detailed analysis of this family of Boussinesq systems when posed on the whole
real axis R has been conducted by Bona, Chen and Saut [5, 6], in which they have
established, in particular, various well-posedness results for the initial value problem
(IVP) for system (1.1). In this paper, we will focus on the system (1.1) posed on
a finite interval (0, L) with periodic boundary conditions imposed on η and w. As
in [5], we will restrict our attention to system (1.1) with its parameters a, b, c, d
satisfying one of the assumptions below.

C1. b, d ≥ 0, a ≤ 0, c ≤ 0;
C2. b, d ≥ 0, a = c > 0.

As it has been proved in [5], the IVP of the linear systems associated to (1.1) when
posed on R is well-posed if either C1 or C2 is satisfied.

Since the length of the interval is irrelevant, we will assume L = 2π through
all our study. In this new setting, the well-posedness of (1.1) and their associated
homogeneous and nonhomogeneous linear systems will be studied. However, the
main task of this paper is to study control and stabilization problems for system
(1.1) by means of some localized control actions. More precisely, we will consider
the following nonhomogeneous systems





ηt + wx + (ηw)x + awxxx − bηtxx = f for x ∈ (0, 2π), t ∈ (0, T ),

wt + ηx + wwx + cηxxx − dwtxx = g for x ∈ (0, 2π), t ∈ (0, T )
(1.3)

with the periodic boundary conditions




∂rη
∂xr (t, 0) = ∂rη

∂xr (t, 2π) for t ∈ (0, T ), 0 ≤ r ≤ r0,

∂qw
∂xq (t, 0) = ∂qw

∂xq (t, 2π) for t ∈ (0, T ), 0 ≤ q ≤ q0.
(1.4)

The number of boundary conditions depends on the values of the parameters. For
instance, if a = b = 0 then r0 = 0, if a = 0 and b 6= 0 then r0 = 1 and if a 6= 0 then
r0 = 2. The values of q0 depend on the parameters c and d in a similar way. The
forcing functions f and g, which will be considered as control inputs, are assumed
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to be supported in ω, a nonempty open subinterval of (0, 2π). We will be mainly
interested in the following two problems for system (1.3)-(1.4).

Problem 1 (Exact controllability): Given T > 0, the initial state (η0, w0) and
the terminal state (η1, w1) in an appropriate space, can one find controls f and g
in a suitable space such that (1.3) admits a solution (η(x, t), w(x, t)) satisfying the
boundary conditions (1.4) and

(η(x, 0), w(x, 0)) = (η0(x), w0(x)), (η(x, T ), w(x, T )) = (η1(x), w1(x))?

Problem 2 (Stabilizability): Can one find some (linear) feedback controls

f = K1(η, w), g = K2(η, w)

such that the resulting closed-loop system




ηt + wx + (ηw)x + awxxx − bηtxx = K1(η, w), x ∈ (0, 2π), t ∈ (0, T ),

wt + ηx + wwx + cηxxx − dwtxx = K2(η, w), x ∈ (0, 2π), t ∈ (0, T )

is stabilized, i.e., its solution (η, w) tends to zero in an appropriate space as t→ ∞?

Control and stabilization of the dispersive wave equations have been studied
intensively in the last decade. In particular, for the Korteweg-de Vries (KdV)
equation, the study of control and stabilization problems began with the works of
Russell [36] and Zhang [43]. In [37, 38], Russell and Zhang considered the KdV
equation posed on the finite interval (0, 2π) with periodic boundary conditions and
with localized control action. They showed in [37] that the associated linearized
system is exactly controllable and exponentially stabilizable. Aided by then the
newly discovered Bourgain smoothing property [8] for the KdV equation, those
results were extended to the (nonlinear) KdV equation in [38] assuming its solutions
have small amplitude.

In [31], Rosier studied the boundary controllability of the KdV equation posed
on the finite interval (0, L) with the Dirichlet type boundary conditions:





ut + ux + uux + uxxx = 0, x ∈ (0, L), t ≥ 0,

u(0, t) = h1(t), u(L, t) = h2(t), ux(L, t) = h3(t), t ≥ 0,
(1.5)

where the boundary value functions hj(t), j = 1, 2, 3 are considered as control
inputs. Using only a single control input h2(t) (letting h1(t) = h3(t) ≡ 0) and
assuming that the length L of the domain (0, L) does not belong to the set

K :=

{
2π

√
k2 + kl + l2

3
; k, l ∈ N

∗

}
, (1.6)

Rosier showed that the associated linear system is exactly controllable in the space
L2(0, L) using the Hilbert Uniqueness Method (HUM), and that the nonlinear sys-
tem is locally exactly controllable in the space L2(0, L). Interestingly, while Rosier
showed in [31] that the linear system associated to (1.5) is not exactly controllable
if L ∈ K, it has been proved recently by Coron and Crépeau [10] (cf. also Crépeau
[11]) that the nonlinear system (1.5) is locally exactly controllable in the space
L2(0, L) for some values of L in the set K.

Using all the three boundary control inputs and a very different approach, Zhang
[46] showed that (1.5) is locally controllable in the space Hs(0, L) for any s ≥ 0
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without any restriction on L. It should be pointed out that the exact controllability
result presented in [46] is different from that in [31]; system (1.5) is shown to be
exactly controllable in a neighborhood of any given smooth solution of the KdV
equation in [46] while (1.5) is demonstrated in [31] to be exactly controllable in a
neighborhood of the zero solution of the KdV equation.

To stabilize system (1.5), the simplest feedback control law to use is

h1(t) = h2(t) = h3(t) ≡ 0, ∀ t ≥ 0. (1.7)

With the help of an observability inequality established by Rosier in [31], Perla
Menzala, Vasconcellos, and Zuazua [28] showed, assuming L /∈ K, that the linear
system associated to (1.5) satisfying (1.7) is exponentially stable and that small am-
plitude solutions of the nonlinear system (1.5) satisfying (1.7) decay exponentially
as t→ ∞. In order to stabilize large amplitude solutions and to remove the length
restriction on L, Perla Menzala, Vasconcellos, and Zuazua [28] introduced an extra
localized feedback control to (1.5) resulting in the following closed-loop system:





ut + ux + uux + a(x)u + uxxx = 0, x ∈ (0, L), t ≥ 0,

u(0, t) = 0, u(L, t) = 0, ux(L, t) = 0, t ≥ 0,
(1.8)

where a = a(x) is a nonnegative smooth function supported in Ω, a subdomain of
[0, L]. Under the assumption

0 ∈ Ω, L ∈ Ω, (1.9)

they showed that all solutions of (1.8) decay exponentially to 0 as t → ∞. In
addition, they conjectured that the assumption (1.9) could be removed. This is
indeed the case; the conjecture has been confirmed recently by Pazoto [29] (see
also Rosier and Zhang [34]). The stability result of Perla Menzala, Vasconcellos,
and Zuazua has been extended by Rosier and Zhang [34] to the generalized KdV
equation




ut + ux + upux + a(x)u + uxxx = 0, x ∈ (0, L), t ≥ 0,

u(0, t) = 0, u(L, t) = 0, ux(L, t) = 0, t ≥ 0
(1.10)

with 1 ≤ p < 4.
Many other dispersive equations have also been studied for their control and

stabilization problems (the reader is referred to [4, 12, 19, 22, 23, 25, 26, 32, 33,
38, 41, 44, 45, 47] and the references therein). Among them, the Benjamin-Bona-
Mahony (BBM) equation

wt + wx + wwx − wxxt = 0

deserves a special attention. As an alternative of the KdV equation, the BBM
equation is also considered as a model in nonlinear studies whenever one wishes to
include and balance a weak nonlinearity and weak dispersive effects [3, 7]. However,
while its mathematical theory such as the well-posedness, stability analysis and long
time behavior is easier to establish than that of the KdV equation, its control theory
seems harder to study. In contrast to some significant progress made for the KdV
equation, the (nonlinear) BBM is still not known to possess any controllability. An
exception is the boundary control of the linearized BBM equation





wt + wx − wtxx = 0, x ∈ (0, 1), t ≥ 0,

u(0, t) = 0, u(1, t) = h(t) t ≥ 0,
(1.11)
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which has been shown by Micu [25] to have poor controllability; the system is not
even spectrally controllable though it possesses approximate boundary controllability
(cf. [43, 25]). It suggests that the BBM equation may not be exactly boundary
controllable.

Depending on the values of its parameters, system (1.3) couples two equations
that may be of KdV or BBM types. It is therefore interesting to see to which extent
the controllability properties of each equation type are maintained and/or improved.
Our strategy of study of (1.3) is to consider first the associated linear systems and
prove the corresponding controllability and stabilizability properties. This linear
problem is interesting by itself. As we have pointed out earlier, depending on the
parameters a, b, c and d, system (1.3) may couple two KdV-type equations, two
BBM-type equations, or one KdV and one BBM-type equations. It is not unusual
that in the first case (KdV case) some good controllability properties are proved
whereas in the second case (BBM case) there are no such controllability properties.
What happens in the last case is a priori less clear. We will however prove that the
system is controllable in that case. Different approaches will be used to establish
the exact controllability depending on whether we employ a single control input or
two control inputs. If only a single control action is used, the exact controllability
will be established via the Hilbert Uniqueness Method (HUM) (cf. [20]). If both
control actions are used, a stronger exact controllability result will be obtained by
using the classical moment method (cf. [35]). As an application of the established
exact controllability, some simple feedback controls are constructed such that the
resulting closed-loop systems are shown to be exponential stable.

The contraction mapping principle will be used to extend the results obtained for
the associated linear systems to the nonlinear systems. However, only the case when
all the parameters of the system are different from 0 is considered here. Remark
that (1.1) may be written in the following equivalent form





ηt −
a

b
wx +

(
1 +

a

b

)
(I − b∂2

x)−1
p wx = −(I − b∂2

x)−1
p ((ηw)x),

wt −
c

d
ηx +

(
1 +

c

d

)
(I − d∂2

x)−1
p ηx = −(I − d∂2

x)−1
p (wwx)

(1.12)

for x ∈ (0, 2π), t ∈ (0, T ). In (1.12), a very important smoothing effect on the
nonlinear term may be noted if b and d are different from zero, which allows us to
apply the contraction mapping principle.

If α > 0, the operator (I − α∂2
x)−1

p from (1.12) is defined in the following way:

(I − α∂2
x)−1

p ϕ = v ⇔





v − αvxx = ϕ in (0, 2π),

v(0) = v(2π), vx(0) = vx(2π).

Since for any ϕ ∈ L2(0, 2π), the elliptic equation from the right has a unique solution

v ∈ H2
p (0, 2π) = {v ∈ H2(0, 2π)

∣∣ v(0) = v(2π), vx(0) = vx(2π)},
(I − α∂2

x)−1
p is a well-defined, compact operator in L2(0, 2π).

The rest of the paper is organized as follows. Section 2 is devoted to the study of
the associated linear systems and is split into three subsections. The well-posedness
problem will be discussed in subsection 2.1. Control and stabilization problems for
the linear systems with a single control action will be addressed in subsection 2.2
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while the same problems for the linear systems with two control actions will be
investigated in subsection 2.3. The results obtained in section 2 will be extended to
the nonlinear systems with nonzero parameters in section 3. The paper is finished
with section 4 which provides some concluding remarks and some open problems
for further study.

2. Linear systems. In this section we study the initial-boundary-value problem
(IBVP) for the linear system associated to (1.3), namely





ηt + wx + awxxx − bηtxx = f for x ∈ (0, 2π), t ∈ (0, T ),

wt + ηx + cηxxx − dwtxx = g for x ∈ (0, 2π), t ∈ (0, T )
(2.1)

with the periodic boundary conditions





∂rη
∂xr (t, 0) = ∂rη

∂xr (t, 2π) for t ∈ (0, T ), 0 ≤ r ≤ r0,

∂qw
∂xq (t, 0) = ∂qw

∂xq (t, 2π) for t ∈ (0, T ), 0 ≤ q ≤ q0

(2.2)

and the initial condition

η(0, x) = η0(x), w(0, x) = w0(x) for x ∈ (0, 2π). (2.3)

Its well-posedness in a suitable classical Banach space will be investigated in sub-
section 2.1. Then, in subsections 2.2 and 2.3, considering f and g as control inputs
acting only on a subdomain ω of (0, 2π), we will study its control and stabilization
problems. In particular, exact controllability and stabilizability will be established
in subsection 2.2 for system (2.1) with a single control while subsection 2.3 will be
devoted to study system (2.1) with two control inputs for its control and stabiliza-
tion problems.

