
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 353, Number 4, Pages 1635–1659
S 0002-9947(00)02665-9
Article electronically published on November 21, 2000

ON THE LACK OF NULL-CONTROLLABILITY
OF THE HEAT EQUATION ON THE HALF-LINE

SORIN MICU AND ENRIQUE ZUAZUA

Abstract. We consider the linear heat equation on the half-line with a Dirich-
let boundary control. We analyze the null-controllability problem. More pre-
cisely, we study the class of initial data that may be driven to zero in finite time
by means of an appropriate choice of the L2 boundary control. We rewrite
the system on the similarity variables that are a common tool when analyz-
ing asymptotic problems. Next, the control problem is reduced to a moment
problem which turns out to be critical since it concerns the family of real expo-
nentials {ejt}j≥1 in which the usual summability condition on the inverses of
the eigenvalues does not hold. Roughly speaking, we prove that controllable
data have Fourier coefficients that grow exponentially for large frequencies.
This result is in contrast with the existing ones for bounded domains that
guarantee that every initial datum belonging to a Sobolev space of negative
order may be driven to zero in an arbitrarily small time.

1. Introduction. Problem formulation

Given T > 0, we consider the linear heat equation on the half-line: ut(x, t)− uxx(x, t) = 0 for x ∈ Ω, 0 < t < T,
u(0, t) = v(t) for 0 < t < T,
u(x, 0) = u0(x) for x ∈ Ω,

(1.1)

where Ω = (0,∞).
In (1.1), v ∈ L2(0, T ) is a boundary control and u = u(x, t) is the state.
System (1.1) is said to be null-controllable at time T if for any u0 ∈ L2(Ω) there

exists a control v ∈ L2(0, T ) such that the solution of (1.1) satisfies

u(x, T ) = 0 for x > 0.(1.2)

Notice that, unless some growth conditions are imposed at infinity, equation
(1.1) has multiple smooth solutions (see [13], pp. 171-176). We shall define by
transposition a class of solutions which do not grow very rapidly at infinity. In this
way the uniqueness is ensured.

When Ω is a bounded interval it is well-known that system (1.1) is null-control-
lable for any T > 0. We refer to D. L. Russell [22] for some particular examples
treated by means of moment problems and Fourier series, and to A. Fursikov and
O. Yu. Imanuvilov [9] and G. Lebeau and L. Robbiano [18] for the general result
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in the multi-dimensional case covering any bounded smooth domain Ω. Both the
approaches of [9] and [18] are based on the use of Carleman inequalities.

None of the approaches mentioned above apply when Ω is an unbounded domain.
This paper is devoted to analyzing the particular case in which Ω is a half-line:

Ω = R+ = (0,∞).
As we shall see, the situation is completely different to the one we have described

above and, roughly speaking, one may say that there is no initial data in any
negative Sobolev space that may be driven to zero in finite time. Therefore, in
some sense, the situation is the opposite to the one we encounter in the case of
bounded domains.

There is a weaker notion of controllability, the so-called approximate controlla-
bility property. System (1.1) is said to be approximately controllable in time T if for
any u0 ∈ L2(Ω) the set of reachable states, R(T ;u0) = {u(T ) : u solution of (1.1)
with v ∈ L2(0, T )}, is dense in L2(Ω).

With the aid of classical backward uniqueness results for the heat equation (see,
for instance, J. L. Lions and E. Malgrange [17] and J. M. Ghidaglia [10]), it can
be seen that null-controllability implies approximate controllability. However one
can easily prove the approximate controllability directly, for both bounded and
unbounded domains. In fact, using the Hahn-Banach Theorem, it can be seen
that approximate controllability is equivalent to the following unique continuation
property: If ϕ = ϕ(x, t) solves{

ϕt(x, t) + ϕxx(x, t) = 0 for x ∈ Ω, t > 0,
ϕ(0, t) = 0 for t > 0,

and, moreover, ϕx(0, t) = 0 for t > 0, then, necessarily, ϕ ≡ 0.
It is easy to see that this uniqueness property holds as a consequence of Holm-

gren’s Uniqueness Theorem. In fact, in view of the infinite speed of propagation
underlying the heat equation, this property holds for any domain Ω (bounded or
not) and for any T > 0.

Thus, since approximate controllability holds, it is natural to analyze whether
null-controllability holds as well.

The null-controllability of (1.1) with initial data in L2 (R+) and boundary control
in L2(0, T ) is equivalent to an observability inequality for the adjoint system{

ϕt + ϕxx = 0 for x ∈ Ω, t > 0,
ϕ = 0 for x = 0, t > 0.(1.3)

More precisely, it is equivalent to the existence of a positive constant C > 0 such
that the inequality

‖ ϕ(0) ‖2L2(R+)≤ C
∫ T

0

|ϕx(0, t)|2 dt(1.4)

holds for every smooth solution of (1.3).
When Ω is bounded, Carleman inequalities provide the estimate (1.4) and, con-

sequently, null-controllability holds (see for instance [9], [7]).
When Ω is the half-line it is easy to see that (1.4) may not hold. Indeed, let

ϕ0 ∈ D (R+) and ϕ0
k(x) = ϕ(x−k) with k > 0 large enough. Let ϕk be the solution

of (1.3) with initial datum ϕ0
k at time t = T , i.e.

ϕk(T ) = ϕ0
k in R+.
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It is easy to see that

‖ ϕk(0) ‖2
L2(Rn+) /

∫ T

0

|(ϕk)x(0, t)|2 dt→∞, as k →∞.

Thus, we may not expect the null controllability result of the case where Ω is
bounded to be true in the case where Ω = R+.

We refer to L. Rosier [21] for a similar negative result in the context of exact
controllability of linear, constant coefficient pde’s in one space dimension.

This translation invariance argument does not allow one to exclude weighted
versions of the inequality (1.4), and therefore, the null-controllability of suitable
initial data u0 may not be excluded. Nevertheless, let us remark that our arguments
show that there is no positive weight ρ such that the inequality∫ ∞

0

|ϕ(x, 0)|2ρ(x)dx ≤ C
∫ T

0

|ϕx(0, t)|2 dt(1.5)

holds for every smooth solution of (1.3).
This paper is devoted to characterizing the class of initial data u0 such that the

solution of (1.1) may be driven to zero in time T by means of an L2 control v.
In the case of bounded domains, using Fourier series expansion, the control prob-

lem may be reduced to a moment problem (see for instance [5]). However, since we
are working on R+, we cannot use Fourier series. Nevertheless, it was observed by
M. Escobedo and O. Kavian in [4] that, on suitable similarity variables and at the
appropriate scale, solutions of the heat equation on conical domains may be indeed
developed in Fourier series on a weighted L2 space.

We adapt this idea to our problem. Using similarity variables and weighted
Sobolev spaces and developing solutions in Fourier series, we reduce the control
problem to a moment problem. We observe that, in the example under considera-
tion (1.1), the spectral density is critical, and this suggests a bad behavior of the
moment problem. We prove in fact that, roughly speaking, the moment problem
admits an L2 solution if and only if the Fourier coefficients grow exponentially as
the frequency increases. In particular, this proves that no initial datum u0 belong-
ing to any Sobolev space of negative order may be driven to zero in finite time. We
complement this negative result by showing that there exist initial data with ex-
ponentially growing Fourier coefficients for which null-controllability holds in finite
time with L2 controls.

In a first reading, this result might seem to be in contradiction with those of
B. F. Jones Jr. [14]. Indeed, in Corollary 1 of [14] the following is proved: Let
g ∈ C(Rn) and T > 0. Then there exists a continuous function u on Rn × [0,∞)
such that u solves the heat equation in Rn × (0,∞), takes the initial datum g at
t = 0 and satisfies the null-control condition u(x, T ) ≡ 0.

In particular, when n = 1, by restricting u to the right half-line we see that
v(t) = u(0, t), which belongs to L2(0, T ), provides a control driving the solution on
the half-line to zero in time T .

Note however that the solution u constructed in [14] grows very fast at infinity,
and therefore it is not the solution one obtains by transposition. In the result of
[14], the fast growth rate of solutions as |x| → ∞ provides a “hidden” control at
infinity and allows the null-control condition to be achieved.

The article is organized as follows. In Section 2 we introduce the similarity
variables. In Section 3 we define the solutions, derive the corresponding moment



1638 SORIN MICU AND ENRIQUE ZUAZUA

problem, and state and prove the main results. Finally, in Section 4, we briefly
comment on the multi-dimensional case and discuss some other extensions of the
results of this paper and open problems. In particular, we describe why the results
we prove are in agreement with those of [7], [11] and [24], in which it is shown that,
in the case of bounded domains, the control needed to drive the system to rest
blows up exponentially as the control time tends to zero.

2. Similarity variables and weighted Sobolev spaces

In this section we recall some basic facts about the similarity variables and
weighted Sobolev spaces for the heat equation. We refer to [4] and [15] for further
developments and details.

2.1. The similarity variables. We consider the solutions u = u(x, t) of ut(x, t)− uxx(x, t) = 0 for x ∈ Ω, 0 < t < T,
u(0, t) = v(t) for 0 < t < T,
u(x, 0) = u0(x) for x ∈ Ω,

(2.1)

where Ω = R+ = (0,∞).
We now introduce the new space-time variables

y = x
/√

t+ 1 , s = log(t+ 1).(2.2)

Then, given a solution u = u(x, t) of (2.1), we introduce

w(y, s) = es/2u(es/2y, es − 1).(2.3)

It follows that u solves (2.1) if and only if w satisfies

 ws(y, s)− wyy(y, s)− 1
2ywy(y, s)− 1

2w(y, s) = 0 for y ∈ Ω, 0 < s < S,
w(0, s) = ṽ(s) for 0 < s < S,
w(y, 0) = u0(y) for y ∈ Ω,

(2.4)

where

ṽ(s) = es/2v(es − 1)(2.5)

and S = log(T + 1).
Obviously, analyzing the null controllability of system (2.1) in time T is equiv-

alent to studying the null controllability of system (2.4) in time S = log(T + 1).
Therefore, in the sequel, we shall analyze system (2.4).

The elliptic operator involved in (2.4) may also be written as

Lw := −wyy −
1
2
ywy = − 1

K(y)
(K(y)wy)y ,(2.6)

where K = K(y) is the Gaussian weight

K(y) = exp
(
y2/4

)
.(2.7)

We first analyze this operator on the whole real axis.
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2.2. Weighted spaces and spectral analysis on the whole real axis. We
introduce the weighted L2 space

L2(K) = {f : R→ R :
√
Kf ∈ L2(R)}

endowed with the natural norm

‖ f ‖L2(K)=
(∫

R
| f(y) |2 K(y)dy

)1/2

.

Obviously, it is a Hilbert space.
We then define the unbounded operator L on L2(K) by setting

Lw = −wyy −
1
2
ywy,

as above, and D(L) = {w ∈ L2(K) : Lw ∈ L2(K)}.
Integrating by parts, we can easily see that∫

R
(Lw)wKdy =

∫
R
| wy |2 Kdy.

Therefore it is natural to introduce the weighted H1 space

H1(K) = {f ∈ L2(K) : fy ∈ L2(K)}
endowed with the norm

‖ f ‖H1(K)=
[∫
R

(
| f |2 + | fy |2

)
Kdy

]1/2

.

In a similar way, for any s ∈ N we may introduce the space

Hs(K) = {f ∈ L2(K) : Dαf ∈ L2(K), α = 1, 2, ..., s}.
The following properties were proved in [4] and [15]:∫

f2 | y |2 Kdy ≤ 16
∫
| fy |2 Kdy, ∀f ∈ H1(K);(2.8)

the embedding H1(K) ↪→ L2(K) is compact;(2.9)

L : H1(K)→
(
H1(K)

)′
is an isomorphism;(2.10)

Moreover, L can be defined as an unbounded operator in L2(K), L : D(L) =
H2(K) ⊂ L2(K) → L2(K). In this case L−1 : L2(K) → L2(K) is self-adjoint
and compact. The eigenvalues of L are λj = j

2 , j ≥ 1, and the corresponding
eigenfuntions are ϕj = D(j−1)ϕ1, j ≥ 1, where ϕ1 is the eigenfunction associated
to the first eigenvalue λ1, which is simple, and is explicitly given by

ϕ1(y) = K−1(y) = exp
(
−y2/4

)
.(2.11)

Using this spectral decomposition, the solutions of the heat equation in similarity
variables on the whole axis can be easily developed in Fourier series. Namely, if w
solves {

ws + Lw − 1
2w = 0 in R× (0,∞),

w(y, 0) = u0(y) in R,(2.12)

with

u0(y) =
∞∑
j=1

ajϕj(y),
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then

w(y, s) =
∞∑
j=1

e−λjsajϕj(y).(2.13)

2.3. Spectral analysis on the half-line. This similarity transformation may also
be used in R+. The operator L with Dirichlet boundary conditions has basically
the same properties as above, except for the fact that the spectrum is not the same
(see [15]).

However, the spectrum may easily be computed explicitly. We deduce that ϕj
is an eigenfunction of L in Ω = (0,∞) with Dirichlet boundary conditions on the
left extreme y = 0, i.e. such that ϕj(0) = 0, if and only if j is even. Consequently,
in this case the eigenfunctions are

φ̂m(y) = ϕ2m(y), m ≥ 1,(2.14)

and the corresponding eigenvalues are

ωm = λ2m =
2m
2

= m, m ≥ 1.(2.15)

Here and in the sequel, by L2 (R+;K) we denote the weighted L2 space

L2 (R+;K) =
{
f : R+ → R :

√
Kf ∈ L2 (R+)

}
endowed with the canonical norm. We will also use the weighted Sobolev spaces

H1 (R+;K) =
{
f ∈ L2 (R+;K) : fy ∈ L2 (R+;K)

}
and

H1
0 (R+;K) =

{
f ∈ H1 (R+;K) : f(0) = 0

}
,

endowed with the canonical norms. Finally, by H−1 (R+;K) we denote the dual of
H1

0 (R+;K).
Let us define φm(y) = Cmφm(y) such that ||φm||L2(R+;K) = 1. We shall give an

estimate for the constant Cm in section 3.3.
Observe that (φm)m≥1 forms an orthonormal basis in L2 (R+;K).

3. The control problem

In this section we analyze the control problem in the half-line: ut − uxx = 0, x > 0, t > 0,
u(0, t) = v(t), t > 0,
u(x, 0) = u0(x), x > 0.

(3.1)

Here, u = u(x, t) is the state and v = v(t) is the control.
Given T > 0, we are interested in the structure of the space of initial data that

may be driven to zero in time T by means of a control v ∈ L2(0, T ). In other words,
we want to describe the space of data u0 for which there exists v ∈ L2(0, T ) such
that the solution of (3.1) satisfies

u(x, T ) = 0, ∀x > 0.(3.2)
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We define w by means of the similarity transformation (2.3). Then, u solves
(3.1) and satisfies (3.2) if and only if w solves

ws − wyy − ywy
2 −

1
2w = 0, y > 0, 0 < s < S,

w(0, s) = ṽ(s), 0 < s < S,

w(y, 0) = u0(y), y > 0,
(3.3)

and satisfies

w(y, S) = 0, ∀y > 0,(3.4)

with

S = log(T + 1),(3.5)

and ṽ as in (2.5).
Obviously, v ∈ L2(0, T ) if and only if ṽ ∈ L2(0, S). Therefore, the problem is

reduced to analyzing the structure of the space of initial data u0 for which there
exists ṽ ∈ L2(0, S) such that the solution of (3.3) satisfies (3.4).