2.1. Well-posedness. We first introduce a few notations. Given any v ∈ L2(0, 2π)
and k ∈ Z, we denote by v̂k the k−Fourier coefficient of v,

v̂k =
1

2π

∫ 2π

0

v(x)e−ikxdx

and for any m ∈ N we define the space

Hm
p (0, 2π) =

{
v ∈ L2(0, 2π)

∣∣∣∣∣ v =
∑

k∈Z

v̂ke
ikx,

∑

k∈Z

|v̂k|2(1 + k2)m <∞
}

which is a Hilbert space with respect to the inner product

(v, h)m =
∑

k∈Z

v̂kĥk(1 + k2)m. (2.4)

The norm corresponding to (2.4) is denoted by || ||m. It may be seen that

Hm
p (0, 2π) =

{
v ∈ Hm(0, 2π)

∣∣∣∣
∂rv

∂xr
(0) =

∂rv

∂xr
(2π), 0 ≤ r ≤ m− 1

}
,

where Hm(0, 2π) stands for the classical Sobolev space of exponent m in (0, 2π).
We also consider the closed subspace

Hm
0,p(0, 2π) =

{
v ∈ Hm

p (0, 2π)

∣∣∣∣∣ v =
∑

k∈Z

v̂ke
ikx, v̂0 = 0

}
.
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We may extend the definition of Hm
p (0, 2π) to the case m = s, a real number, by

setting

Hs
p(0, 2π) =

{
v =

∑

k∈Z

v̂ke
ikx ∈ Hs(0, 2π)

∣∣∣∣∣
∑

k∈Z

|v̂k|2(1 + k2)s <∞
}
,

where the convergence of the series is in the Sobolev space Hs(0, 2π). For any real
number s, Hs

p(0, 2π) may also be seen as a Hilbert space with respect to the inner
product defined by (2.4) with m replaced by s. In particular, for any v ∈ Hs

p(0, 2π),

‖v‖s =

(
∑

k∈Z

|v̂k|2(1 + k2)s

) 1
2

.

The following map is a duality product between Hs
p(0, 2π) and H−s

p (0, 2π) for any
s ≥ 0

〈f, g〉s =
∑

k∈Z

f̂kĝk, ∀f ∈ Hs
p(0, 2π), g ∈ H−s

p (0, 2π). (2.5)

It follows that H−s
p (0, 2π) is the topological dual of Hs

p(0, 2π).
Assume that the initial data in (2.3) and the forcing terms in (2.1) are given by

(η0, w0) =
∑

k∈Z

(
η̂0

k, ŵ
0
k

)
eikx, (f, g)(t) =

∑

k∈Z

(
f̂k(t), ĝk(t)

)
eikx.

At least formally, the solution of (2.1) may be written as

(η, w)(t, x) =
∑

k∈Z

(η̂k(t), ŵk(t))eikx

where (η̂k(t), ŵk(t)) fulfill





(η̂k)t + ikŵk − iak3ŵk + bk2(η̂k)t = f̂k, t ∈ (0, T ),

(ŵk)t + ikη̂k − ick3η̂k + dk2(ŵk)t = ĝk, t ∈ (0, T ),

η̂k(0) = η̂0
k, ŵk(0) = ŵ0

k.

(2.6)

System (2.6) may be solved explicitly. If we set

ω1 = ω1(k) =
1 − ak2

1 + bk2
, ω2 = ω2(k) =

1 − ck2

1 + dk2
, A(k) =




0 ω1

ω2 0


 ,

it is easy to see that (2.6) is equivalent to



η̂k

ŵk




t

+ ikA(k)




η̂k

ŵk


 =




1
1+bk2 f̂k

1
1+dk2 ĝk


 ,




η̂k

ŵk


 (0) =




η̂0
k

ŵ0
k


 .

Hence, the solution of (2.6) is given by



η̂k

ŵk


 (t) = e−iktA(k)




η̂0
k

ŵ0
k


+

∫ t

0

e−ik(t−s)A(k)




1
1+bk2 f̂k(s)

1
1+dk2 ĝk(s)


 ds. (2.7)
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Note that the eigenvalues of the matrix A(k) are ±σ(k), with σ(k) =
√
ω1(k)ω2(k),

and are always real. By a standard diagonalizing procedure we get that

e−iktA(k) =




cos[kσ(k)t] −i
√

ω1

ω2
sin[kσ(k)t]

−i
√

ω2

ω1
sin[kσ(k)t] cos[kσ(k)t]


 .

Consequently, the solution of (2.6) is given by




η̂k(t) = cos[kσ(k)t]η̂0
k − i

√
ω1

ω2
sin[kσ(k)t]ŵ0

k −

∫ t

0

{
cos[kσ(k)(t− s)]

1 + bk2
f̂k(s) − i

√
ω1

ω2

sin[kσ(k)(t − s)]

1 + dk2
ĝk(s)

}
ds,

ŵk(t) = −i
√

ω2

ω1
sin[kσ(k)t]η̂0

k + cos[kσ(k)(t)]ŵ0
k +

∫ t

0

{
−i
√
ω2

ω1

sin[kσ(k)(t− s)]

1 + bk2
f̂k(s) +

cos[kσ(k)(t− s)]

1 + dk2
ĝk(s)

}
ds.

(2.8)

Remark 2.1. The eigenvalues of system (2.1) are given by

λk = ikσ(k), k ∈ Z. (2.9)

Note that not all the eigenvalues in (2.9) are different. If we count only the distinct
eigenvalues, we obtain the sequence (λk)k∈I, where I ⊆ Z has the property that
λk1

6= λk2
for any k1, k2 ∈ I. For each k1 ∈ Z set

I(k1) = {k ∈ Z : kσ(k) = k1σ(k1)}

and |I(k1)| = m(k1). We have the following properties of m(k1):

• m(k1) ≤ 6. This is a consequence of the fact that m(k1) is less than the
number of entire roots of the equation xσ(x) = α, where α is an arbitrary real
number. The roots of this equation are also roots of a polynomial of degree
less or equal to 6.

• If the sequence of eigenvalues tends to infinity, there exists k∗1 ∈ N such that
m(k1) = 1 for all |k1| > k∗1 . This is a consequence of the fact that the function
xσ(x) is strictly increasing for |x| large enough.

The number of the eigenfunctions corresponding to an eigenvalue λk1
6= 0 is

2m(k1) for any k1 ∈ I. These eigenfunctions read then
(
eikx,−σ(k)

ω1
eikx

)
,

(
e−ikx,

σ(k)

ω1
e−ikx

)
, k ∈ I(k1).

On the other hand, the zero eigenvalue has multiplicity two, unless there exists
some k0 ∈ Z \ {0} such that a = c = 1

k2
0

in which case it is of multiplicity six with

associated eigenfunctions

(1, 0) , (0, 1) ,
(
eik0x, 0

)
,
(
0, eik0x

)
,
(
e−ik0x, 0

)
,
(
0, e−ik0x

)
.

�
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For each s ∈ R, we define the space

V s =
{
(η, w) ∈ Hs

p(0, 2π) ×Hs−2
p (0, 2π)

∣∣ ||(η, w)||2V s := ||η||2s + ||Hw||2s <∞
}

where || ||s is the Hs
p(0, 2π) norm and the operator H is defined in the following

way

H
(
∑

k∈Z

v̂ke
ikx

)
=
∑

k∈Z

√
ω1

ω2
v̂ke

ikx.

V s is a Hilbert space with respect to the inner product

((f1, f2), (g1, g2))V s = (f1, g1)s + (Hf2,Hg2)s.

The space V s depends on the values of the parameters a, b, c and d and more

precisely on the value of
√

ω1

ω2
. Let us introduce the number l ∈ Z with the property

that √
ω1

ω2
∼ C|k|l as |k| → ∞ (2.10)

where C is a positive constant not depending on k. We have that

V s = Hs
p(0, 2π) ×Hs+l

p (0, 2π).

Note that, depending on the parameters a, b, c and d, we may have an asymmetry of
regularity of the two components of the space V s. Note also that, in any case, V s ⊆
Hs(0, 2π) ×Hs−2(0, 2π). The following result uses formula (2.8) and introduces a
C0 group associated with system (2.1).

Theorem 2.2. The family of linear operators (S(t))t∈R defined by

S(t)(η0, w0)(η(t), w(t)) =
∑

k∈Z

(η̂k(t), ŵk(t))eikx, (2.11)

where the Fourier coefficients of (η(t), w(t)) are obtained from the ones of (η0, w0)
by





η̂k(t) = cos[kσ(k)t]η̂0
k − i

√
ω1

ω2
sin[kσ(k)t]ŵ0

k,

ŵk(t) = −i
√

ω2

ω1
sin[kσ(k)t]η̂0

k + cos[kσ(k)t]ŵ0
k,

(2.12)

is a group of isometries in V s, for any s ∈ R.

Proof. First, let us prove that S(t) is a well-defined linear and continuous operator
for any t ∈ R. If (η0, w0) =

∑
k∈Z

(η̂0
k, ŵ

0
k)eikx ∈ V s, then we claim that the series∑

k∈Z
(η̂k(t), ŵk(t)) eikx converges in C([0,∞), V s). This is equivalent to say that

the sequence

P =


 ∑

|k|≤N

(η̂k(t), ŵk(t)) eikx




N≥1

is a Cauchy sequence in C([0,∞), V s).
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It is clear that P ⊂ C([0,∞), V s) and that

sup
t∈[0,∞)

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

N<|k|≤N+p

(η̂k(t), ŵk(t)) eikx

∣∣∣∣∣∣

∣∣∣∣∣∣

2

V s

= sup
t∈[0,∞)

∑

N<|k|≤N+p

(
|η̂k(t)|2 +

ω1

ω2
|ŵk(t)|2

)
(1 + k2)s

=
∑

N<|k|≤N+p

(
|η̂0

k|2 +
ω1

ω2
|ŵ0

k|2
)

(1 + k2)s.

Thus P is a Cauchy sequence in C([0,∞), V s) since (η0, w0) ∈ V s . Hence the
operator S(t) is well-defined in V s and S( · )(η0, w0) ∈ C([0,∞), V s). Moreover,
since ∣∣∣∣∣∣

∣∣∣∣∣∣

∑

|k|≤N

(η̂k(t), ŵk(t)) eikx

∣∣∣∣∣∣

∣∣∣∣∣∣
V s

=

√√√√
∑

|k|≤N

(
|η̂0

k|2 +
ω1

ω2
|ŵ0

k|2
)

(1 + k2)s,

(S(t))t∈R is a family of linear and continuous operators which are also isometries. It
is easy to see that S(0) = I, S(t) ◦S(s) = S(t+ s) for any t, s ∈ R and, in addition,

∣∣∣∣S(t)(η0, w0) − (η0, w0)
∣∣∣∣2

V s

=
∑

k∈Z

(
(cos[kσ(k)t] − 1)2 + sin2[kσ(k)t]

) [
|η̂0

k|2 +
ω1

ω2
|ŵ0

k|2
]

(1 + k2)s

= 4
∑

k∈Z

sin2

[
kσ(k)t

2

] [
|η̂0

k|2 +
ω1

ω2
|ŵ0

k|2
]

(1 + k2)s.

Consequently limt→0 S(t)(η0, w0) = (η0, w0) in V s and the proof is complete. �

Another important parameter in our analysis will be the number e ∈ Z defined
in the following way √

ω1ω2 ∼ C|k|e as |k| → ∞ (2.13)

where C is a positive constant not depending on k.

Theorem 2.3. The infinitesimal generator of the group (S(t))t∈R is the unbounded
operator (D(A), A) in V s where D(A) = V s+(1+max{−1, e}) and

A(η, w) =




a

b
wx −

(
1 +

a

b

)
(I − b∂2

x)−1
p wx

c

d
ηx −

(
1 +

c

d

)
(I − d∂2

x)−1
p ηx


 , ∀(η, w) ∈ D(A). (2.14)

Proof. We show that

lim
t→0

S(t)(η, w) − (η, w)

t
= A(η, w), (2.15)

if and only if (η, w) ∈ V s+(1+max{−1, e}).
This is equivalent to show that the derivative in zero of the series∑
k∈Z

(η̂k(t), ŵk(t))eikx, where (η̂k(t), ŵk(t)) is given by (2.12), is convergent to

A(η, w) in V s if and only if (η, w) ∈ V s+(1+max{−1, e}).
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If we denote by

SN (t) =
∑

|k|≤N

(η̂k(t), ŵk(t)) eikx

a partial sum of the series, a straightforward computation which takes into account
(2.12) shows that

[SN ]t (0) = A(SN )(0).