The following section provides a functional setting guaranteeing that the system
(3.3) is well posed. Our control results refer to the solutions of w defined by
transposition. Indeed, the definition of the solution is used in an essential way
when we reduce the control problem to a moment problem.

3.1. Solutions by transposition. As we have mentioned in the introduction,
unless some growth conditions are imposed at infinity, equation (3.3) has multiple
smooth solutions (see [13], pp. 171-176). Moreover, as Jones [14] has shown,
there are solutions of the heat equation that vanish identically on R+ at t = T .
This provides examples of smooth, null-controllable initial data. Nevertheless, the
corresponding solutions grow very rapidly at infinity and do not belong to the class
of solutions we shall be dealing with.

Hence it is necessary to give a precise definition of solution. The frame in which
we shall work is that of ‘solutions by transposition’ (see [17]).

Moreover, some of the initial data taken under consideration will be very irregular
—belonging to some dual space—and a notion of ultraweak solution has to be
introduced. The main point here is that, by using spectral decomposition, a solution
as in (2.13) can be defined even for exponentially growing Fourier coefficients.

Let δ > 0 be a positive real number, and define the space

Xδ =

u =
∑
m≥1

amφm :
∑
m≥1

|am|2e2δωm <∞

 .

Here (φm)m≥1 is the orthonormal basis in L2 (R+;K) defined in section 2.3.
Obviously, Xδ is a Hilbert space with the inner product defined by

(u, v) =
∑
m≥1

ambme
2δωm if u =

∑
m≥1

amφm and v =
∑
m≥1

bmφm,

and Xδ ⊂ Hs(R+;K) ⊂ L2(R+;K) = X0 for all δ > 0 and s > 0.
Note that Xδ can be identified with the space of sequences(am)m≥1 ∈ `2 :

∑
m≥1

|am|2e2δωm <∞

 .
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The dual of Xδ will be denoted by X ∗δ , and the corresponding dual product by
〈·, ·〉δ.

Observe that each u ∈ X ∗δ can be written in the following way:

u =
∑
m≥1

amφ
∗
m,

where φ∗m ∈ X ∗δ is the dual basis defined by 〈φ∗m, w〉δ =
∫∞

0
w(y)φm(y)K(y)dy for

all w ∈ Xδ, and am = 〈u, φm〉δ.
Hence, X ∗δ can be also identified with the space of sequences(am)m≥1 :

∑
m≥1

|am|2e−2δωm <∞

 .

We shall define by transposition the solutions of (3.3) with initial data in X ∗δ
and non-homogeneous boundary term ṽ ∈ L2(0, S).

Let us first consider the non-homogeneous adjoint equation
ξs + ξyy + y

ξy
2 + 1

2ξ = h, y > 0, 0 < s < S,

ξ(0, s) = 0, 0 < s < S,

ξ(y, S) = ξ0(y), y > 0.
(3.6)

Multiplying in (3.3) by ξK and integrating by parts, we deduce that∫ S

0

∫ ∞
0

hwKdyds =
∫ ∞

0

ξwKdy

∣∣∣∣∣
S

0

+
∫ S

0

ξy(0, s)ṽ(s)ds,

i.e. ∫ S

0

∫ ∞
0

hwKdy

=
∫ ∞

0

ξ0(y)w(y, S)Kdy −
∫ ∞

0

ξ(y, 0)u0(y)Kdy +
∫ S

0

ξy(0, s)ṽ(s)ds.

(3.7)

Of course, the integrations by parts leading to (3.7) are justified provided both ξ
and w are smooth enough and do not grow too fast as y → ∞. Therefore, this is
by now a formal computation. We use (3.7) to define the solution of (3.3) in the
sense of transposition.

More precisely, given ṽ ∈ L2(0, S) and u0 ∈ X ∗δ , we say that w ∈ C ([0, S];X ∗δ )
is a solution of (3.3) in the sense of transposition if the following equality holds:∫ S

0

〈w, h〉δdt = 〈w(·, S), ξ0〉δ − 〈u0, ξ(·, 0)〉δ +
∫ S

0

ξy(0, s)ṽ(s)ds(3.8)

for any ξ0 ∈ Xδ, h ∈ L1 ([0, S];Xδ), and ξ ∈ C([0, S],Xδ) the corresponding solution
of (3.6).

The following holds:

Proposition 3.1. For any u0 ∈ X ∗δ and ṽ ∈ L2(0, S) there exists a unique solution
w ∈ C ([0, S];X ∗δ ) of (3.3) in the sense of transposition.

Proof. Let us first remark that the uniqueness of a solution of (3.8) follows imme-
diately by taking ξ0 = 0 and h(y, s) = h1(s)h2(y) with h1 ∈ L1(0, S) and h2 ∈ Xδ.

For the existence, due to the linearity of the system (3.3), it is sufficient to
consider the following two cases: i) u0 ≡ 0 and ii) ṽ = 0.
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Case i): We prove that (3.8) with u0 = 0 has a solution

w1 ∈ C
(
[0, S];H−1(R+;K)

)
.

Since H−1(R+;K) ⊂ X ∗δ , it will follow that w1 ∈ C ([0, S];X ∗δ ).
Classical energy estimates for the solutions of (3.6) show that there exists C > 0

such that

‖ ξ ‖L∞(0,S;H1
0 (R+;K)) + ‖ ξ ‖L2(0,S;H2∩H1

0 (R+;K))

≤ C
[
‖ h ‖L1(0,S;H1

0(R+;K)) + ‖ ξ0 ‖H1
0(R+;K)

]
,(3.9)

∀h ∈ L1
(
0, S;H1

0 (R+;K)
)
, ξ0 ∈ H1

0 (R+;K).

By duality, we deduce the existence of w1 ∈ L∞
(
0, S;H−1(R+;K)

)
and ζ1 ∈

H−1(R+;K) such that∫ S

0

〈w1, h〉ds− 〈ζ1, ξ0〉 =
∫ S

0

ξy(0, s)ṽ(s)ds,

∀h ∈ L1
(
0, S;H1

0 (R+;K)
)
, ξ0 ∈ H1

0 (R+;K),
(3.10)

where 〈·, ·〉 is the duality product between H1(R+;K) and H−1(R+;K).
Moreover, the following estimate holds:

‖ w1 ‖L∞(0,S;H−1(R+;K)) + ‖ ζ1 ‖H−1(R+;K)≤ C ‖ ṽ ‖L2(0,S), ∀ṽ ∈ L2(0, S).
(3.11)

This is because, in view of (3.9), one also has∣∣∣∣∣
∫ S

0

ξy(0, S)ṽ(s)ds

∣∣∣∣∣ ≤‖ ξy(0, S) ‖L2(0,S)‖ ṽ ‖L2(0,S)

≤ C ‖ ṽ ‖L2(0,S)

[
‖ h ‖L1(0,S;H1

0 (R+;K)) + ‖ ξ0 ‖H1
0 (R+;K)

]
.

In view of (3.11) and by a classical density argument it is easy to see that, in fact,
w1 ∈ C

(
[0, S];H−1(R+;K)

)
.

To conclude, it is sufficient to prove that

w1(S) = ζ1 ∈ H−1(R+,K) ⊂ X ∗δ .(3.12)

This can be done easily by taking solutions of (3.6) corresponding to data
ξ0 = φm, m ≥ 1,
hδ(y, s) = aδ(s)φm, m ≥ 1,

aδ(s) =

{
1
δ , S − δ ≤ s ≤ S,
0, 0 ≤ s ≤ S − δ,

(3.13)

φm being the eigenfunctions of L constituting an orthonormal basis of L2(R+;K)
described in section 2.3.

Indeed, applying (3.26) with this choice of ξ0 and h = hδ (and, therefore, the
corresponding solution of (3.6)), one deduces that

lim
δ→0

1
δ

∫ S

S−δ
〈w1(s), φm〉ds = 〈ζ1, φm〉, ∀m ≥ 1,

which, of course, implies (3.12).
Case ii): We prove that (3.8) with ṽ = 0 has a solution w2 ∈ C ([0, S];X ∗δ ).
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Equation (3.6) is well-posed for ξ0 ∈ Xδ and h ∈ L1(0, T ;Xδ). The corresponding
solution, ξ, belongs to C([0, T ],Xδ) and is continuous with respect to ξ0 and h:

‖ ξ ‖L∞(0,S;Xδ)≤ C
[
‖ h ‖L1(0,S;Xδ) + ‖ ξ0 ‖Xδ

]
, ∀h ∈ L1 (0, S;Xδ) , ξ0 ∈ Xδ.

(3.14)

It follows by duality that there exist w2 ∈ L∞ (0, S;X ∗δ ) and ζ2 ∈ X ∗δ such that∫ S

0

〈w2, h〉δds− 〈ζ2, ξ0〉δ + 〈u0, ξ(0)〉δ = 0,

∀h ∈ L1 (0, S;Xδ) , ξ0 ∈ Xδ.
(3.15)

Moreover, the following estimate holds:

‖ w2 ‖L∞(0,S;X ∗δ ) + ‖ ζ2 ‖X ∗δ≤ C ‖ u0 ‖X ∗δ , ∀u0 ∈ X ∗δ .(3.16)

This is because one also has∣∣∣∣∣
∫ S

0

ξy(0, S)ṽ(s)ds

∣∣∣∣∣ ≤‖ ξy(0, S) ‖L2(0,S)‖ ṽ ‖L2(0,S)

≤ C ‖ ṽ ‖L2(0,S)

[
‖ h ‖L1(0,S;H1

0 (R+;K)) + ‖ ξ0 ‖H1
0 (R+;K)

]
≤ C ‖ ṽ ‖L2(0,S)

[
‖ h ‖L1(0,S;Xδ) + ‖ ξ0 ‖Xδ

]
.

In view of (3.16) and by a classical density argument it is easy to see that, in
fact, w2 ∈ C ([0, S];X ∗δ ).

As in case i), one also proves that w2(S) = ζ2.
The proof of Proposition 3.1 is finished now by taking w = w1 + w2.

Remark 3.1. Observe that the solution w2 of (3.3) with ṽ = 0 can also be obtained
by extending the semigroup corresponding to (3.3) to X ∗δ .

In fact, if u0(y) =
∑∞

j=1 ajφj(y) is the initial datum of (3.3), then the correspond-
ing solution will be w(y, s) =

∑∞
j=1 e

−ωjsajφj(y), where all the series converge in
X ∗δ .

Remark 3.2. One can also define the solutions of (3.1) directly by transposition (in
the original space-time variables (x, t)). It turns out that for any u0 ∈ L2(R+) and
v ∈ L2(0, T ) there exists a unique solution of (3.1) in the sense of transposition
such that u ∈ C

(
[0, T ];H−1(R+)

)
.

However, when u0 ∈ L2(R+;K) one can also obtain the solution of (3.1) from
the solution of (3.3) given by Proposition 3.1 by undoing the change of variables of
section 2.1. Indeed, u may be written as

u(x, t) = (t+ 1)−1/2w

(
x√
t+ 1

, log(t+ 1)
)
.(3.17)

Obviously, in this case, the two solutions of (3.1) (the one obtained directly
by transposition and the one obtained by the change of variables (3.17) from the
solution w of (3.3) in the sense of transposition) coincide.

3.2. Main results on the moment and control problems. We first reduce
the control problem to a moment problem.



CONTROLLABILITY OF THE HEAT EQUATION 1645

Proposition 3.2. The initial datum u0 of system (3.3) is null-controllable in time
S if and only if there exists ṽ ∈ L2(0, S) such that∫ S

0

ṽ(s)e(m−1/2)sds =
am

φ′m(0)
, ∀m ≥ 1,(3.18)

where am = 〈u0, φm〉δ.

Remark 3.3. Note that, when u0 ∈ L2(R+;K), we have

〈u0, φm〉δ =
∫ ∞

0

u0(y)φm(y)K(y)dy

for all m ≥ 1.

Proof of Proposition 3.2. Let us first suppose that u0 is null-controllable. From
(3.8) it follows that∫ S

0

〈w, h〉δdt+ 〈u0, ξ(·, 0)〉δ =
∫ S

0

ξy(0, s)ṽ(s)ds(3.19)

for any solution of (3.6) such that ξ0 ∈ Xδ and h ∈ L1 ([0, S];Xδ).
By taking h = 0 and ξ0 = φm, m ≥ 1, we see that the corresponding solution of

(3.6) is ξ(y, s) = e(−m+1/2)(S−s)φm(y). With this choice, from (3.19), we obtain

e(−m+1/2)Sam =
∫ S

0

e(−m+1/2)(S−s)φ′m(0)ṽ(s), m ≥ 1,

which is equivalent to (3.18).
On the other hand, suppose that (3.18) holds. By taking again h = 0 and

ξ0 = φm, m ≥ 1, we obtain from (3.8) that

〈w(·, S), φm〉δ = 0, m ≥ 1.

Hence, w(·, S) = 0, and therefore u0 is controllable.

According to Proposition 3.2, the control problem is reduced to analyzing the
sequences {am}m≥1 such that (3.18) holds for some ṽ ∈ L2(0, S).

We set

αm = am /φ′m(0)(3.20)

and

f(s) = ṽ(s)eS/2.(3.21)

Obviously, ṽ ∈ L2(0, S) if and only if f ∈ L2(0, S). On the other hand, (3.18) is
equivalent to ∫ S

0

f(s)emsds = αm, ∀m ≥ 1.(3.22)

This is the moment problem we shall address.
We now state the main result of this paper on the moment problem (3.22).

Theorem 3.1. a) Assume that the coefficients {αm} are such that there exist δ > 0
and Cδ > 0 such that

|αm| ≤ Cδeδm, ∀m ≥ 1.(3.23)

If (3.22) holds for some S > 0 and f ∈ L2(0, S), then, necessarily, supp(f) ⊆ [0, δ].
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b) Assume that the coefficients {αm} are such that for any δ > 0 there exists
Cδ > 0 such that

|αm| ≤ Cδeδm, ∀m ≥ 1.(3.24)

If (3.22) holds for some S > 0 and f ∈ L2(0, S), then, necessarily, αm = 0 for all
m ≥ 1.

c) For any δ > 0 and S > δ there exist sequences {αm} such that

C1e
δm/m ≤ |αm| ≤ C2e

δm/m, ∀m ≥ 1,(3.25)

for suitable positive constants C1, C2 > 0, and the moment problem (3.22) has a
solution f ∈ L2(0, S) with supp(f) ⊆ [0, δ].

Remark 3.4. Statement b) of Theorem 3.1 is a direct consequence of statement a),
since the latter implies supp(f) ⊆ [0, δ] for all δ > 0.

Roughly speaking, b) proves that the coefficients {αm} need to grow exponen-
tially to guarantee the existence of an L2(0, S) solution of the moment prob-
lem (3.22). More precisely, b) shows that a necessary condition for the null-
controllability is

lim sup{[log |αm|]/m} > 0.

Statement c) proves the optimality of a) and b).