Both terms are convergent in V s when N tends to infinity if
(η, w) ∈ V s+(1+max{−1, e}) and

[
∑

k∈Z

(η̂k(t), ŵk(t))eikx

]

t

(0) = A(η, w).

On the other hand, the derivative of the series
∑

k∈Z
(η̂k(t), ŵk(t))eikx is con-

vergent only if (η, w) ∈ V s+(1+max{−1, e}). Indeed, this may be easily seen if we
compute

|| [SN+p]t (0)− [SN ]t (0)||2V s =
∑

N<|k|≤N+p

k2σ2(k)

(
|η̂k|2 +

∣∣∣∣
ω1(k)

ω2(k)

∣∣∣∣ |ŵk|2
)

(1 + k2)s

which is convergent if and only if (η, w) ∈ V s+(1+max{−1, e}). �

System (2.1)-(2.3) may be written equivalently in the following form
(
η
w

)

t

(t) = A
(
η
w

)
+

(
f∗

g∗

)
,

(
η
w

)
(0) =

(
η0

w0

)
(2.16)

where f∗ =
∑

k∈Z

1
1+bk2 f̂ke

ikx and g∗ =
∑

k∈Z

1
1+dk2 ĝke

ikx.

The following existence and uniqueness result for the solutions of (2.1)-(2.3) is a
direct consequence of the general theory for evolution equations associated with a
group of isometries (see e.g. [9]).

Theorem 2.4. Let T > 0 and s ∈ R be given. If (η0, w0) ∈ V s and (f∗, g∗) ∈
L1(0, T ;V s), then (2.16) admits a unique solution

(η, w) ∈ C1([0, T ], V s−(1+max{−1, e})) ∩ C([0, T ], V s).

Moreover, there exists a positive constant C > 0 depending only on s such that

||(η, w)||C([0,T ];V s) ≤ C
[
||(f∗, g∗)||L1(0,T ;V s) + ||(η0, w0)||V s

]
. (2.17)

Remark 2.5. System (2.1) has the following important regularity property: if
b 6= 0 and d 6= 0 then (f, g) ∈ L1(0, T ;V s) implies (f∗, g∗) ∈ L1(0, T ;V s+2). Hence,
if (η0, w0) ∈ V s+2 and (f, g) ∈ L1(0, T ;V s), then (η, w) ∈ C([0, T ];V s+2). �

Remark 2.6. If we define



V s
0,0 = {(η, w) ∈ V s : η̂0 = ŵ0 = 0},

V s
0,∗ = {(η, w) ∈ V s : η̂0 = 0},

V s
∗,0 = {(η, w) ∈ V s : ŵ0 = 0},

we obtain that V s
0,0, V

s
0,∗ and V s

∗,0 are all closed subspaces of V s. The group (S(t))t∈R

is well-defined in those spaces. Hence, for instance, if we consider that in Theorem

2.4 f̂0 = ĝ0 = 0, then the corresponding solution of (2.1) is well defined in V s
0,0.

Remark that the elements of V s
0,0 have the property that the mean of η and w are
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zero. This is a quantity which is conserved in system (2.1) if f and g also have zero
mean. �

To end this subsection we consider the following backward IBVP of the homoge-
neous adjoint system of (2.1):




ξt + ux + cuxxx − bξtxx = 0 for x ∈ (0, 2π), t ∈ (0, T ),

ut + ξx + aξxxx − dutxx = 0 for x ∈ (0, 2π), t ∈ (0, T ),

∂rξ
∂xr (t, 0) = ∂rξ

∂xr (t, 2π) for t ∈ (0, T ), 0 ≤ r ≤ r0,

∂qu
∂xq (t, 0) = ∂qu

∂xq (t, 2π) for t ∈ (0, T ), 0 ≤ q ≤ q0,

ξ(T, x) = ξT (x), u(T, x) = uT (x) for x ∈ (0, 2π).

(2.18)

Letting t′ = T − t, x′ = 2π − x, one can easily see that (2.18) is (2.1)-(2.3) with f
and g being zero and a and c exchanged.

Let

ω̃1 = ω̃1(k) =
1 − ck2

1 + bk2
, ω̃2 = ω̃2(k) =

1 − ak2

1 + dk2
, (2.19)

As before, for each s ∈ R, we define the space

Ṽ s =
{
(ξ, u) ∈ Hs

p(0, 2π) ×Hs−2
p (0, 2π)

∣∣∣ ||(ξ, u)||2V s := ||ξ||2s + ||H̃u||2s <∞
}

where || ||s is the Hs
p(0, 2π) norm and the operator H̃ is defined in the following

way

H̃
(
∑

k∈Z

v̂ke
ikx

)
=
∑

k∈Z

√
ω̃1

ω̃2
v̂ke

ikx.

Introduce the number l̃ ∈ Z with the property that
√
ω̃1

ω̃2
∼ C|k|l̃ as |k| → ∞

where C is a positive constant not depending on k. We have that

Ṽ s = Hs
p(0, 2π) ×Hs+l̃

p (0, 2π).

Theorem 2.7. Let T > 0 and s ∈ R be given. If (ξT , uT ) ∈ Ṽ s, then (2.18) admits

a unique solution (ξ, u) in C1([0, T ], Ṽ s−(1+max{−1, e})) ∩ C([0, T ], Ṽ s). Moreover,
there exists a positive constant C > 0 depending only on s such that

||(ξ, u)||C([0,T ];Ṽ s) ≤ C||(ξ0, u0)||Ṽ s . (2.20)

If

(ξT , uT ) =
∑

k∈Z

(
ξ̂T
k , û

T
k

)
eikx,

then the solution of (2.18) may be written as

(ξ, u)(t, x) =
∑

k∈Z

(ξ̂k(t), ûk(t))eikx
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where 



ξ̂k = 1
2

(
ξ̂T
k +

√
ω̃1

ω̃2
ûT

k

)
eikσ(k)(T−t)

+ 1
2

(
ξ̂T
k −

√
ω̃1

ω̃2
ûT

k

)
e−ikσ(k)(T−t)

ûk = 1
2

(√
ω̃2

ω̃1
ξ̂T
k + ûT

k

)
eikσ(k)(T−t)

+ 1
2

(
−
√

ω̃2

ω̃1
ξ̂T
k + ûT

k

)
e−ikσ(k)(T−t).

(2.21)

This formula will be very useful for the controllability problem, considered in the
next section.

2.2. Linear systems with a single control input. In this subsection we study
the control and stabilization of the following system with a single control input:




ηt + wx + awxxx − bηtxx = Qh for x ∈ (0, 2π), t ∈ (0, T ),

wt + ηx + cηxxx − dwtxx = 0 for x ∈ (0, 2π), t ∈ (0, T ),

∂rη
∂xr (t, 0) = ∂rη

∂xr (t, 2π) for t ∈ (0, T ), 0 ≤ r ≤ r0,

∂qw
∂xq (t, 0) = ∂qw

∂xq (t, 2π) for t ∈ (0, T ), 0 ≤ q ≤ q0,

η(0, x) = η0(x), w(0, x) = w0(x) for x ∈ (0, 2π),

(2.22)

where the operator Q is defined by

[Qh](x, t) = q(x)h(x, t),

and q ∈ L2(0, 2π) is a given non-negative function supported in ω and such that
q(x) > C on a (nonempty) open set ω′ ⊂ ω, C > 0 being some constant.

First, we look for a time T > 0 and a space V (to be made precise latter on)
with the property that for (η0, w0) ∈ V there exists h ∈ L2((0, T ) × (0, 2π)) such
that the corresponding solution (η, w) of (2.22) satisfies

η(T, ·) = w(T, · ) = 0. (2.23)

Property (2.23) represents a null-controllability. Since system (2.22) is conser-
vative and time reversible, this property is equivalent to the exact controllability.
Hence, any initial state in V may be led to any final state from V in time T . The
controllability properties of (2.22) will depend on the values of the coefficients a,
b, c and d. As we shall see latter on, a whole bunch of situations may occur, from
non-spectral controllability to exact controllability in any time. This controllability
problem will be solved in this subsection by using the Hilbert Uniqueness Method
(HUM) introduced by J.-L. Lions (see [20]). The following duality product will play
an important role.

〈(ϕ, ζ), (ψ, z)〉D =
∑

k∈Z

(
ϕ̂kψ̂k(1 + bk2) + ζ̂k ẑk(1 + dk2)

)
(2.24)
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for any (ϕ, ζ) ∈ V , (ψ, z) ∈ Ṽ 0
∗,0. The space V is defined in the following way

V =





V 0
∗,0 if b = 0,

V 2
∗,0 if b 6= 0.

(2.25)

Notice that (ϕ, ζ) ∈ V if and only if the sum in (2.24) is well defined and its
absolute value is less than C||(ψ, z)||Ṽ 0 (C being some constant) for any (ψ, z) ∈
Ṽ 0
∗,0. Moreover, the duality product (2.24) is found to be

〈(ϕ, ζ), (ψ, z)〉D =





∫ 2π

0 ϕ(x)ψ(x)dx + 〈ζ, (I − d∂2
x)z〉l if b = 0,

∫ 2π

0 (I − b∂2
x)ϕ(x)ψ(x)dx + 〈ζ, z〉2+l if b 6= 0, d = 0,

∫ 2π

0 (I − b∂2
x)ϕ(x)ψ(x)dx + 〈(I − d∂2

x)ζ, z〉l if b 6= 0, d 6= 0,

where 〈 · , · 〉l is the duality product defined by (2.5).
The following proposition presents an equivalent condition for the controllability

of (2.22).

Proposition 2.8. Given (η0, w0) ∈ V, there exists h ∈ L2((0, 2π) × (0, T )) such
that the corresponding solution (η, w) of (2.22) satisfies (2.23) if and only if there
exists h ∈ L2((0, 2π) × (0, T )) such that

〈(η0, w0), (ξ(0), u(0))〉D +

∫ T

0

∫ 2π

0

[Qh](x, t)ξ(x, t)dxdt = 0 (2.26)

for any (ξT , uT ) ∈ Ṽ 0
∗,0, where (ξ, u) is the solution of (2.18).

Proof. Note that it is sufficient to prove (2.26) for regular data. Multiplying the
first and the second equation in (2.22) by ξ and u respectively, integrating in time
and space over the domain (0, T )× (0, 2π) and adding the relations we obtain that

∫ T

0

∫ 2π

0

[Qh](x, t)ξ(x, t)dxdt =

∫ T

0

∫ 2π

0

[ηt + wx + awxxx − bηtxx] ξdxdt

+

∫ T

0

∫ 2π

0

[wt + ηx + cηxxx − dwtxx]udxdt

=

∫ 2π

0

[
(η − bηxx)ξ + (w − dwxx)u

]
dx

∣∣∣∣
T

0

= 〈(η(T ), w(T )), (ξT , uT )〉D − 〈(η0, w0), (ξ(0), u(0))〉D
from which (2.26) follows immediately. �

A standard argument shows that the variational equality (2.26) has a solution
if and only if there exists a constant C > 0 such that the following observation

inequality holds true for any (ξT , uT ) ∈ Ṽ 0
∗,0

||(ξ(0), u(0))||2
Ṽ 0

≤ C

∫ T

0

∫ 2π

0

[Qξ](x, t)ξ(x, t)dxdt,
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where (ξ, u) is the solution of (2.18) with final data (ξT , uT ). Thus, because of the
definition of the operator Q, it suffices to show

||(ξ(0), u(0))||2
Ṽ 0

≤ C

∫ T

0

∫

ω′

|ξ(x, t)|2dxdt. (2.27)

We show that (2.27) holds true for certain values of the parameters a, b, c and d by
using the Fourier expansion of the solutions of (2.18).

Theorem 2.9 (Observability). Suppose that neither of the following two situations
occur

(S1) b 6= 0, d 6= 0 and ac = 0,

(S2) a = c = 0 and b2 + d2 6= 0.

Then there exist a time T > 0 and a constant C > 0 such that, for any (ξT , uT ) ∈
Ṽ 0
∗,0 the corresponding solution (ξ, u) of (2.18) satisfies the inequality (2.27).

Proof. Let (ξT , uT ) ∈ Ṽ 0
∗,0 be of the form

(ξT , uT ) =
∑

k∈Z

(ξ̂T
k , û

T
k )eikx.