In order to prove statement c) from Theorem 3.1 we need to rewrite the moment
problem in an equivalent way:

Proposition 3.3. The following assertions are equivalent:
(a) There exists f ∈ L2(0, S) such that (3.22) holds.
(b) There exists an entire function F of exponential type ≤ S/2 with∫ ∞

−∞
| F (iy) |2 dy <∞(3.26)

and such that

F (m) = αme
−mS/2, ∀m ≥ 1.(3.27)

Remark 3.5. As the proof of this proposition shows (see section 3.3 below), the
function F in (b) is uniformly bounded along the imaginary axis.

Remark 3.6. If (3.25) from Theorem 3.1 holds, the corresponding minimal control
time is S = δ. Indeed, let us suppose that the moment problem (3.22) has a solution
f ∈ L2(0, S) with S < δ. From Proposition 3.3 we obtain that there exists an entire
function F of exponential type ≤ S/2, such that αm = F (m)e

mS
2 . Hence

C1e
δm/m ≤ |αm| =

∣∣∣F (m)e
mS
2

∣∣∣ ≤ Aem(S+ε)

for all ε > 0, which is impossible if S < δ.

Theorem 3.1 and Proposition 3.3 will be proved in section 3.3.
According to Theorem 3.1 and Proposition 3.3, in order to characterize the null-

controllable initial data it is necessary and sufficient to characterize the sequences
{F (m)}m≥1 that may be obtained by means of entire functions F of exponential
type ≤ S/2 satisfying (3.26) and (3.27). We shall use this result to prove that there
exist null-controllable initial data.

As an immediate consequence of Theorem 3.1 we obtain the following result on
the control problem:
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Theorem 3.2. There is no non-trivial initial datum u0 which is null-controllable
in finite time and with Fourier coefficients {am} satisfying

| am |≤ Cδeδm, ∀m ≥ 1,(3.28)

for all δ > 0.
Moreover, for any δ > 0 and S > δ there exist non-trivial initial data u0 that

are null-controllable in time S and such that

C1
eδm

m3/4
≤| am |≤ C2

eδm

m3/4
, ∀m ≥ 1,(3.29)

for suitable positive constants C1, C2 > 0. In this case a control f ∈ L2(0, S) with
supp(f) ⊆ [0, δ] can be found.

Remark 3.7. Note that, if the Fourier coefficients {am}m≥1 of the initial datum
u0 satisfy (3.29), then the the corresponding solution of (3.3) is well-defined and
belongs to C([0, S],X ∗δ′) for all δ′ < δ (see section 3.1).

The proof of Theorem 3.2 will be given in section 3.3.
Theorem 3.2 indicates, roughly speaking, that null-controllable initial data have

exponentially growing Fourier coefficients. Actually, the Fourier coefficients need
to be exponentially large for any 0 ≤ s < S along the controlled trajectory.

Observe that u0 ∈ H−α(R+;K) with α > 0 if
∑
m≥1 | am |2 m−α < ∞.

Consequently the null-controllable initial data that Theorem 3.2 provides satisfying
(3.18) do not belong to any Sobolev space of negative order H−α(R+;K).

On the other hand, if u0 ∈ H−α(R+;K) for some α > 0, we have

| am |= |〈u0, φm〉| ≤‖ u0 ‖H−α(R+;K)‖ φm ‖Hα(R+;K) .

Taking into account that ‖ φm ‖Hα(R+;K) grows polynomialy as m→∞, we deduce
that (3.28) holds, and therefore u0 is not null-controllable, except when u0 ≡ 0.

Theorem 3.2 refers to the null-controllability of systems (3.3) in the similarity
variables. However, due to the equivalence of the null-controllability of systems
(3.1) and (3.3), the following holds:

Corollary 3.1. There is no non-trivial initial datum u0 which is null-controllable
in finite time for system (3.1) by means of L2 boundary controls and such that

| am |≤ Cδeδm, ∀m ≥ 1,(3.30)

for all δ > 0.
Moreover, for any δ > 0 and T > eδ − 1 there exist non-trivial initial data u0

for system (3.1) that are null-controllable in time T with L2 controls supported in
[0, δ] and such that its Fourier coefficients {am} satisfy (3.29).

Remark 3.8. According to Corollary 3.1 we deduce, in particular, that the following
initial data are not null-controllable in any time T for system (3.1):
• u0(x) = xk exp(−x2/2), ∀k ≥ 0;
• u0 ∈ D(R+).
As we mentioned in the introduction, this result is in contrast with the existing

ones for bounded domains that guarantee that any initial datum in any Sobolev
space of negative order is null-controllable in an arbitrarily short time.

The examples we have mentioned above show that the lack of null-controllability
on the half-line is not due to the lack of regularity or to the lack of decay at infinity
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of the initial data. In fact, there is no initial datum u0 ∈ D(R+), except for the
trivial one, that is null-controllable in any time!

The proof of Theorem 3.2 we present below provides an explanation of this un-
usual fact. Roughly speaking, an L2 control produces an exponential effect on
the Fourier coefficients of the controlled trajectory for any time, as the frequency
increases. Thus, null-controllability may only be achieved when the Fourier coeffi-
cients of the initial datum are already exponentially large.

Note that when (3.25) holds, S = δ is the minimal control time for these initial
data (see also Remark 3.6).

As we mentioned in the introduction, this result might seem to be in contradic-
tion with those in [14] that guarantee that for any initial datum u0 ∈ C(Rn) and
T > 0 there exists a continuous solution u of the heat equation in Rn× [0,∞) such
that u(x, T ) ≡ 0. However, this solution u grows very fast at infinity, and therefore
it is not the solution one obtains by transposition, which is the frame in which we
are working.

3.3. Proofs of the main results. This section is devoted to proving Propositions
3.3, Theorem 3.1 and Theorem 3.2.

Proof of Proposition 3.3. First of all we observe that∫ S

0

f(s)emsds =
∫ S/2

−S/2
f(s+ S/2)em(s+S/2)ds

= emS/2
∫ S/2

−S/2
f(s+ S/2)emsds = emS/2

∫ S/2

−S/2
g(s)emsds

with g(s) = f(s+ S/2). Hence, statement (a) of Proposition 3.3 is equivalent to

(a′) ∃g ∈ L2(−S/2, S/2) such that
∫ S/2

−S/2
g(s)emsds = e−mS/2αm, ∀m ≥ 1.

(3.31)

We now prove that (a′) and (b) are equivalent.
(a′) ⇒ (b). Let G be the Fourier transform of g or, more precisely, of

g(s)1(−S/2,S/2), i.e. G(z) =
∫ S/2
−S/2 g(s)e−izsds, and let F (z) = G(iz). According

to the Paley-Wiener Theorem (see for instance [2]), we know that G : C → C is
an entire function of exponential type ≤ S/2 and such that

∫∞
−∞ | G(x) |2 dx <∞.

Consequently, F is also an entire function of exponential type ≤ S/2 such that∫∞
−∞ | F (ix) |2 dx <∞.

Moreover, in view of (3.31),

F (m) = G(im) =
∫ S/2

−S/2
g(s)emsds = e−mS/2αm.

This shows that (b) holds.
(b) ⇒ (a′). Let F be an entire function of exponential type ≤ S/2, with∫∞
−∞ | F (ix) |2 dx < ∞ and such that (3.27) holds. We then set G(z) = F (−iz),

which is also an entire function of exponential type ≤ S/2 with
∫∞
−∞ | G(x) |2 dx <

∞.
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From the Paley-Wiener Theorem we deduce that there exist g ∈ L2(−S/2, S/2)
such that

G(z) =
∫ S/2

−S/2
g(s)e−izsds.

Then, the function f(s) = g(s+ S/2) is such that∫ S

0

f(s)emsds =
∫ S/2

−S/2
g(s)em(s+S/2)ds = emS/2G(im) = emS/2F (m) = αm,

by (3.27). This completes the proof of Proposition 3.3.

Proof of Theorem 3.1. a) For the proof of the first statement a method due to Ryll-
Nardzevski, used by Yosida [27] (pp. 166-167) in a similar context, can be applied.
First of all let us give the following lemma:

Lemma 3.1. If g ∈ L2(0, T ) and 0 ≤ t ≤ T , then

lim
x→∞

∞∑
k=1

(−1)k−1

k!

∫ T

0

ekx(t−u)g(u)du =
∫ t

0

g(u)du.(3.32)

Proof. The case g ∈ C[0, T ] is proved in Yosida [27] (pp. 166-167). For the sake
of completeness we recall that identity (3.32) holds by the Taylor expansion of the
function 1− exp

(
−ex(t−u)

)
and the dominated convergence theorem. Exactly the

same proof also holds if g ∈ L2(0, T ).

The following lemma is also inspired by Yosida [27].

Lemma 3.2. If g ∈ L2(0, T ) is such that there exist two positive constants δ > 0
and Cδ > 0 such that ∣∣∣∣∣

∫ T

0

g(u)emudu

∣∣∣∣∣ ≤ Cδemδ, ∀m ≥ 1,(3.33)

then supp(g) ⊆ [0, δ].

Proof. From the previous lemma we have

lim
m→∞

∞∑
k=1

(−1)k−1

k!

∫ T

0

ekm(t−u)g(T − u)du =
∫ t

0

g(T − u)du.

But ∣∣∣∣∣
∞∑
k=1

(−1)k−1

k!

∫ T

0

ekm(t−u)g(T − u)du

∣∣∣∣∣
≤
∞∑
k=1

1
k!
ekm(t−T )

∣∣∣∣∣
∫ T

0

ekmτg(τ)dτ

∣∣∣∣∣
≤
∞∑
k=1

1
k!
ekm(t−T )Cδe

kmδ = Cδ

(
exp

(
em(t−T+δ)

)
− 1
)
.

Since the last expression tends to zero as m tends to infinity for t ≤ T −δ, it follows
that

∫ t
0 g(T − u)du = 0, 0 ≤ t ≤ T − δ, and the proof is complete.
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The first statement of Theorem 3.1 now follows from Lemma 3.2 with g = f .
b) The second statement is a direct consequence of the first one. Indeed, from

the hypothesis and a) it follows that supp(f) ⊆ [0, δ] for all δ > 0. Hence f ≡ 0,
and therefore αm = 0 for all m ≥ 1.

c) Let us now prove the third statement, i.e. the existence of exponentially
growing coefficients αm for which (3.22) admits a solution. Consider for instance
the function

F (z) =
sin(iδz)
iδz

.(3.34)

Obviously, F is an entire function that is bounded along the imaginary axis, satisfies∫ ∞
−∞
| F (iy) |2 dy <∞,

and, moreover, is of exponential type = δ.
According to Proposition 3.3, the moment problem (3.21) has a solution in the

interval (0, S) with S ≥ 2δ if {αm}m≥1 are such that F (m) = αme
−mS/2. In view

of (3.34) this is equivalent to

αm =
sin(iδm)
iδm

emS/2.(3.35)

Obviously,

| αm |∼
C

m
em(S/2+δ), m→∞.(3.36)

This completes the proof of Theorem 3.1.

Proof of Theorem 3.2. To prove Theorem 3.2 it is sufficient to apply Theorem 3.1
with

αm =
am

φ′m(0)
.(3.37)

We now need an estimate on φ′m(0) as m→∞.

Lemma 3.3. If φm are the eigenfunctions described in section 2.3, then

|φ′m(0)| ∼ 1√
π

4
√
m as m→∞.(3.38)

Proof. As described in section 2.3, the eigenfunctions φm are of the form

φm(y) = Cmϕ2m(y) = Cm
d2m−1

[
e−y

2/4
]

dy2m−1
(3.39)

with Cm > 0 such that

‖ φm ‖L2(R+;K)= 1.(3.40)

Let us recall that the Hermite polynomials Hn are defined as

Hn(y) = (−1)ney
2
dn
[
e−y

2
]

dyn
, n ≥ 0.(3.41)

Therefore

φm(y) = − Cm
22m−1

H2m−1(y/2)e−y
2/4.(3.42)
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It is well known that (see [20])∫ ∞
−∞

Hn(y)Hk(y)e−y
2
dy = 2nn!

√
πδnk.(3.43)

Consequently,

‖ φm ‖2L2(R+,K)=
C2
m

24m−2

∫ ∞
0

|H2m−1(y/2)|2 e−y2/4dy

=
C2
m

24m−2

∫ ∞
−∞
|H2m−1(y)|2 e−y

2
dy =

C2
m(2m− 1)!

√
π

22m−1
.

(3.44)

Thus, in view of (3.40),

Cm =

√
22m−1

(2m− 1)!
√
π
.(3.45)

Moreover

φ′m(0) = −Cm
22m

H ′2m−1(0).(3.46)

But,

H ′2m−1(0) = 2(2m− 1)H2m−2(0) = (−1)m−1 2(2m− 1)!
(m− 1)!

.(3.47)

Consequently

φ′m(0) =
(−1)m

π1/4

√
(2m− 1)!

[(m− 1)!]2 22m−1
.(3.48)

If we now apply Stirling’s formula (see Olver [20])

x! ∼
√

2πx
(x
e

)x
as x→∞,(3.49)

we deduce that

|φ′m(0)| ∼ 1√
π

(m− 1/2)1/4 as m→∞,

and the proof of the lemma is complete.

This shows that, if the sequence of Fourier coefficients {am}m≥1 satisfies the
exponential growth condition (3.29), then αm = am/φ

′
m(0) satisfies (3.25) as well.

Theorem 3.2 is then a direct consequence of Theorem 3.1.

3.4. On the lack of observability estimates. As we described in the introduc-
tion, a natural approach to the problem of null-controllability of heat equations is
through the observability problem for the adjoint system (see, for instance, [7]).

More precisely, the null-controllability of system (3.3) with controls in L2(0, S)
and for initial data in L2(R+;K) is equivalent to the existence of a positive constant
C > 0 such that

‖ ξ(0) ‖2L2(R+,K)≤ C
∫ S

0

| ξy(0, S) |2 ds, ∀ξ0 ∈ H1
0 (R+;K),(3.50)

where, we recall, ξ is the solution of (3.6)
As we have shown in Theorem 3.2, this null-controllability result is false and

therefore (3.50) does not hold. In fact, according to Theorem 3.2 it turns out that
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all the possible weaker versions of (3.50) in which the L2−norm of the left hand
side is replaced by a H−σ−norm for any σ > 0 are false as well.

In this section we describe how the lack of observability inequalities of the form
(3.50) may be obtained directly.

Let us recall that inequalities of the form (3.50) are well-known to be true in
context of bounded domains.

In view of the Fourier series expansion of the solution ξ of (3.6), we have

ξ(y, s) =
∑
m≥1

bme
−(m−1/2)(S−s)φm(y).

Thus

ξy(0, S) =
∑
m≥1

bme
−(m−1/2)(S−s)φ′m(0).