The corresponding solution of (2.18) is given by

(ξ, u) =
∑

k∈Z

(ξ̂k, ûk)eikx

with





ξ̂k = 1
2

(
ξ̂T
k +

√
ω̃1

ω̃2
ûT

k

)
eikσ(k)(T−t)

+ 1
2

(
ξ̂T
k −

√
ω̃1

ω̃2
ûT

k

)
e−ikσ(k)(T−t),

ûk = 1
2

(√
ω̃2

ω̃1
ξ̂T
k + ûT

k

)
eikσ(k)(T−t)

+ 1
2

(
−
√

ω̃2

ω̃1
ξ̂T
k + ûT

k

)
e−ikσ(k)(T−t).

(2.28)

From the fact that a group of isometries is associated to (2.18), it follows that

||(ξ, u)(0)||2
Ṽ 0

=
∑

k∈Z

(∣∣∣ξ̂T
k

∣∣∣
2

+
ω̃1

ω̃2

∣∣ûT
k

∣∣2
)

= ||(ξT , uT )||2
Ṽ 0
. (2.29)
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On the other hand,

∫ T

0

∫

ω′

|ξ(x, t)|2 dxdt =
1

4

∫ T

0

∫

ω′

∣∣∣∣∣
∑

k∈Z

[(
ξ̂T
k +

√
ω̃1

ω̃2
ûT

k

)
eikσ(k)t

+

(
ξ̂T
k −

√
ω̃1

ω̃2
ûT

k

)
e−ikσ(k)t

]
eikx

∣∣∣∣∣

2

dxdt

=
1

4

∫

ω′

∫ T

0

∣∣∣∣∣∣

∑

k1∈I

∑

k∈I(k1)

[(
ξ̂T
k +

√
ω̃1

ω̃2
ûT

k

)
eikx

+

(
ξ̂T
−k −

√
ω̃1

ω̃2
ûT
−k

)
e−ikx

]
eik1σ(k1)t

∣∣∣∣∣

2

dxdt.

Remark that, if a, b, c and d do not fulfill (S1) or (S2), then there exists a number
γ ∈ (0,∞] such that

lim inf
|k|→∞

|λk+1 − λk| = γ > 0.

Moreover, the elements of the sequence
(
eλkt

)
k∈I

are all different. By using a

generalization of Ingham’s inequality (see [13] and [2]) we deduce that, for any
T > 2π

γ , there exists a constant C > 0 such that

∫ T

0

∫

ω′

|ξ(t, x)|2 dxdt ≥ C

∫

ω′

∑

k1∈I

∣∣∣∣∣∣

∑

k∈I(k1)

[(
ξ̂T
k +

√
ω̃1

ω̃2
ûT

k

)
eikx

+

(
ξ̂T
−k −

√
ω̃1

ω̃2
ûT
−k

)
e−ikx

]∣∣∣∣∣

2

dx.

Note that, in the hypothesis of the theorem, lim|k|→∞ |λk| = ∞. From Remark 2.1
we obtain that |I(k1)| = m(k1) = 1 for k1 large enough. For the remaining finite
number of valued k1 ∈ I we use the fact that ω′ is a nonempty open interval and
|I(k1)| ≤ 6 to deduce that there exists a constant C > 0, independent of k1, such
that

∫

ω′

∣∣∣∣∣∣

∑

k∈I(k1)

[(
ξ̂T
k +

√
ω̃1

ω̃2
ûT

k

)
eikx +

(
ξ̂T
−k −

√
ω̃1

ω̃2
ûT
−k

)
e−ikx

]∣∣∣∣∣∣

2

dx

≥ C
∑

k∈I(k1)



∣∣∣∣∣ξ̂

T
k +

√
ω̃1

ω̃2
ûT

k

∣∣∣∣∣

2

+

∣∣∣∣∣ξ̂
T
−k −

√
ω̃1

ω̃2
ûT
−k

∣∣∣∣∣

2
 .

This may also be seen as a consequence of the same generalized Ingham’s inequality
used before. It follows that there exists a constant C > 0 such that

∫ T

0

∫

ω′

|ξ(x, t)|2 dxdt ≥ C
∑

k∈Z

(∣∣∣ξ̂T
k

∣∣∣
2

+
ω̃1

ω̃2

∣∣ûT
k

∣∣2
)
. (2.30)

Hence, from (2.29) and (2.30) it follows that (2.27) holds and the proof ends. �
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Remark 2.10. If either (S1) or (S2) holds, the family of eigenvalues (λk)k∈Z is
bounded. It is well known that in this case Ingham’s inequality does not hold and
the system is not controllable. In [25] the BBM equation is studied in some details.
The corresponding spectrum is equally bounded in that case and the equation is
not controllable. Note that the non-controllability of (2.22) corresponds exactly to
the cases in which two BBM-type equations are coupled. �

Remark 2.11. If

(S3) b d = 0 and ac 6= 0, or

(S4) b = d = 0, a2 + c2 6= 0 and a = 0 or c = 0
(2.31)

we have that

lim inf
k→∞

(λk+1 − λk) = ∞

and inequality (2.27) holds for any T > 0. Hence, the system is controllable in
any positive time. In the remaining cases the controllability time should be large
enough. �

The following controllability result follows from Proposition 2.8 and Theorem
2.9,

Theorem 2.12 (Exact controllability). Suppose that neither of the following two
situations occur

(S1) b 6= 0, d 6= 0 and ac = 0,

(S2) a = c = 0 and b2 + d2 6= 0.

Then there exists a time T > 0 such that for given

(η0, w0) ∈ V , (ηT , wT ) ∈ V ,

one can find a control input h ∈ L2(0, T ;L2(0, 2π)) such that (2.22) admits a unique
solution

(η, w) ∈ C([0, T ];V)

satisfying

(η(·, 0), w0(·, 0)) = (η0(·), w0(·)), (η(·, T ), w(·, T ) = (ηT (·), wT (·)) in V.

Moreover, there exists a constant C > 0 such that

‖h‖L2(0,T ;L2(0,2π)) ≤ C
(
‖(η0, w0)‖V + ‖(ηT , wT )‖V

)
.

Remark 2.13. The details of the controllability results are provided in
Table 1. �
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No. b d a c Controllable space Control time

1 6= 6= 6= 6= V
2
∗,0 = H

2
p × H

2
0,p T > 2π

√
bd

ac

2 6= 6= 0 0 No No

3 6= 6= 6= 0 No No

4 6= 6= 0 6= No No

5 0 6= 6= 6= V
0
∗,0 = L

2 × H
1
0,p Arbitrarily small

6 0 6= 0 0 No No

7 0 6= 0 6= V
0
∗,0 = L

2 × L
2
0 T > 2π

√
− d

c

8 0 6= 6= 0 V
0
∗,0 = L

2 × H
2
0,p T > 2π

√
− d

a

9 6= 0 6= 6= V
2
∗,0 = H

2
p × H

1
0,p Arbitrarily small

10 6= 0 0 0 No No

11 6= 0 0 6= V
2
∗,0 = H

2
p × L

2
0 T > 2π

√
− b

c

12 6= 0 6= 0 V
2
∗,0 = H

2
p × H

2
0,p T > 2π

√
− b

a

13 0 0 0 0 V
0
∗,0 = L

2 × L
2
0 T > 2π

14 0 0 6= 6= V
0
∗,0 = L

2 × L
2
0 Arbitrarily small

15 0 0 0 6= V
0
∗,0 = L

2 × H
−1
0,p Arbitrarily small

16 0 0 6= 0 V
0
∗,0 = L

2 × H
1
0,p Arbitrarily small

Table 1. Controllability results for the linear system.

Remark 2.14. One may consider the control system (2.22) but with a control
input acting on the second equation:




ηt + wx + awxxx − bηtxx = 0 for x ∈ (0, 2π), t ∈ (0, T ),

wt + ηx + cηxxx − dwtxx = Qh for x ∈ (0, 2π), t ∈ (0, T ),

∂rη
∂xr (t, 0) = ∂rη

∂xr (t, 2π) for t ∈ (0, T ), 0 ≤ r ≤ r0,

∂qw
∂xq (t, 0) = ∂qw

∂xq (t, 2π) for t ∈ (0, T ), 0 ≤ q ≤ q0,

η(0, x) = η0(x), w(0, x) = w0(x) for x ∈ (0, 2π).

(2.32)

Note that if we let a → c, b → d, w → η, then the system (2.32) becomes (2.22).
Thus one may produce the table of controllability for the system (2.32) from Table
1 by interchanging a and c, b and d as well as the order of the product spaces. �

Next we turn to the stabilization problem for system (2.22). We seek a linear
feedback control law such that the resulting closed-loop system is exponentially
stable. Note that (2.22) can be written in the form:





(η̂k)t + ikŵk − iak3ŵk + bk2(η̂k)t = q̂k, t ∈ (0, T )

(ŵk)t + ikη̂k − ick3η̂k + dk2(ŵk)t = 0, t ∈ (0, T )

η̂k(0) = η̂0
k, ŵk(0) = ŵ0

k

(2.33)

for −∞ < k <∞, where the q̂k’s denote the Fourier coefficients of Qh.
Multiplying both sides of the first equation in (2.33) by η̂k and the second equa-

tion by ŵk if a = c ≥ 0 or by 1−ak2

1−ck2 if a < 0, c < 0, and then adding the resulting
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first equation to the conjugate of the resulting second equation, we obtain

d

dt
(1 + bk2)

(
|η̂k|2 +

ω1(k)

ω2(k)
|ŵk|2

)
= 2Re (qkη̂k)

for −∞ < k <∞. Thus, if we define

E[η, w](t) =

∫ 2π

0

(∣∣∣(I − b∂2
x)1/2η(x, t)

∣∣∣
2

+
∣∣∣(I − b∂2

x)1/2Hw(x, t)
∣∣∣
2
)
dx, (2.34)

then
d

dt
E[η, w](t) = 2Re

(∫ 2π

0 [Qh](x, t)η(x, t)dx
)
.

Thus, if one chooses the feedback control law

h(x, t) = −η(x, t),
then the resulting closed loop system




ηt + wx + awxxx − bηtxx = −Qη for x ∈ (0, 2π), t ∈ (0, T ),

wt + ηx + cηxxx − dwtxx = 0 for x ∈ (0, 2π), t ∈ (0, T ),

∂rη
∂xr (t, 0) = ∂rη

∂xr (t, 2π) for t ∈ (0, T ), 0 ≤ r ≤ r0,

∂qw
∂xq (t, 0) = ∂qw

∂xq (t, 2π) for t ∈ (0, T ), 0 ≤ q ≤ q0,

η(0, x) = η0(x), w(0, x) = w0(x) for x ∈ (0, 2π)

(2.35)

has the property that

d

dt
E[η, w](t) = −2

∫ 2π

0

[Qη](x, t)η(x, t)dx ≤ −C
∫

ω′

|η(x, t)|2dx

for any t ≥ 0, where C > 0 is a constant independent of η and w. Our main concern
is whether the solution (η, w) tends to zero as t → ∞ and if it does, how fast it
decays?

Let us define the spaced Ub,d by

Ub,d =





H1
p ×H1

0,p if b > 0 and d > 0;

H1
p × L2

0 if b > 0 and d = 0;

L2 ×H1
0,p if b = 0 and d > 0;

L2 × L2
0 if b = 0 and d = 0

and the norm || · ||Ub,d
by

||(η, w)||2Ub,d
=

∫ 2π

0

(
|η|2 + b|ηx|2 + |w|2 + d|wx|2

)
dx.

Theorem 2.15. Assume that

(i) there exist constants c1 > 0 and c2 > 0 such that

c1E
1
2 (u, v) ≤ ‖(u, v)‖Ub,d

≤ c2E
1
2 (u, v)

for any (u, v) ∈ Ub,d;
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(ii) the following open loop control system (the adjoint system of (2.22))




χt + ζx + cζxxx − bχtxx = Qh for x ∈ (0, 2π), t ∈ (0, T ),

ζt + χx + aχxxx − dζtxx = 0 for x ∈ (0, 2π), t ∈ (0, T ),

∂rχ
∂xr (t, 0) = ∂rχ

∂xr (t, 2π) for t ∈ (0, T ), 0 ≤ r ≤ r0,

∂qζ
∂xq (t, 0) = ∂qζ

∂xq (t, 2π) for t ∈ (0, T ), 0 ≤ q ≤ q0

(2.36)

is exactly controllable in the space Ub,d in the time interval (0, T ) for some
T > 0 with control input h chosen in the space L2((0, 2π) × (0, T )).

Then for any (η0, w0) ∈ Ub,d, the closed-loop system (2.35) admits a unique solution

(η, w) ∈ C(R+;Ub,d).