Taking into account that, from Lemma 3.3, |φ′m(0)| ∼ Cm1/4 as m → ∞, we
deduce that (3.50) is equivalent to

∑
m≥1

a2
m√
m
e−(2m−1)S ≤ C

∫ S

0

∣∣∣∣∣∣
∑
m≥1

ame
−(m−1/2)(S−s)

∣∣∣∣∣∣
2

ds

= C

∫ S

0

∣∣∣∣∣∣
∑
m≥1

ame
−(m−1/2)s

∣∣∣∣∣∣
2

ds,

or, even, to

∑
m≥1

a2
m√
m
e−2mS ≤ C

∫ S

0

∣∣∣∣∣∣
∑
m≥1

ame
−ms

∣∣∣∣∣∣
2

ds.(3.51)

Inequalities of the form (3.51) are well known to be true when the sequence
of real exponentials {e−ms}m≥1 is replaced by {e−mαs}m≥1 with α > 1 (see, for
instance, [5] and [22]). The case α = 1 we are considering is critical, since the series∑
m≥1 1/m diverges.
In this critical case the following negative result holds:

Proposition 3.4. There is no sequence {ρm}m≥1 of positive weights, i.e. ρm > 0
for all m ≥ 1, such that

∑
m≥1

ρma
2
m ≤

∫ S

0

∣∣∣∣∣∣
∑
m≥1

ame
−ms

∣∣∣∣∣∣
2

ds(3.52)

for all {am}.

Remark 3.9. This result excludes the inequality (3.50) and any other weaker ver-
sion of it. According to this result, the positive statement of Theorem 3.2 on the
existence of exponentially growing Fourier coefficients leading to null-controllable
initial data may not be obtained as a consequence of an observability inequality of
the form (3.52).
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Observe that an inequality like (3.52) is, roughly speaking, equivalent to the null
controllability in time S of all initial data in the class

H =

u0 =
∑
k≥1

akφk :
∑
k≥1

a2
k

ρk
<∞

 ,

and, according to Theorem 3.2 we know that this is false, whatever the sequence of
weights {ρk} is.

Proposition 3.4 is an immediate consequence of the following, one:

Proposition 3.5. Let {λj}j≥1 be an increasing sequence of positive real numbers.
Assume that there exists a sequence of positive weights {ρj}j≥1 such that

∑
j≥1

ρj |aj |2 ≤
∫ 1

0

∣∣∣∣∣∣
∑
j≥1

aje
−λjt

∣∣∣∣∣∣
2

dt,(3.53)

for all {aj}j≥1. Then, necessarily,∑
j≥1

1
λj

<∞.(3.54)

Proof of Proposition 3.5. As a consequence of (3.53) we have

∑
j≥1

ρja
2
j ≤

∫ ∞
0

∣∣∣∣∣∣
∑
j≥1

aje
−λjt

∣∣∣∣∣∣
2

dt,(3.55)

for all {aj}j≥1.
We now use the following result in [28], p. 151:
Let there be given {fj}j≥1 be a sequence in a Hilbert space H and a sequence of

real numbers {cj}j≥1 such that∣∣∣∣∣∣
N∑
j=1

ajcj

∣∣∣∣∣∣ ≤M
∥∥∥∥∥∥
N∑
j=1

ajfj

∥∥∥∥∥∥
H

(3.56)

for any {aj}1≤j≤N and any N ∈ N. Then, there exists f ∈ H such that ‖ f ‖H≤M
and (f, fj) = cj , j ≥ 1.

We apply this result with H = L2(0,∞), and fj = e−λjt. According to (3.55),
(3.56) holds with {cj} such that, for some j0, cj = 0 for all j 6= j0, and cj0 = 1.
We fix j0 = 1 and consider the sequence

cj = 0, ∀j ≥ 2; c1 = 1.

According to the above result we deduce the existence of f ∈ L2(0,∞) such that

‖ f ‖L2(0,∞)≤
1
√
ρ1

;
∫ ∞

0

f(t)e−λjtdt =
{

1, j = 1,
0, j ≥ 2.

Hence, the exponential family
{
e−λnt

}
j≥2

is not total in L2(0,∞). From Müntz’s
Theorem (see Schwartz [23], p. 24) we obtain∑

j≥2

1
λj

<∞

and the proof is complete.
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Remark 3.10. The proof of Proposition 3.5 actually provides a stronger result.
Namely, it shows that if the sequence {λj}j≥1 is such that for some j0 and ρ > 0
we have

ρ |aj0 |
2 ≤

∫ 1

0

∣∣∣∣∣∣
∑
j≥0

aje
−λjt

∣∣∣∣∣∣
2

dt(3.57)

for all sequences {aj}j≥1, then, necessarily,∑
j≥1

1
λj

<∞.(3.58)

Inequalities of the form (3.57) are equivalent to what is called the spectral con-
trollability problem. In this setting it consists in analyzing whether the eigenfunc-
tions may be driven to zero in finite time. Theorem 3.2 provides a negative answer.
Proposition 3.5 provides a second proof of this negative result, in which the effect
of the divergence of the series Σ1/λj is clearly seen.

4. Further comments and open problems

4.1. General domains. The problem of null-controllability of the heat equation
arises in fact in any domain Ω of Rn. As we have described in the introduction,
when Ω is bounded and of class C2 the null-controllability is well known. The
results we have proved in the one-dimensional case can be used in the context of
some simple unbounded domains.

For instance, if Ω = Rn+, n ≥ 2, and the control acts on the whole boundary ∂Ω,
the situation is similar to the one encountered in one space dimension. Namely:

a) Initial data with Fourier coefficients that grow less than any exponential are
not null-controllable in any time.

b) There are exponentially growing Fourier coefficients that are null-controllable.
This can be done by using separation of variables in order to reduce the problem
to an infinite family of one-dimensional problems (see [19]).

The approach based on the use of the similarity variables may also be used in
general conical domains. But, due to the lack of orthogonality of the traces of
the normal derivatives of the eigenfunctions, the corresponding moment problem is
more complex and remains to be solved.

When Ω is a general unbounded domain, the similarity transformation does not
seem to be of any help, since the domain one gets after transformation depends on
time.

Therefore, a completely different approach seems to be needed when Ω is not
conical. However, one may still expect a bad behavior of the null-control problem.
Indeed, assume for instance that Ω contains Rn+. If one is able to control to zero in
Ω an initial datum u0 by means of a boundary control acting on ∂Ω× (0, T ), then,
by restriction, one is able to control the initial datum u0 |Rn+ with the control being
the restriction of the solution in the larger domain Ω× (0, T ) to Rn−1 × (0, T ). A
careful development of this argument and of the result it may lead to remains to
be done.

The approximate control problem for the semilinear heat equation in general
unbounded domains was addressed in [26]. There, an approximation method was
developed. The domain Ω was approximated by bounded domains (essentially
by Ω ∩ BR, BR being the ball of radius R) and the approximate control in the
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unbounded domain Ω was obtained as the limit of the approximate control on the
approximating bounded domain Ω ∩BR.

However, this approach does not apply in the context of the null-control problem.
The approach described in [14] and [16] is also worth mentioning. It is proved

that, for any T > 0, the heat equation has a fundamental solution which is C∞

away from the origin and with support in the strip 0 ≤ t ≤ T . This allows one to
build a solution u of the heat equation

ut −∆u = 0 in Rn × (0, T )(4.1)

that is continuous in Rn × [0, T ] and matches the initial and final conditions

u(x, 0) = u0 in Rn,(4.2)
u(x, T ) = 0 in Rn,(4.3)

for any continuous function u0.
This may also be interpreted as a null-controllability result in a general domain

Ω. Indeed, by setting v = u |∂Ω×(0,T ), we deduce that u |Ω×(0,T ), the restriction of
u solution of (4.1)-(4.3) to Ω× (0, T ), satisfies

ut −∆u = 0 in Ω× (0, T ),
u = v on ∂Ω× (0, T ),
u(x, 0) = u0(x) in Ω,
u(x, T ) = 0 in Ω.

(4.4)

This argument applies when Ω is unbounded as well. In particular, when n = 1
and Ω = R+, this shows that for any u0 ∈ C(R+) there exist v ∈ C[0, T ] and a
solution u of 

ut − uxx = 0, 0 < x, 0 < t < T,
u(0, t) = v(t), 0 < t < T,
u(x, 0) = u0(x), 0 < x,

(4.5)

such that

u(x, T ) = 0 in R+.(4.6)

Note however that the solutions of (4.5)-(4.6) provided that the approach of [14]
and [16] do not fit in the context of our negative result, since they grow too fast as
| x |→ ∞, and therefore, these are not solutions in the sense of transposition.

It is also worth comparing this result with the positive one of Section 3. In The-
orem 3.2 we prove that initial data with exponentially growing Fourier coefficients
are null-controllable by means of L2(0, T ) controls. Moreover, the trajectory we
obtain necessarily has exponentially growing Fourier coefficients during the whole
time interval. This is in agreement with the result of [14] and [16], in which the
trajectory has also a fast growth rate as | x |→ ∞.

4.2. More general equation. The same problems arise in the context of more
general parabolic equations, including variable coefficients, semilinear terms, . . . .

We refer to [6] and [8] for the analysis of the null-control problem of the semilinear
heat equation in bounded domains, and to [12] for the case of linear heat equations
with variable coefficients.

The approach we have adopted in this work does not seem to extend to these
more general problems, even in Rn+, except for very particular cases. Indeed, Fourier
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series decompositions of the solutions apply for equations of the form

ws −∆w − y · ∇w
2
− n

2
w + a(y)w + b(s)w = 0.(4.7)

Obviously, in order to get an equation of the form (4.7) in the similarity variables,
the original equation

ut −∆u+ c(x, t)u = 0(4.8)

needs to have a variable coefficient c(x, t) of a very special structure.
The extension of the results of this paper in, say Rn+, to the general case of

coefficients c ∈ L∞
(
Rn+ × (0, T )

)
remains to be done.

4.3. Necessary and sufficient conditions for null-controllability. The re-
sults of this paper show that, when Ω = Rn+,

? Initial data with Fourier coefficients growing slower than any exponential may
not be controlled in finite time by means of controls in a suitable weighted
L2 space of the boundary.

? Some initial data with exponentially growing Fourier coefficients are control-
lable.

Of course, it would be desirable to obtain a more explicit characterization of the
Fourier coefficients of the null-controllable initial data.

4.4. Approximation by means of domains of finite measure. As we men-
tioned above, a natural approach to the problem of null-controllability of the heat
equation in an unbounded domain Ω consists of, first, approximating this domain
by ounded domains ΩR, second, solving the null-control problem in ΩR, and finally,
letting R→∞.

This was done successfully in [26] in the context of approximate controllability.
In this section we describe why this method fails in the context of the null-control

problem, in agreement with the negative results we have proved in this paper.
Let us consider the one-dimensional problem discussed in Section 3. Then, Ω =

R+. We then set ΩR = (0, R). Consider the heat equation in ΩR with control in
the left end x = 0, i.e.

ut − uxx = 0, 0 < x < R, 0 < t < T,
u(0, t) = v(t), u(R, t) = 0, 0 < t < T,
u(x, 0) = u0(x), 0 < x < R.

(4.9)

We assume, to simplify things, that u0 ∈ D(R+). Consequently, the support of
u0 is contained in (0, R) for all R > 0 sufficiently large.

We fix T > 0.
It is by now well-known that this system is null-controllable. Thus, given T > 0

and u0 as above, for any R > 0 there exists vR ∈ L2(0, T ) such that the solution
uR of (4.9) satisfies

uR(x, T ) = 0, 0 < x < R.(4.10)

It is then natural to analyze whether the family {vR} remains bounded as R→
∞. If it were bounded, by weak convergence we would get a null-control v ∈
L2(0, T ) for u0 in time T in the half-line (0,∞). But, according to the negative
results of Section 3, we know that null-controllability fails in (0,∞). Thus, the
sequence {vR} has to diverge. In this section we briefly describe how this divergence
may be seen to hold.
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The control of system (4.9) may be reduced to the problem of null-controllability
of the heat equation in the interval (0, 1) but in a time interval that tends to zero
as R→∞. More precisely, u satisfies (4.9) if and only if

z(x, t) = u(Rx,R2t)(4.11)

satisfies 
zt − zxx = 0, 0 < x < 1, 0 < t < TR−2,

z(0, t) = v(R2t), 0 < t < TR−2,

z(1, t) = 0, 0 < t < TR−2,

z(x, 0) = u0(Rx), 0 < x < 1.

(4.12)

Note that the control time in (4.12) is TR−2 , which tends to zero as R→∞.
As we mentioned above, the null-control for system (4.12) may be obtained

through a suitable observability estimate for the adjoint system
ϕt + ϕxx = 0, 0 < x < 1, 0 < t < TR−2,

ϕ(0, t) = ϕ(1, t) = 0, 0 < t < TR−2,

ϕ(x, T ) = ϕ0(x), 0 < x < 1.
(4.13)

Indeed, let CR > 0 be the best positive constant of the observability inequality

‖ ϕ(0) ‖2L2(0,1)≤ CR
∫ TR−2

0

|ϕx(0, t)|2 dt.(4.14)

Then, the control of (4.12) admits the bound

‖ v(R2t) ‖L2(0,TR−2)≤
√
CR ‖ u0(Rx) ‖L2(0,1),

or, in other words, the control vR of (4.9) satisfies

‖ vR ‖L2(0,T )≤
√
RCR ‖ u0 ‖L2(0,R) .(4.15)

However, we know that the constant CR in (4.14) is of the order of eC(T )R2

as R → ∞. And this estimate is sharp. This sharp estimate may be found in
[11] and [24], where the problem is addressed analyzing the biorthogonal family
associated to the sequence of real exponentials {e−j2t}j≥1 in L2(0, δ) as δ → 0. In
[7] sharp observability estimates were proved by means of Carleman inequalities
in the context of the internal control problem for general bounded domains in any
space dimension. The same estimates apply for the boundary control problem.

The above developments show why the method on approximating the unbounded
domain by bounded domains fails for the null-control problem.

4.5. A result of backwards uniqueness for the non-homogeneous heat
equation. The main result of non-controllability from Theorem 3.1 can have the
following different interpretation:

Theorem. Let wj (j = 1, 2) be two solutions of (3.3) on Q = R+ × (0, S) with
non-homogeneous terms ṽ1 and ṽ2 respectively in L2(0, S).

Suppose that the expansion coefficients (αjm)m≥1 of the initial data wj(·, 0) satisfy

lim sup{[log |αim|]/m} ≤ 0, j = 1, 2.(4.16)

Then equality of the terminal states w1(·, S) = w2(·, S) implies w1 = w2 in Q.
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Proof. Indeed, the solutions wj (j = 1, 2) can be written as

wj(·, s) =
∑
m≥1

αjm(s)φm(·), s ∈ [0, S],

where αjm(0) = αjm, m ≥ 1.
From the hypothesis we have that wj(·, 0) ∈ X ∗δ , for all δ > 0. The existence

result from section 3.1 implies that wj ∈ C ([0, S],X ∗δ ), for all δ > 0. Therefore, for
each s ∈ [0, S],

lim sup{[log |αjm(s)|]/m} ≤ 0, j = 1, 2.

Let us now define w = w1 − w2.
The Fourier coefficients of w are αm(s) = α1

m(s) − α2
m(s), m ≥ 1, and satisfy

(3.24). Moreover, w(·, S) = 0. Hence, for each s ∈ [0, S], w(·, s) is null-controllable.
From Theorem 3.1 it follows that αm(s) = 0 for all m ≥ 1. Hence w1(·, s) = w2(·, s)
for all s ∈ [0, S].

Let us remark that, in the case of a bounded interval Ω, this backwards unique-
ness result does not hold (it contradicts the well-known positive controllability
result we have mentioned before).

On the other hand, our positive control result shows that the condition (4.16)
on the Fourier coefficients is necessary in order to have this backwards uniqueness
result for the non-homogeneous heat equation.
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