Moreover, there exist two constants δ > 0 and C > 0 such that

‖(η(·, t), w(·, t))‖Ub,d
≤ C‖(η0, w0)‖Ub,d

e−δt

for any t ≥ 0.

Proof. Let (η, w) be the solution (2.35) with initial value (η0, w0). By assumption
(ii), there exists a control h in the space L2((0, 2π) × (0, T )) such that the system
(2.36) admits a solution

(χ, ζ) ∈ C([0, T ];Ub,d)

satisfying

(χ, ζ) = (0, 0) at t = 0, (χ, ζ) = (η, w) at t = T.

Moreover, there exist positive constants C1 and C2 such that

‖h‖L2((0,2π)×(0,T )) ≤ C1‖(η(·, T ), w(·, T ))‖Ub,d

and

sup
0≤t≤T

‖(χ(·, t), ζ(·, t))‖Ub,d
≤ C2‖(η(·, T ), w(·, T ))‖Ub,d

.

Multiplying the first and the second equation in (2.36) by η and w respectively,
integrating in time and space and adding the relations we obtain that

‖(η(·, T ), w(·, T ))‖2
Ubd

=

∫ T

0

∫ 2π

0

η(x, t)[Qh](x, t)dxdt

−
∫ T

0

∫ 2π

0

[Qη](x, t)χ(x, t)dxdt

=

∫ T

0

∫ 2π

0

[Qη](x, t)(h(x, t) − χ(x, t))dxdt

≤ ‖[Qη]‖L2((0,2π)×(0,T ))‖h− χ‖L2((0,2π)×(0,T ))

≤ C3

(∫ T

0

∫ 2π

0

[Qη](x, t)η(x, t)dxdt

) 1
2

‖(η(·, T ), w(·, T ))‖Ub,d
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where C3 > 0 is a constant. Consequently,
∫ T

0

∫ 2π

0

[Qη](x, t)η(x, t)dxdt ≥ C−2
3 ‖(η(·, T ), w(·, T ))‖2

Ub,d

Since

E[η, w](T ) − E[η, w](0) = −2

∫ T

0

∫ 2π

0

[Qη](x, t)η(x, t)dxdt,

there exists a constant C > 0 by assumption (i) such that

E[η, w](T ) ≤ E[η, w](0) − CE[η, w](T ).

Thus

E[η, w](T ) ≤ 1

1 + C
E[η, w](0).

The theorem follows then consequently. The proof is complete. �

Remark 2.16. If a = c ≥ 0 or a < 0 and c < 0, then Assumption (i) of Theorem
2.15 is satisfied. Assumption (ii) of Theorem 2.15 is also satisfied if, in addition,
b = 0. �

Remark 2.17. A similar theorem holds if the feedback control is acting on the
second equation instead of the first one. �

The assumptions of Theorem 2.15 are quite restrictive. According to Table 1,
the theorem may be applied only in the cases of No. 5, 13 and 14. In particular,
it cannot be applied for the case where both b and d are not zero. This is mainly
caused by the simple feedback control law we have used. If some more complicated
linear feedback control laws are used, we will have much stronger stabilizability
results. To see this, we rewrite system (2.22) as an abstract control system in the
Hilbert space V :

d

dt
~η = A~η + B~h, ~η(0) = ~η0 (2.37)

with

~η =

(
η
w

)
, ~η0 =

(
η0

w0

)
, ~h =

(
h1

h2

)
, B~h =




(I − b∂2
x)−1Qh1

0




and the operator A is as given in (2.14), which is an infinitesimal generator of a
C0 group S(t) in the space V and A∗ = −A. Note that B is a bounded linear
operator from the space L2(0, 2π) to the space V . The following theorem is derived
from Theorem 2.12 and a classical principle exact controllability implies exponential
stabilizability for conservative control systems [40, 24].

Theorem 2.18. Assume that the assumptions of Theorem 2.12 are satisfied. Then

(i) there exist a T > 0 and a δ > 0 such that

∫ T

0

‖B∗S∗(t)~η0‖2
L2(0,2π) dt ≥ δ‖~η0‖2

V (2.38)

for any ~η0 ∈ V.
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(ii) For any given α > 0, there exists an operator K ∈ L(V , L2(0, 2π)) such that
if one chooses

~h = K~η
in (2.37), then the resulting closed-loop system

d

dt
~η = A~η + BK~η, ~η(0) = ~η0 (2.39)

has the property that its solution satisfies

‖~η(t)‖Y ≤M‖~η0‖Ve−αt (2.40)

for any t ≥ 0 where M is a constant independent of ~η0.

Remark 2.19. According to Slemrod [40], one can choose

K = −B∗D−1
T,α

with

DT,α~η =

∫ T

0

e−2αtS(−t)BB∗S∗(−t)~η dt.

In addition, if one simply chooses K = −B∗, then there exists a ν > 0 such that
estimate (2.40) holds with α replaced by ν. �

2.3. Linear systems with two control inputs. In this subsection we study
control and stabilization of the following linear system with two control inputs.





ηt + wx + awxxx − bηtxx = f for x ∈ (0, 2π), t ∈ (0, T ),

wt + ηx + cηxxx − dwtxx = g, for x ∈ (0, 2π), t ∈ (0, T ),

∂rη
∂xr (t, 0) = ∂rη

∂xr (t, 2π), for t ∈ (0, T ), 0 ≤ r ≤ r0,

∂qw
∂xq (t, 0) = ∂qw

∂xq (t, 2π), for t ∈ (0, T ), 0 ≤ q ≤ q0,

η(0, x) = η0(x), w(0, x) = w0(x), x ∈ (0, 2π).

(2.41)

We assume throughout this subsection that

a = c, b = d. (2.42)

In consideration of practical applications, we require that

[f(·, t)] =

∫ 2π

0

f(x, t)dx = 0, [g(·, t)] =

∫ 2π

0

g(x, t)dx = 0.

With this restriction on f and g, any smooth solution (η(x, t), w(x, t)) has the
property that

d

dt

∫ 2π

0

η(x, t)dx = 0,
d

dt

∫ 2π

0

w(x, t)dx = 0

for any t. Thus the quantities [η(·, t)] and [w(·, t)], the mean values of η and w, are
conserved.
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A more interesting case is obtained if some a priori restrictions are imposed on
the applied control f(x, t) and g(x, t). Let us suppose that ρ(x) is a nonnegative
periodic function of period 2π supported in ω such that

[ρ] =

∫ 2π

0

ρ(x)dx = 1.

For any function h = h(x, t), we define the control operator G by

[Gh](x, t) = ρ(x)

(
h(x, t) −

∫ 2π

0

ρ(y)h(y, t)dy

)
. (2.43)

Our control inputs f and g in (2.41) will take the form:

f(x, t) = [Gh1](x, t), g(x, t) = [Gh2](x, t) (2.44)

and (2.41) becomes




ηt + wx + awxxx − bηtxx = Gh1 for x ∈ (0, 2π), t ∈ (0, T )

wt + ηx + aηxxx − bwtxx = Gh2 for x ∈ (0, 2π), t ∈ (0, T )

∂rη
∂xr (t, 0) = ∂rη

∂xr (t, 2π) for t ∈ (0, T ), 0 ≤ r ≤ r0

∂qw
∂xq (t, 0) = ∂qw

∂xq (t, 2π) for t ∈ (0, T ), 0 ≤ q ≤ q0

η(0, x) = η0(x), w(0, x) = w0(x) for x ∈ (0, 2π)

(2.45)

with h1(x, t) and h2(x, t) as our new control inputs. Note that
∫ 2π

0

[Gh](x, t)dx =

∫ 2π

0

ρ(x)h(x, t)dx −
∫ 2π

0

ρ(x)dx

∫ 2π

0

ρ(y)h(y, t)dy = 0

because of the restriction on ρ. The mean values of both Gh1 and Gh2 are zero.
The next two technique lemmas are useful in discussing control properties of system
(2.45).

Lemma 2.20. Let s ∈ R be given. There exists a constant C depending only on s
such that

‖Gh‖Hs
p
≤ C‖h‖Hs

p
(2.46)

for any h ∈ Hs
p . In addition,

∫ 2π

0

[Gξ](x)ξ(x)dx =

∫ 2π

0

ρ(x)

∣∣∣∣ξ(x) −
∫ 2π

0

ρ(y)ξ(y)dy

∣∣∣∣
2

dx (2.47)

for any ξ ∈ L2(0, 2π).

Proof. If s ≥ 0,

[Gh](x) = ρ(x)

(
h(x) −

∫ 2π

0

ρ(y)h(y)dy

)
.

Because ρ = ρ(x) is assumed to be smooth, it is easy to see that the estimate (2.46)
holds. If s < 0, for any h ∈ Hs

p , we define Gh by

[Gh](x) = ρ(x)h(x) − ρ(x)〈ρ, h〉−s,

where 〈·, ·〉s is defined in (2.5). For any h ∈ Hs
p , ρh ∈ Hs

p and ρ〈ρ, h〉−s ∈ Hs
p , it is

straightforward to verify that (2.46) holds.
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To see that (2.47) is true, note that
∫ 2π

0

ρ(y)dy = 1

and
∫ 2π

0

ρ(x)

∫ 2π

0

ρ(y)ξ(y)dy

(
ξ(x) −

∫ 2π

0

ρ(y)ξ(y)dy

)
dx

=

(
1 −

∫ 2π

0

ρ(x)dx

) ∣∣∣∣
∫ 2π

0

ρ(y)ξ(y)dy

∣∣∣∣
2

= 0.

(2.47) follows then by a direct computation. �

Lemma 2.21. Let φj(x) = eijx for j = ±1,±2, · · · and

mj,k =
1

2π

∫ 2π

0

G[φj ](x)φk(x)dx, j, k = ±1,±2, · · · .

In addition, for any given finite sequence of nonzero integers kj, j = 1, 2, 3, · · ·n,
let

An =




mk1,k1
· · · mk1,kn

mk2,k1
· · · mk2,kn

· · ·
· · ·
· · ·

mkn,k1
· · · mkn,kn




.

Then

(i) there exists a constant µ > 0 such that

mk,k ≥ µ for any k = ±1,±2, · · · ; (2.48)

(ii) An is an invertible n× n hermitian matrix.

Proof. Note that

mk,k =
1

2π

∫ 2π

0

G[φk](x)φk(x)dx =
1

2π

(∫ 2π

0

ρ(x)dx −
∣∣∣∣
∫ 2π

0

ρ(x)φk(x)dx

∣∣∣∣
2
)
> 0.

for any k 6= 0, and

lim
k→∞

mk,k =
1

2π

∫ 2π

0

ρ(x)dx.

Estimate (2.48) follows consequently. To see that (ii) is true, let Σn be the space
spanned by φkj

, j = 1, 2, · · · , n. In addition, let pj be the projection of G(φkj
)

onto the space Σn, i.e.,

pj =

n∑

l=1

mkj ,kl
φkl

for j = 1, 2, · · · , n. It suffices to show that pj, j = 1, 2, · · · , n is a linearly indepen-
dent set in the space Σn. Assume that there exist scalars λj , j = 1, 2, · · · , n such
that

λ1p1(x) + λ2p2(x) + · · · + λnpn(x) ≡ 0.
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Then, by the definition of pj ,

n∑

j,l=1

λjmkj ,kl
φkl

=
n∑

l=1

〈
G




n∑

j=1

λjφkj


 , φkl

〉
φkl

≡ 0.

Here < f, g > stands for the inner product of f and g in the space L2(0, 2π). Since
φkl

, l = 1, 2, · · · , n is a basis of Σn,
〈
G




n∑

j=1

λjφkj


 , φkl

〉
= 0

for l = 1, 2, · · · , n. As a result,
〈
G




n∑

j=1

λjφkj


 ,

n∑

l=1

λlφkl

〉
= 0,

which implies that
n∑

l=1

λlφkl
= 0,

and therefore

λl = 0, l = 1, 2, · · · , n.
The proof is complete. �

Now we return to the study of the controllability of system (2.45). Consider the
change of variables

η = v + u and w = v − u.

In terms of these new variables, the equations in (2.45) become

∂t

(
v
u

)
+ B

(
v
u

)
=

(
H1G(f∗)
H1G(g∗)

)
(2.49)

with

f∗ = (h1 + h2)/2, g∗ = (h1 − h2)/2,

where B is the skew-adjoint operator with symbol

ik

(
σ(k) 0

0 −σ(k)

)
, σ(k) =

1 − ak2

1 + bk2

and the symbol of H1 is 1
1+bk2 .

We take f∗(x, t) in (2.49) to have the following form

f∗(x, t) =

∞∑

j=−∞

fjqj(t)φj(x)

where φj(x) = eijx, j = 0,±1,±2. · · · , fj and qj(t) are to be determined later.
Then

d

dt
v̂k(t) + ikσ(k)v̂k(t) =

1

1 + bk2

∞∑

j=−∞

fjqj(t)mj,k

where

mj,k =
1

2π

∫ 2π

0

G(φj)(x)φk(x)dx.
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Thus,

v̂k(T ) − e−ikσ(k)T v̂k(0) =
1

1 + bk2

∞∑

j=−∞

fjmj,k

∫ T

0

e−ikσ(k)(T−τ)qj(τ)dτ

or

v̂k(T )eikσ(k)T − v̂k(0) =
1

1 + bk2

∞∑

j=−∞

fjmj,k

∫ T

0

eikσ(k)τ qj(τ)dτ.

Let pk(t) = e−λkt = e−ikσ(k)t. Recall that I is a subset of Z such that λk1
6= λk2

for any k1, k2 ∈ I with k1 6= k2. If a 6= 0, then kσ(k) → ±∞ as k → ±∞ and
there exists an integer k∗ > 0 such that k ∈ I if |k| > k∗. Thus there are only
finite many integers in I, saying, kj , j = 1, 2, · · · , n, such that one can find another
integer k 6= kj with λk = λkj

. Let

Ij = {k ∈ Z, k 6= kj , λk = λkj
}, j = 1, 2, · · · , n.

Then

Z = I ∪ I1 ∪ I2 ∪ · · · ∪ In.

Note that each Ij contains at most two integers. Without loss of generality, we may
assume that

Ij = {kj,1, kj,2} j = 1, 2, · · · , n
and rewrite kj as kj,0. Moreover, P ≡ {pk| k ∈ I} forms a Riesz basis for its closed
span, PT , in L2(0, T ) if

T >
2π

γ
where γ := lim inf

k→∞
(λk+1 − λk).

We let L ≡ {qj | j ∈ I} be the unique dual Riesz basis for P in PT , i.e., the functions
in L are the unique elements of PT such that

∫ T

0

qj(t)pk(t)dt = δkj , j, k ∈ I.

In addition, we choose

qk = qkj
if k ∈ Ij .

For such choice of qj(t), −∞ < j <∞, we have then, for any k ∈ N,

v̂k(T )eikσ(k)T − v̂k(0) =
1

1 + bk2
fkmk,k, if k 6= kj,l, l = 0, 1, 2, j = 1, 2, · · · , n;

(2.50)





v̂kj,0
(T )eikj,0σ(kj,0)T − v̂kj,0

(0) = 1
1+bk2

j,0

∑2
l=0 fkj,l

mkj,l,kj,0
,

v̂kj,1
(T )eikj,1σ(kj,1)T − v̂kj,1

(0) = 1
1+bk2

j,1

∑2
l=0 fkj,l

mkj,l,kj,1
,

v̂kj,2
(T )eikj,2σ(kj,2)T − v̂kj,2

(0) = 1
1+bk2

j,2

∑2
l=0 fkj,l

mkj,l,kj,2

(2.51)

if k = kj,l for j = 1, 2, · · · , n and l = 0, 1, 2. According to Lemma 2.21, for given
initial state v0 and terminal state v1 with zero mean, system (2.50)-(2.51) admits

a unique solution ~f(· · · , f−2, f−1, f1, f2, · · · ). In particular,

fk =
1 + bk2

mk,k

(
v̂1

ke
ikσ(k)T − v̂0

k

)
, if |k| ≥ k∗.
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Similarly, for given initial state u0 and terminal state u1 with zero mean, choose

g∗(x, t) =

∞∑

j=−∞

gjq−j(t)φj(x)

with

gk =
1 + dk2

mk,k

(
û1

ke
ikσ(k)T − û0

k

)
, if |k| ≥ k∗.

Then the system (2.49) admits a unique solution (v(x, t), u(x, t)) satisfying

(v(x, 0), u(x, 0)) = (v0(x), u0(x)), (v(x, T ), u(x, T )) = (v1(x), u1(x))

for x ∈ (0, 2π). This analysis leads to the following controllability result for the
system (2.49).

Proposition 2.22. Assume that the parameter a 6= 0 and T > 2π
γ . Let s, s′ ∈ R

be given and let n1 = 2 if b 6= 0 and n1 = 0 if b = 0. Then, for any given initial
state (v0, u0) ∈ Hs

0,p×Hs′

0,p and the terminal state (v1, u1) ∈ Hs
0,p×Hs′

0,p, there exist

f∗ ∈ L2(0, T ;Hs−n1

0,p ) and g∗ ∈ L2(0, T ;Hs′−n1

0,p )

such that the system (2.49) admits a unique solution (v, u) ∈ C([0, T ];Hs
0,p ×Hs′

0,p)
satisfying

(v(x, 0), u(x, 0)) = (v0(x), u0(x)) and (v(x, T ), u(x, T )) = (v1(x), u1(x)).

Moreover, there exists a constant C > 0 depending only on T , s and s′ such that

‖f∗‖
L2(0,T ;H

s−n1
0,p )

+ ‖g∗‖
L2(0,T ;H

s′−n1
0,p )

≤C
(
‖(v0, u0)‖Hs

0,p×Hs′

0,p
+ ‖(v1, u1)‖Hs

0,p×Hs′

0,p

)
.

Consequently we have the following exact controllability result for the original
system (2.45).

Theorem 2.23. Assume that the parameter a 6= 0 and T > 2π
γ . Let s ∈ R be

given. Then, for any (η0, w0) and (η1, w1) belonging to the space Hs
0,p ×Hs

0,p, there

exist h1, h2 ∈ L2(0, T ;Hs−n1

0,p ) such that the system (2.45) admits a unique solution

(η, w) ∈ C([0, T ];Hs
0,p ×Hs

0,p) satisfying

η(·, T ) = η1(·), w(·, T ) = w1(·) in Hs
0,p.

Remark 2.24. The following remarks are in order.

(i) The choice of the control inputs in Proposition 2.22 and Theorem 2.23 are
based on the moment method instead of the HUM. For this approach, it is
necessary to apply controls on both equations.

(ii) In contrast to using only one control input, the advantage of using two control
inputs is that the system (2.45) is exactly controllable in Hs

0,p ×Hs
0,p for any

s ∈ R. �

Next we turn to the stabilization issue. Again, we rewrite system (2.45) as an
abstract control system in the space V s

0,0:

d

dt
~η = A1~η + B1

~h, ~η(0) = ~η0 (2.52)
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where A1 = A with a = c and b = d, and

B1
~h =




(I − b∂2
x)−1Gh1

(I − b∂2
x)−1Gh2


 .

The following stabilization result using two feedback controls will then be useful.

Theorem 2.25. Assume that the parameter a 6= 0. Let s ∈ R be given. For any
given α > 0, there exists an operator K1 ∈ L(V s

0,0, V
s−n1

0,0 ) such that if one chooses

~h = K1~η

in (2.52), then the resulting closed-loop system

d

dt
~η = A1~η + B1K1~η, ~η(0) = ~η0 (2.53)

has the property that its solution satisfies

‖~η(t)‖V s ≤M‖~η0‖V se−αt (2.54)

for any t ≥ 0 where M is a constant independent of ~η0.

Proof. The proof is the same as that of Theorem 2.18. �

3. Nonlinear systems. In this section we consider the (nonlinear) Boussinesq
systems posed on the finite interval (0, 2π)





ηt + wx + (ηw)x + awxxx − bηtxx = f for x ∈ (0, 2π), t ∈ (0, T ),

wt + ηx + wwx + cηxxx − dwtxx = g for x ∈ (0, 2π), t ∈ (0, T )
(3.1)

with the periodic boundary conditions




∂rη
∂xr (t, 0) = ∂rη

∂xr (t, 2π) for t ∈ (0, T ), 0 ≤ r ≤ r0,

∂qw
∂xq (t, 0) = ∂qw

∂xq (t, 2π) for t ∈ (0, T ), 0 ≤ q ≤ q0,

(3.2)

and the initial condition

η(0, x) = η0(x), w(0, x) = w0(x), x ∈ (0, 2π). (3.3)

Its well-posedness in a suitable Sobolev space will be studied in subsection 3.1. Its
controllability and stabilizability will be investigated in subsection 3.2 and subsec-
tion 3.3, respectively.

3.1. Well-posedness. The following lemma, whose proof can be found in [6], is
needed in this study.

Lemma 3.1. Let s ≥ −1 be given. There exists a constant C > 0 depending only
on s such that

‖fg‖Hs
p
≤ C‖f‖Hs+1

p
‖g‖Hs+1

p

for any f, g ∈ Hs+1
p .
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We first consider the case when both parameters b and d in (3.1) are positive.
Such systems are called weakly dispersive systems in [6]. Recall that l is an integer
such that

h(k) = (ω1(k)/ω2(k))
1/2 ∼ C|k|l, as |k| → ∞

and

V s = Hs
p ×Hs+l

p .

Theorem 3.2. Assume b > 0 and d > 0. Let T > 0 and s ≥ 0 be given such that
s ≥ 0 if l ≥ 0 and s ≥ 1 if l = −1. Then there exists a constant r > 0 such that for
any (η0, w0) ∈ V s and any (f, g) ∈ L1(0, T ;V s−2) satisfying

‖(η0, w0)‖V s ≤ r and ‖(f, g)‖L1(0,T ;V s−2) ≤ r, (3.4)

the system (3.1) admits a unique solution (η, w) ∈ C([0, T ];V s) satisfying the bound-
ary condition (3.2) and the initial condition (3.3). Moreover, the corresponding
solution map is locally Lipschitz continuous and

‖(η, w)(t)‖V s ≤ C‖(η0, w0)‖V s (3.5)

for any 0 ≤ t ≤ T where C is a constant depending only on s, but independent of
T and r.

Remark 3.3. It is also true that for any r > 0 there exists a T > 0 depending
only on s and r such that for (η0, w0) ∈ V s satisfying (3.4), the system (3.1)-(3.3)
admits a unique solution (η, w) ∈ C([0, T ];V s) satisfying the estimate (3.5). �

Proof. Rewrite (3.1)-(3.3) in its integral form:

(η, w)(t) = S(t)(η0, w0) +

∫ t

0

S(t− τ)(f, g)(τ)dτ −
∫ t

0

S(t− τ)((ηw)x, wwx)(τ)dτ.

This suggests us, for given (η0, w0) ∈ V s and (f, g) ∈ L1(0, T ;V s−2), to define a
map

Γ : C([0, T ];V s) → C([0, T ];V s)

by

Γ(u, v)(t) = S(t)(η0, w0) +

∫ t

0

S(t− τ)(f, g)(τ)dτ −
∫ t

0

S(t− τ)((uv)x, vvx)(τ)dτ

(3.6)
for any (u, v) ∈ C([0, T ];V s). According to Theorem 2.4, there exist constants
C1 > 0 and C2 > 0 independent of T such that

‖Γ(u, v)(t)‖V s ≤ C1

(
‖(η0, w0)‖V s + ‖(f, g)‖L1(0,T ;V s−2)

)

+C1

∫ T

0

‖((uv)x, vvx)(τ)‖V s−2dτ

≤ C1

(
‖(η0, w0)‖V s + ‖(f, g)‖L1(0,T ;V s−2)

)
+ C1

∫ T

0

‖(uv, v2/2)(τ)‖V s−1dτ

≤ C1

(
‖(η0, w0)‖V s + ‖(f, g)‖L1(0,T ;V s−2)

)
+ C1C2T sup

0≤t≤T
‖(u, v)(t)‖2

V s
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for any 0 ≤ t ≤ T . Let r > 0 and R > 0 be chosen according to

R = 2C1r, 4C2
1C2rT =

1

2
, (3.7)

then, if ‖(η0, w0)‖V s + ‖(f, g)‖L1(0,T ;V s−2) ≤ r and ‖(u, v)‖C([0,T ];V s) ≤ R, we have
that

‖Γ(u, v)(t)‖V s ≤ C1r + 4C2
1r

2C1C2T =
3

2
C1r < R.

Thus Γ maps the ball B(0, R) in the space C([0, T ];V s) into itself. Moreover, for
any (u, v) ∈ B(0, R) and any (µ, ν) ∈ B(0, R),

‖Γ(u, v)(t) − Γ(µ, ν)(t)‖V s ≤ C1

∫ T

0

‖((uv)x − (µν)x, vvx − ννx)(τ)‖V s−2dτ

≤ C1

∫ T

0

‖(uv − µν,
1

2
v2 − 1

2
ν2)(τ)‖V s−1dτ

≤ C1C2T
(
‖(u, v)‖C([0,T ];V s) + ‖(µ, ν)‖C([0,T ];V s)

)
‖(u− µ, v − ν)‖C([0,T ];V s)

≤ 4C2
1C2rT ‖(u− µ, v − ν)‖C([0,T ];V s)

≤ 1

2
‖(u− µ, v − ν)‖C([0,T ];V s).

Thus, Γ is a contraction mapping on the ball B(0, R) in the space C([0, T ];V s).
Its fixed point (η, w) is thus the desired solution of (3.1)-(3.3). The proof is
complete. �

Next we consider the system (3.1) with

b = d = 0, a 6= 0, c 6= 0. (3.8)

In view of the constraints (C1) and (C2), the only admissible case is when a = c > 0.
The system (3.1) then takes the form





ηt + wx + (ηw)x + awxxx = f,

wt + ηx + wwx + aηxxx = g,
(3.9)

for (x, t) ∈ (0, 2π) × (0, T ). Introducing v and u by η = v + u and w = v − u, we
obtained the equivalent system





vt + vx + avxxx + 1
2 [(v − u)(v + u)]x + 1

2 (v − u)(v − u)x = 1
2 (f + g),

ut − ux − auxxx + 1
2 [(v − u)(v + u)]x − 1

2 (v − u)(v − u)x = 1
2 (f − g),

(3.10)
for (x, t) ∈ (0, 2π) × (0, T ). This is a system of two linear KdV-equations coupled
through nonlinear terms. One can apply the theory developed by Kato [15] for the
scalar KdV to obtain the following local well-posedness result.

Theorem 3.4. Let s > 3
2 and T > 0 be given and assume that

b = d = 0, a = c > 0.
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Then there exists a constant r > 0 such that for any (η0, w0) ∈ V s and any (f, g) ∈
L1(0, T ;V s) satisfying

‖(η0, w0)‖V s ≤ r and ‖(f, g)‖L1(0,T ;V s) ≤ r,

the system (3.1) admits a unique solution (η, w) ∈ C([0, T ];V s) satisfying the bound-
ary condition (3.2) and the initial condition (3.3). Moreover, the corresponding
solution map is continuous.

Next we turn to the other admissible Boussinesq systems (3.1) with the restric-
tions:

(C3) c = 0, b = 0, a < 0, d > 0;

or

(C4) a = c > 0, b = 0, d > 0;

or

(C5) a < 0, c < 0, b = 0, d > 0.

By the same arguments used in the proofs of Theorem 3.1 and Theorem 3.5 in [6]
we have the following local well-posedness result for the system (3.1)-(3.3).

Theorem 3.5. Assume the parameters a, b, c and d in (3.1) satisfy one of the
assumptions (C3), (C4) and (C5). Let s ≥ 1 and T > 0 be given. Then there exists
a constant r > 0 such that for any (η0, w0) ∈ V s and any (f, g) ∈ L2(0, T ;Hs

p ×Hs
p)

satisfying

‖(η0, w0)‖V s ≤ r and ‖(f, g)‖L2(0,T ;Hs
p×Hs

p) ≤ r,

the system (3.1) admits a unique solution (η, w) ∈ C([0, T ];V s)) satisfying the
boundary condition (3.2) and the initial condition (3.3). Moreover, the correspond-
ing solution map is continuous.

Now consideration is turned to systems (3.1) with

(C6) c = d = 0, a < 0, b > 0

or

(C7) a = b = 0, d > 0, c < 0,

or

(C8) a = c ≥ 0, d = 0, b > 0.

Note that if either of (C6) and (C7) is satisfied, we have the number l = 0 whilst
l = −1 if (C8) is satisfied.

Theorem 3.6. Assume the parameters a, b, c and d in (3.1) satisfy (C6). Let
s ≥ 2 and T > 0 be given. Then there exists a constant r > 0 such that for any
(η0, w0) ∈ V s and any (f, g) ∈ L2(0, T ;Hs−2

p ×Hs
p) satisfying

‖(η0, w0)‖V s ≤ r and ‖(f, g)‖L2(0,T ;Hs−2
p ×Hs

p) ≤ r,

the system (3.1)-(3.3) admits a unique solution (η, w) ∈ C([0, T ];V s). Moreover,
the corresponding solution map is continuous.

Remark 3.7. If assumption (C7) is satisfied instead of (C6), the theorem holds
with (f, g) ∈ L2(0, T ;Hs

p ×Hs−2
p ) instead of (f, g) ∈ L2(0, T ;Hs−2

p ×Hs
p). �
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Theorem 3.8. Assume the parameters a, b, c and d in (3.1) satisfy (C8) . Let
s ≥ 2 and T > 0 be given. Then there exists a constant r > 0 such that for any
(η0, w0) ∈ V s and any (f, g) ∈ L2(0, T ;Hs−1

p ×Hs−1
p ) satisfying

‖(η0, w0)‖V s ≤ r and ‖(f, g)‖L2(0,T ;Hs−1
p ×Hs−1

p ) ≤ r,

the system (3.1) admits a unique solution (η, w) ∈ C([0, T ];V s) satisfying the bound-
ary condition (3.2) and the initial condition (3.3). Moreover, the corresponding
solution map is continuous.

Both Theorem 3.6 and Theorem 3.8 can be proved by the same arguments as
those in the proofs of Theorem 3.9 and Theorem 3.11 in [6] although the theorems
in [6] are established for systems posed on the whole real line R.

3.2. Exact controllability.

In this subsection, we study first the exact controllability of the nonlinear system
with a single control input:





ηt + wx + (ηw)x + awxxx − bηtxx = Qh for x ∈ (0, 2π), t ∈ (0, T ),

wt + ηx + wwx + cηxxx − dwtxx = 0 for x ∈ (0, 2π), t ∈ (0, T ),

∂rη
∂xr (t, 0) = ∂rη

∂xr (t, 2π) for t ∈ (0, T ), 0 ≤ r ≤ 2,

∂qw
∂xq (t, 0) = ∂qw

∂xq (t, 2π) for t ∈ (0, T ), 0 ≤ q ≤ 2,

η(0, x) = η0(x), w(0, x) = w0(x) for x ∈ (0, 2π).

(3.11)

We assume that the coefficients a, b, c and d are all different from 0, hence

r0 = q0 = 2, l̃ = l = e = 0.

According to Table 1, the associated linear system is exactly controllable in the

space V 2
∗,0 = H2

p ×H2
0,p with T > 2π

√
db
ac . The following theorem is one of the main

results of this paper, which shows that the nonlinear system (3.11) is locally exactly
controllable.

Theorem 3.9. Assume that a, b, c, d 6= 0, and let T > 2π
√

db
ac be given. Then there

exists a constant r > 0 such that for any (η0, w0), (η1, w1) ∈ V 2
∗,0 satisfying

∥∥(η0, w0)
∥∥

V 2 ≤ r,
∥∥(η1, w1)

∥∥
V 2 ≤ r,

one may find a control function h ∈ L2(0, T ;L2(0, 2π)) such that (3.11) admits a
unique solution

(η, w) ∈ C([0, T ];V 2
∗,0) ∩ C1(0, T ;V 1

∗,0)

satisfying

η(T, x) = η1(x), w(T, x) = w1(x), x ∈ (0, 2π). (3.12)

Proof. In order to prove the above result, we rewrite (3.11) in its integral form:

(η, w)(t) = S(t)(η0, w0)+

∫ t

0

S(t− τ)(Qh, 0)(τ)dτ −
∫ t

0

S(t− τ)((ηw)x, wwx)(τ)dτ.
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For given (η0, w0), (η1, w1) ∈ V 2
∗,0 and (u, v) ∈ C([0, T ];V 2

∗,0), let

(p0, q0) = S(T )(η0, w0), (p1, q1) =

∫ T

0

S(T − τ)((uv)x, vvx)(τ)dτ.

By the exact controllability results established in Section 2, there exists a h ∈
L2((0, 2π) × (0, T )) such that

(φ, ψ)(t) =

∫ t

0

S(t− τ)(Qh, 0)(τ)dτ (3.13)

satisfies

(φ, ψ)(0) = (0, 0), (φ, ψ)(T ) = (η1, w1) − (p0, q0) + (p1, q1). (3.14)

Moreover there exists a constant C1 > 0 depending only on T such that

‖h‖L2((0,2π)×(0,T )) ≤ C1

(
‖(η0, w0)‖V 2 + ‖(η1, w1)‖V 2 + ‖(p1, q1)‖V 2

)
. (3.15)

It thus defines, for given (η0, w0) and (η1, w1) in V 2
0 , a nonlinear map L from the

space C([0, T ];V 2
∗,0) to the space L2((0, 2π) × (0, T )):

h := L(u, v), for any (u, v) ∈ C([0, T ];V 2
∗,0)

such that (3.13)-(3.15) hold.
For given (η0, w0), (η1, w1) ∈ V 2

∗,0, let us define a nonlinear map

Γ : C([0, T ];V 2
∗,0) → C([0, T ];V 2

∗,0)

by

Γ(u, v)(t)

=S(t)(η0, w0) +

∫ t

0

S(t− τ)(QL(u, v), 0)(τ)dτ −
∫ t

0

S(t− τ)((uv)x, vvx)(τ)dτ.

By the definition of the operator L,

Γ(u, v)(0) = (η0, w0), Γ(u, v)(T ) = (η1, w1).

Consequently, if we can show that Γ is a contraction map in a ball of the space
C([0, T ];V 2

∗,0), then its fixed point will solve the system (3.11) and satisfy (3.12).
The proof will be then completed.

To this end, let r and R be given positive numbers (to be specified later), and
assume that

||(η0, w0)||V 2 ≤ r, ||(η1, w1)||V 2 ≤ r, ||(u, v)||XT
≤ R,

where XT := C([0, T ];V 2
∗,0). There exist constants C2 and C3 independent of r and

R such that

||Γ(u, v)||XT
≤ ||(η0, w0)||V 2 + C2T ‖(u, v)‖2

XT

+C1C2T
1
2

(
||(η1, w1)||V 2 + ||(η0, w0)||V 2 + C3‖(u, v)‖2

XT

)

≤ (1 + 2C1C2T
1
2 )r + (C1C3 + T

1
2 )C2T

1
2R2 =: A′r +B′R2.



306 SORIN MICU, JAIME H. ORTEGA, LIONEL ROSER AND BING-YU ZHANG

Moreover, if (u1, v1) and (u2, v2) belong to the space XT and

‖(u1, v1)‖XT
≤ R, ‖(u2, v2)‖XT

≤ R,

then

||Γ(u1, v1) − Γ(u2, v2)||XT
≤ 2C1C2C3T

1
2R‖(u1 − u2, v1 − v2)‖XT

+2C2TR‖(u1 − u2, v1 − v2)‖XT

≤ 2C2T
1
2 (T

1
2 + C1C3)R||(u1 − u2, v1 − v2)||XT

:= B′′R||(u1 − u2, v1 − v2)||.
Choose r and R such that

A′r +B′R2 ≤ R, B′′R ≤ 1

2
. (3.16)

Then
‖Γ(u, v)‖XT

≤ R

and

‖Γ(u1, v1) − Γ(u2, v2)‖XT
≤ 1

2
‖(u1 − u2, v1 − v2)‖XT

.

Thus the map Γ is a contraction in the ball B(0, R) of the space XT if r and R are
chosen according to (3.16). The proof is complete. �

Next we study the exact controllability of the nonlinear system with two control
inputs:





ηt + wx + (ηw)x + awxxx − bηtxx = Gh1 for x ∈ (0, 2π), t ∈ (0, T )

wt + ηx + wwx + cηxxx − dwtxx = Gh2, for x ∈ (0, 2π), t ∈ (0, T )

∂rη
∂xr (t, 0) = ∂rη

∂xr (t, 2π), for t ∈ (0, T ), 0 ≤ r ≤ 2

∂qw
∂xq (t, 0) = ∂qw

∂xq (t, 2π), for t ∈ (0, T ), 0 ≤ q ≤ 2

η(0, x) = η0(x), w(0, x) = w0(x), x ∈ (0, 2π).

(3.17)

According to Theorem 2.23, if a = c 6= 0, b = d, and T > 2π
γ , then the associated

linear system is exactly controllable in the space Hs
0,p × Hs

0,p for any s ∈ R. The
theorem presented below extends this result partially to the nonlinear system (3.17).

Theorem 3.10. Let s ≥ 0 be given. Assume that a = c 6= 0 and b = d 6= 0, and
T > 2π

γ . Then there exists a constant r > 0 such that for any (η0, w0), (η1, w1) ∈
V s

0,0 satisfying ∥∥(η0, w0)
∥∥

V s ≤ r,
∥∥(η1, w1)

∥∥
V s ≤ r,

one may find control functions h1, h2 ∈ L2(0, T ;V s−2) such that (3.17) admits a
unique solution (η, w) ∈ C([0, T ];V s

0,0) satisfying

η(T, x) = η1(x), w(T, x) = w1(x), x ∈ (0, 2π). (3.18)
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Proof. The proof is very similar to that of Theorem 3.9 and is therefore omitted. �

3.3. Stabilization. In this subsection, for given s ≥ 0, we consider the nonlinear
closed-loop system

d

dt
~η −A~η +N(~η) = B̃K~η, ~η(0) = ~η0 (3.19)

in the space V s where

N(~η) =




(I − b∂2
x)−1(ηw)x

(I − d∂2
x)−1wwx


 ,

B̃ = B or B1, K is a linear feedback operator bounded from the space V s to the

domain of B̃. As in subsection 3.2, we assume that all the coefficients a, b, c and
d are not zero. Thus l = 0 and V s ∼ Hs

p ×Hs
p . Using the same argument as that

in the proof of Theorem 3.2 yields the following well-posedness result for system
(3.19).

Theorem 3.11. Let s ≥ 0 and T > 0 be given. Assume that a, b, c, d are all not
zero. Then there exists a r > 0 such that for any ~η0 ∈ V s satisfying ‖~η0‖V s ≤ r,
(3.19) admits a unique solution ~η ∈ C([0, T ];V s). Moreover, the solution map is
locally Lipschitz continuous

Next we show that, under the assumptions of Theorem 2.18 or Theorem 2.25, if
K is K or K1, then small amplitude solutions of (3.19) exist for all time t > 0 and
decay exponentially as t→ ∞. More precisely, we have the following two theorems.

Theorem 3.12. Assume that a 6= 0, c 6= 0, b > 0, d > 0, B̃ = B. In addition,
for a given α > 0, let K = K as chosen in Theorem 2.18. Then there exist r > 0
and M > 0 such that for any ~η0 ∈ V satisfying ‖~η0‖V ≤ r, (3.19) admits a unique
solution ~η ∈ C(R+;V). Moreover,

‖~η(t)‖V ≤M‖~η0‖Ve−αt

for any t ≥ 0.

Theorem 3.13. Assume that a = c 6= 0, b = d > 0 and B̃ = B1. In addition,
for given s ≥ 0 and α > 0, let K = K1 as chosen in Theorem 2.25. There exist
r > 0 and M > 0 such that for any ~η0 ∈ V s

0,0 satisfying ‖~η0‖V s ≤ r, (3.19) admits

a unique solution ~η ∈ C(R+;V s
0,0). Moreover,

‖~η(t)‖V s ≤M‖~η0‖V se−αt

for any t ≥ 0.

We only provide a proof of Theorem 3.13. The proof of Theorem 3.12 is similar
and is therefore omitted.

Proof of Theorem 3.13: Let SF (t) be the C0 semigroup generated by A+B1K1.
Then, by Theorem 2.25, there exists a C1 > 0 such that

‖SF (t)~η0‖V s ≤ C1‖~η0‖V se−αt ∀ t ≥ 0. (3.20)

In addition, let C2 be a positive constant such that

‖N(~u)‖V s ≤ C2‖~u‖2
V s
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and

‖N(~u) −N(~v)‖V s ≤ C2

(
‖~u‖V s + ‖~v‖V s

)
‖~u− ~v‖V s

for any ~u, ~v ∈ V s. Let Ys,α be the space

Ys,α = {~u ∈ Cb([0,∞);V s); eαt~u ∈ Cb([0,∞);V s)}

with the norm

‖~u‖Ys,α
:= sup

0≤t<∞
‖eαt~u(t)‖V s .

Rewrite (3.19) in its integral form:

~η(t) = SF (t)~η0 −
∫ t

0

SF (t− τ)N(~η)(τ)dτ. (3.21)

For given ~η0 ∈ V s with ‖~η0‖V s = r (r > 0 to be determined), consider the map

Γ(~η)(t) = SF (t)~η0 −
∫ t

0

SF (t− τ)N(~η)(τ)dτ.

By (3.20),

‖Γ(~η)(t)‖V s ≤ C1e
−αt‖~η0‖V s + C1

∫ t

0

e−α(t−τ)‖N(~η)(τ)‖V sdτ

≤ C1e
−αt‖~η0‖V s + C1C2e

−αt sup
0≤τ≤t

‖eατ~η(τ)‖2
V s

for any t ≥ 0.
For b > 0, let Qb be the ball in the space Ys,α centered at zero of radius b. Then

for any ~η ∈ Qb, we have that

‖Γ(~η)‖Ys,α
≤ C1‖~η0‖V s + C1C2‖~η‖2

Ys,α
≤ C1r + C1C2b

2.

A similar calculation shows that for any ~u, ~v ∈ Qb,

‖Γ(~u) − Γ(~v)‖Ys,α
≤ 2bC1C2‖~u− ~v‖Ys,α

.

Consequently, if one chooses

b = 2C1r, with r ≤ r0 :=
1

8C2
1C2

,

then

‖Γ(~η)‖Ys,α
≤ b

and

‖Γ(~u) − Γ(~v)‖Ys,α
≤ 1

2
‖~u− ~v‖Ys,α

for any ~η, ~u and ~v in the ball Qb. The map Γ is a contraction on the ball Qb and
thus admits a fixed point ~η ∈ Qb, which is the unique solution of (3.19) and satisfies

‖~η(t)‖V s ≤ 2C1e
−αt‖~η0‖V s

for any t ≥ 0. The proof is then complete. �
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4. Concluding remarks. In this paper we have studied a family of Boussinesq
systems





ηt + wx + (ηw)x + awxxx − bηtxx = f,

wt + ηx + wwx + cηxxx − dwtxx = g
(4.1)

posed on the finite interval (0, 2π) with the periodic boundary conditions




∂rη
∂xr (t, 0) = ∂rη

∂xr (t, 2π) for t ∈ (0, T ), 0 ≤ r ≤ r0,

∂qw
∂xq (t, 0) = ∂qw

∂xq (t, 2π) for t ∈ (0, T ), 0 ≤ q ≤ q0

(4.2)

for its control and stabilization problems. Here, the forcing functions f and g, both
supported in a subinterval ω of (0, 2π), are considered as control inputs. Investiga-
tion is conducted first for the associated linear systems





ηt + wx + awxxx − bηtxx = f,

wt + ηx + cηxxx − dwtxx = g.
(4.3)

Different approaches are used to analyze the exact controllability of the linear system
(4.3) depending on employing a single control input (f or g) or two control inputs.
In the case of only one control action, the Hilbert Uniqueness Method is used to
acquire a complete description of exact controllability of the linear system (4.3).
System (4.3) is shown to be either exactly controllable or non-controllable based on
the values of the system parameters a, b, c and d. If two control inputs are allowed
to use, we first decouple the system (4.3), and then use the classical moment method
to establish its exact controllability. However, there is a serious restriction in this
approach though two controls are used instead of one; it is required that a = c
and b = d in (4.3) in order to have the system decoupled. On the other hand,
exact controllability results obtained using two controls via the moment method are
stronger. For instance, if a = c 6= 0, b = d > 0, system (4.3) is shown to be exactly
controllable in the space Hs

p ×Hs
p for any s ∈ R. By contrast, (4.3) is only shown to

be exactly controllable in the space H2
p ×H2

p if one uses just a single control input.
With the exact controllability results in our hands, we then turn to analyze

stabilizability of system (4.3) by the classical approach stabilizability via exact con-
trollability (cf . [40, 35]). Let

E[η, w](t) =

∫ 2π

0

(
|η|2 + b|ηx|2 + |w|2 + d|wx|2

)
dx.

d

dt
E[η, w](t) = 2Re

∫
ω

(
f(x, t)η(x, t) + g(x, t)w(x, t)

)
dx

for any smooth solution (η, w) of (4.2). If we choose

f(x, t) = −q(x)η(x, t), g(x, t) ≡ 0 (4.4)

where q is nonnegative smooth function supported on ω, a subinterval of (0, 2π),
we have shown that the resulting closed-loop system is exponentially stable if

(i) the norm ‖ ·‖Ubd
in the space Ubd is equivalent to the norm ‖ ·‖V 1 in the space

V 1 and
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(ii) the adjoint system of (4.3)




ξt + ux + cuxxx − bξtxx = f,

ut + ξx + aξxxx − dutxx = 0
(4.5)

is exactly controllable in the space V 1.

It should be pointed out that assumptions (i) and (ii) are quite restrictive which
limits a lot on the choice of the system parameters a, b, c and d. However, if more
complicated linear feedback control laws are used, then the resulting closed-loop
systems are exponentially stable as long as the corresponding open loop system is
exactly controllable.

The results obtained for linear system (4.3) are extended to nonlinear system
(4.1) with small amplitude solutions via contraction mapping principle. The key
to this approach is that the associated linear system must possess certain strong
smoothing property in order to recover the lost regularity of nonlinear system (4.1)
caused by the nonlinear terms wwx and (ηw)x. Because of this strict requirement,
we have only succeeded in extending the linear exact controllability results to the
nonlinear system (4.1) with its parameters a, b, c and d satisfying

b > 0, d > 0, a 6= 0, c 6= 0. (4.6)

In particular, we have shown that the system (4.1) is locally exactly controllable in
the space H2

p × H2
p if only a single control action is used. If both control actions

are employed and assume that a = c, in addition to (4.6), then we have shown that
(4.1) is locally exactly controllable in the space Hs

p × Hs
p for any s ≥ 0 and that

some linear feedback control can be constructed so that the resulting (nonlinear)
closed-loop system is locally exponentially stable.

While we have made some progress in studying control and stabilization problems
of system (4.1), there are still many problems left open for further study. We list
below two of them with some remarks to end this paper.

Open questions:

(1) Exact controllability and stabilizability of nonlinear system (4.1) with the
parameters a = c = 1

6 , b = d = 0, i.e.,




ηt + wx + (ηw)x + 1
6wxxx = f,

wt + ηx + wwx + 1
6ηxxx = g

(4.7)

posed on (0, 2π) with periodic boundary conditions (4.2).

System (4.7) is a purely KdV type Boussinesq system which is transformed
into the equivalent system





vt + vx + 1
6vxxx + 1

2 [(v − u)(v + u)]x + 1
2 (v − u)(v − u)x = f∗,

ut − ux − 1
6uxxx + 1

2 [(v − u)(v + u)]x − 1
2 (v − u)(v − u)x = g∗

(4.8)

by setting

f∗ =
f + g

2
, g∗ =

f − g

2
, v =

η + w

2
, u =

η − w

2
.

This is a system of two linear KdV equations coupled through nonlinear terms.
The associated linear system of (4.8) (or (4.7)) has been proved in this paper
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to have the exact controllability and stabilizability properties. The question is
how to extend the linear results to the nonlinear system (4.8)? As pointed out
earlier, a certain smoothing property of the associated linear system is needed
in order to invoke the contraction mapping principle. In case of the scalar
KdV equation, the smoothing property is provided by Bourgain (cf. [8, 39]).
However, there are some difficulties in applying the arguments in [8, 39] to the
coupled system (4.8) since the Bourgain spaces associated with vt +vx+ 1

6vxxx

and with ut −ux − 1
6uxxx are different. This is also the reason why the initial

value problem for system (4.8) is known to be locally well-posed in the space
Hs

p × Hs
p for s > 3

2 only and, in sharp contrast, the initial value problem
for the scalar KdV equation is (analytically) well-posed in the space Hs

p for

s ≥ − 1
2 .1 In fact, it is an interesting open question itself whether the initial

value problem for system (4.8) (or (4.7) equivalently) is locally well-posed in
Hs

p ×Hs
p for some values of s ≤ 3

2

(2) Extend exact controllability and stabilizability results obtained for linear sys-
tem (4.3) to nonlinear system (4.1) where assumption (4.6) is not satisfied.

Naturally, one would try to look for some smoothing properties of the
associated linear systems in order to use the contraction mapping principle.
But the interested reader should be warned that for some linear systems such
a smoothing property may not exist. One may have to seek an alternative
approach 2.
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